Decision Diagrams for Quantum Computing

Robert Wille!-2[0000—0002—4993—7860]
)
Stefan Hillmich3[0000—-0003—1089-3263] ' 31q Tukas Burgholzer3[0000—0003—4699—1316]

1 Chair for Design Automation, Technical University of Munich, Germany
2 Software Competence Center Hagenberg GmbH (SCCH), Austria
3 Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
robert.wille@tum.de stefan.hillmich@jku.at lukas.burgholzer@jku.at
https://www.cda.cit.tum.de/research/quantum/

Abstract. Quantum computing promises to solve some important prob-
lems faster than conventional computations ever could. Currently avail-
able NISQ devices on which first practical applications are already ex-
ecuted demonstrate the potential—with future fault-tolerant quantum
hardware for more demanding applications on the horizon. Nonetheless,
the advantages in computing power come with challenges to be addressed
in the design automation and software development community. In par-
ticular, non-quantum representations of states and operations, which pro-
vide the basis, e.g., for quantum circuit simulation or verification, require
an exponential amount of memory. We propose to use decision diagrams
as data structure to conquer the exponential memory requirements in
many cases. In this chapter, we review the fundamentals on decision di-
agrams and highlight their applicability in the tasks of quantum circuit
simulation with and without errors as well as in verification of quantum
circuits. The tools presented here are all available online as open source
projects.

Note: This is a pre-print of the following chapter: Robert Wille, Stefan Hillmich,
and Lukas Burgholzer, “Decision Diagrams for Quantum Computing”, published in De-
sign Automation of Quantum Computers, edited by Rasit O. Topaloglu, 2023, Springer
reproduced with permission of Springer. The final authenticated version is available on-
line at: https://doi.org/10.1007/978-3-031-15699-1_1

1 Introduction

Quantum computing promises to speed up many important applications even
in the current NISQ era |1] and more so once fault-tolerance is achieved. The
underlying primitives of quantum computing are fundamentally different to con-
ventional computations. This introduces new challenges for design automation
and software development such as the exponential memory requirement to store
arbitrary quantum states and operations on non-quantum hardware.

The design automation community in the conventional domain has spent
decades to successfully solve many difficult problems. One of these solutions
which especially addresses memory consumption is the usage of decision di-
agrams to represent information. In the conventional domain, there exists a

https://www.cda.cit.tum.de/research/quantum/
https://doi.org/10.1007/978-3-031-15699-1_1

2 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

plethora of different types such as Binary Decision Diagrams (BDDs, |2]), Binary
Moment Diagrams (BMDs, |3]), Zero-suppressed Decision Diagrams (ZDDs, [4]),
or Tagged BDDs |5|. Inspired by the results achieved with decision diagram in the
conventional domain, several types have been invented for the quantum domain,
such as X-decomposition Quantum Decision Diagrams (XQDDs, [6]), Quan-
tum Decision Diagrams (QDDs, [|7]), Quantum Information Decision Diagrams
(QuIDDs, [8]), or Quantum Multiple-valued Decision Diagrams (QMDDs, (9],
|10]). However, many researchers and engineers working in the domain of quan-
tum computing are still rather unfamiliar with the concepts of decision diagrams
and, hence, often cannot fully exploit this potential.

In this chapter, we review decision diagrams as data structure to compactly
represent quantum states and quantum operators. To this end, we explain how
decision diagrams are obtained from decomposing state vectors along with an
explanation of the graphical notation. The vector decomposition is subsequently
extended to obtain decision diagrams for matrices. Afterwards, we cover selected
applications of decision diagrams for design and validation work. More precisely,
we begin by covering error-free quantum circuit simulation, which is essentially
matrix-vector multiplication. In the next step, we discuss noisy quantum cir-
cuit simulation and the advantages decision diagrams have in this application.
Additionally to simulation, we present as a main aspect of quantum circuit veri-
fication an efficient procedure to check the equivalence of quantum circuits using
decision diagrams.

The remainder of this chapter is structured as follows. gives the
background on decision diagrams, specifically how vectors and matrices are rep-
resented. In [Section 3| and [Section 4] we show how decision diagrams can be
employed to conduct quantum circuit simulation without and with noise, respec-
tively. explains how decision diagrams lead to more efficient equivalence
checking procedures. Finally, concludes the chapter.

2 Decision Diagrams

In this section, we describe how decision diagrams exploit redundancies in vectors
and matrices to enable a compact representation in many cases. More precisely,
we first detail the representation for state vectors which we subsequently extend
by a second dimension to compactly represent matrices for quantum operations.

2.1 Representation of State Vectors

The representation of a system composed of n qubits on non-quantum hardware
is commonly achieved through 2"-dimensional vector—an exponential represen-
tation. However, a closer look at state vectors unveils that they are frequently
composed of redundant entries which provide potential for a more compact rep-
resentation.

Decision Diagrams for Quantum Computing 3

Example 1. Consider a quantum system with n = 3 qubits situated in a state
given by the following vector:

7/} = |:O707 %70a %aoa _%70}
Although exponential in size (23 = 8 entries), this vector only assumes three

different values, namely 0, %, and — L.

el

Redundancy in the considered data can be exploited to attain a compact
representation. To this end, we propose to employ decision diagrams. For con-
ventional computations, decision diagrams such as the Binary Decision Diagram
(BDD, |2]) are a tried and tested data structure and have been used for decades.
For BDDs, a decomposition scheme is employed which reduces a function to
be represented into corresponding sub-functions. Since the sub-functions usu-
ally include redundancies as well, equivalent sub-functions result which can be
shared—eventually yielding a much more compact representation. In a similar
fashion, the concept of decomposition can also be applied to represent state
vectors in a more compact fashion.

Similar to decomposing a function into sub-functions, we decompose a given
state vector with its complex entries into sub-vectors. To this end, consider a
quantum system with qubits ¢,—1,¢1,...qo, whereby g, 1 represents the most
significant qubitﬁ Then, the first 2"~ ! entries of the corresponding state vec-
tor represent the amplitudes for the basis states with ¢,—1 set to |0); the other
entries represent the amplitudes for states with ¢,_1 set to |1). This decompo-
sition is represented in a decision diagram structure by a node labeled ¢,_; and
two successors leading to nodes representing the sub-vectors. The sub-vectors
are recursively decomposed further until vectors of size 1 (i.e., a complex num-
ber) result. This eventually represents the amplitude «; for the complete basis
state and is given by a terminal node. During this decomposition, equivalent
sub-vectors are represented by the same nodes—enabling sharing and, hence,
a reduction of the complexity of the representation. An example illustrates the
idea.

Example 2. Consider again the quantum state from [Ezample 1. Applying the
decomposition described above yields a decision diagram as shown in[Fig. 1d. The

left (right) outgoing edge of each node labeled q; points to a node representing
the sub-vector with all amplitudes for the basis states with q; set to |0) (]1)).
Following a path from the root to the terminal yields the respective entry. For
ezample, following the path highlighted bold in[Fig. 1d provides the amplitude for
the basis state with qa = |1) (right edge), ¢1 = |1) (right edge), and qo = |0) (left
edge), i.e., —% which is exactly the amplitude for basis state |110) (seventh

entry in the vector from [Fxample 1)). Since some sub-vectors are equal (e.g.,
[%70}71 represented by the left node labeled qo), sharing is possible.

4 The terminology most-significant qubit refers to a position in the basis states of a
quantum system and does not signify the importance of the qubit itself.

4 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

]

A

(a) Without weights (b) With weights (c¢) Graphical notation
Fig. 1: Different representations of the state vector from [Example 1

However, there is more potential for sharing. In fact, many entries of the state
vectors differ by a common factor only (e.g., the state vector from
has entries % and —% which differ by the factor —/2). This is exploited in the
decision diagram representation by denoting common factors of amplitudes as
weights to the edges of the decision diagram. Then, the value of an amplitude
for a basis state is determined by not only following the path from the root to
the terminal, but additionally multiplying the weights of the edges along this
path. Note that for a more readable notation, we use zero stubs to indicate zero
vectors (i.e., vectors only containing zeroes) and omit edge weights that are equal
to one. Again, an example illustrates the idea.

Example 3. Consider again the quantum state from [Example 1 and the cor-
responding decision diagram shown in [Fig. 1d As can be seen, the sub-graphs
rooting the node labeled qo are structurally equivalent and only differ in their ter-

T
minal values. Moreover, they represent sub-vectors [%,O]T and [—%,0] which
only differ in a common factor.

In the decision diagram shown in both sub-graphs are merged. This
s possible since the corresponding value of the amplitudes is now determined
not by the terminals, but the product of weights on the respective paths. As an
example, consider again the path highlighted bold representing the amplitude for

the basis state |110). Since this path includes the weights %, 1, =2, and 1, an
amplitude value of 3 -1-(—v2)-1= f% results.

There exist various possibilities to factorize an amplitude. Hence, we apply
a normalization scheme to the decision diagrams, resulting in a representation
which is canonical w.r.t order of qubits @I] The outgoing edges of a node are
often normalized by dividing both weights by the weight of the left-most edge
(when # 0), and multiplying this factor to the incoming edges. However, it has
been found in , that it is more effective to divide by the norm of the vector
containing both edge weights and adjust the incoming edges accordingly. This
normalizes the sum of the squared magnitudes of the outgoing edge weights to 1

Decision Diagrams for Quantum Computing 5

and is consistent with the quantum semantics, where basis states |0) and |1) are
observed after measurement with probabilities that are squared magnitudes of
the respective weights. Furthermore, to ease the graphical notation we represent
the complex number in polar plane as 7 - e!*. The magnitude r of an edge weight
is represented by the edge’s thickness and the angle o according to the HLS
color wheel [12]. The graphical notation reflects that one is most often only
interested in the structure of the decision diagram instead of the exact values of
edge weights. Of course, the edge weights can be put in the notation if necessary.

Example 4. Consider again the quantum state from and the nor-
malized decision diagram with edge weights shown in [Fig. 10 shows the
graphical notation of this decision diagram where the line width represents the
magnitude of the edge weight and the color the respecting angle when considering
the polar notation of complex numbers.

In the edge to the root node (having a weight of 1/2) is notably thinner
than the other edges (with weights 1 and —\/5) The with weight —/2 is slightly
thicker than the edges with weight 1 and, more visible in the figure, has a different
phase, i.e., —/2 = /2 - €™, encoded in the line color.

Overall, the discussions from above lead to the following definition of decision
diagrams for quantum states.

Definition 1. The decision diagram representing a 2™-dimensional state vector
18 a directed acyclic multi-graph with one terminal node labeled 1 that has no
successors and represents a 1-dimensional vector with the element 1. All other
nodes are labeled q;, 0 < i < n (representing a partition over qubit q;) and
have two successors. Additionally, there is an edge pointing to the root node
of the decision diagram. This edge is called root edge. Fach edge of the graph
has a complex number attached as weight. An entry of the state vector is then
determined by the product of all edge weights along the path from the root towards
the terminal. Without loss of generality, the nodes of the decision diagram are
ordered by the significance of their label, i.e., the successor of a node labeled q; are
labeled with a less significant qubit q;. Finally, the nodes are normalized, which
means that the sum of the squared magnitudes of the outgoing edge weights equals
one and the common factor is propagated upwards in the decision diagram.

2.2 Representation of Matrices

While quantum states are commonly represented by vectors, quantum operations
are described by matrices. These matrices are unitary (its conjugate transpose
is also its inverse) and 2" x 2"-dimensional for a n-qubit system. Similar to state
vectors, matrices often include redundancies, which can be exploited for a more
compact representation. To this end, the decomposition scheme for state vectors
is extended by a second dimension — yielding a decomposition scheme for 2" x 2™
matrices.

The entries of a unitary matrix U = [u, ;| indicate how much the opera-
tion U affects the mapping from a basis state |¢) to a basis state |j). Considering

6 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

(a) H (b) I

Fig. 2: Representation of matrices

again a quantum system with qubits ¢,_1,...,q1,qo, whereby ¢,_1 represents
the most significant qubit, the matrix U is decomposed into four sub-matrices
with dimension 271 x 27~1: All entries in the left upper sub-matrix (right lower
sub-matrix) provide the values describing the mapping from basis states |i) to
|7) with both assuming go = |0) (go = [1)). All entries in the right upper sub-
matrix (left lower sub-matrix) provide the values describing the mapping from
basis states |¢) with go = |1) to |j) with g =1]0) (go =]0) to go = |1)).

This decomposition is represented in a decision diagram structure by a node
labeled g,,—1 and four successors leading to nodes representing the sub-matrices.
The sub-matrices are recursively decomposed further until a 1 x 1 matrix (i.e.,
a complex number) results. This eventually represents the value u; ; for the cor-
responding mapping. Also during this decomposition, equivalent sub-matrices
are represented by the same nodes and weights. As for decision diagrams rep-
resenting state vectors, a corresponding normalization scheme is employed. To
this end, all edges-weights are divided by the leftmost entry with the largest
magnitude. Again, zero stubs are used to indicate zero matrices (i.e., matrices
that contain zeros only) and edge weights equal to one are omitted. Similar to
decision diagrams for quantum states, magnitude and phase of edge weights are
encoded as thickness and color, respectively (see[Example 4)). Again, an example
illustrates the idea.

Example 5. Consider the matrices of the Hadamard operation H, the iden-
tity 1o, and their combination U = H ® I, i.e.,

1 (1 1 10 1 [to 1.0
H=— I, = U=H®I,=—|9%_0 1].
ﬁ{l —1] ? {01} ? ﬂ[é‘i 5"

shows the corresponding decision diagram representations. Following
the path with dotted lines in defines the entry ug o: a mapping from |0) to
[1) for q1 (third edge from the left) and from |0) to |0) for qo (first edge). Conse-
quently the path describes the entry for a mapping from |00) to [10). Multiplying
all factors on the path (including the root edge) yields \% 1-1= %, which is
the value of ua .

Decision Diagrams for Quantum Computing 7

Overall, the concepts described above yield to the definition of a decision
diagram representing a unitary matrix as follows.

Definition 2. The decision diagram representing a 2" x 2" -dimensional unitary
matriz 1s a directed acyclic graph with one terminal node labeled 1 that has no
successors and represents a 1 X 1 matriz with the element 1. All other nodes
are labeled q;, 0 < i < n (representing a partition over qubit q;) and have four
successors. Additionally, there is an edge pointing to the root node of the decision
diagram. This edge is called root edge. Each edge of the graph has attached a
complex number as weight. An entry of the unitary matriz is then determined by
the product of all edge weights along the path from the root towards the terminal.
Without loss of generality, the nodes of the decision diagram are ordered by the
significance of their label, i.e., the successor of a node labeled q; are labeled with
a less significant qubits q;. Finally, the nodes are normalized, which means that
all edges-weights are divided by the leftmost entry with the largest magnitude.
The common factor is propagated upwards in the decision diagram.

A performance-oriented implementation handling decision diagrams and op-
erations as described in this section is freely available under the MIT license
at https://github.com/cda-tum/dd_package. Furthermore, to give a better
intuition and make decision diagrams for quantum computing more accessible,
an installation-free web-tool that visualizes decision diagrams for state vectors
as well as matrices is available at https://www.cda.cit.tum.de/app/ddvis/|

Given the decision diagrams as described in this section, the following sections
showcase the applicability in different areas of design and verification work. More
precisely, we cover the simulation of quantum circuits without noise in
and with noise in[Section 4)as well as verification of quantum circuits in[Section 5]

3 Simulation of Quantum Circuits

Despite physical quantum computers being available in the cloud nowadays, the
simulation of quantum circuits on non-quantum hardware remains paramount
for the development and design of future quantum computing applications. Ad-
ditionally, simulations on non-quantum hardware provide insights into the inner
workings of a quantum system that are fundamentally hidden in physical quan-
tum computers. This enables designers to analyze quantum algorithms or verify
the output of physical quantum computers. To this end, simulating a quantum
circuit entails the successive application of all individual gates of the circuit to
the initial state of a quantum system in order to obtain the final state. The
final state is measured to obtain the result in the computational bases. While
straight-forward in principle, this quickly amounts to a hard task due to the
required memory on non-quantum hardware and the subsequently difficult ma-
nipulation of 2" complex amplitudes for an n-qubit system.

Decision diagrams, as described in provide a promising technique
that aims at compactly representing the 2" complex amplitudes of a quantum

https://github.com/cda-tum/dd_package
https://www.cda.cit.tum.de/app/ddvis/

8 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

N
e

|
<)<=~

o
SCOSIEN=0

Fig. 3: Creation of H ® 5 using decision diagrams

system and the corresponding operations applied to it. Having the ability to
compactly represent state vectors and unitary matrices, all that is left is to
provide corresponding methods to form the Kronecker product, multiply vectors
with matrices, as well as measure the quantum system. Since the introduced
decision diagrams closely relate to vectors and matrices, we can implement the
required operations by slight adaptations only.

3.1 Kronecker Product

The Kronecker product enables composition of multiple matrices to attain the

suitable size 2™ x 2" matrix to be applied to an n-qubit system. Given two
matrices A and B, the Kronecker product is defined as in [Eq. (1)

a/070 . B P a0,2’971 . B
A®B= : : (1)

agk_1,0 B+ agk 1901+ B

In other words, the Kronecker product replaces each element a;; of A by
a;j - B. While this constitutes a computationally expensive task using straight-
forward realizations by means of array-based implementations of A and B, it
is very cheap to form the Kronecker product of two matrices given as decision
diagrams.

Since a; ; is given as product of the edge weights from A’s root node to the
terminal and we can easily determine a;; - B by adjusting the weight of the
edge pointing to B’s root node. All that has to be done to determine A ® B is
replacing A’s terminal with the root node of B. Additionally, the weight of A’s
root edge has to be multiplied by the weight of B’s root edge.

Example 6. Recall the matrices considered in[Fig. 2d The Kronecker product
U = H ®1y can efficiently be constructed by taking the decision diagram repre-
sentation of H and replacing its terminal node with the root node of the decision
diagram representing I. Since the root edge of Iy has weight 1, the value of the
root node of U is equal to the weight of A’s root edge. This is illustrated in[Fig. 3

Decision Diagrams for Quantum Computing 9

K * % - R + R - R
R R))))))

i
\

.
Uoo Uoi Ui Un Yo ¥1 Uow-v0 Uiwo-po Uoni-p1 Uir-¢1 Uoo - o Uto - o
+ +
Uoi -1 Ui g1

Fig. 4: Recursive structure of multiplication and addition using decision diagrams

3.2 Adding and Multiplying Unitary Matrices

The multiplication of a unitary matrix U and a state vector |p) can be broken
down into sub-computations according to [Eq. (2)|

Uoo Uor| [¢o| _ |(Uoogo + Uo1p1) (2)
Uio Un1] |1 (Uioo + Ur1¢1)

For decision diagrams, recursively determining the four sub-products Uy - o,
Up1 - v1, U1o - po, and Uyy - @1 realizes the multiplication. The decompositions
of multiplication and addition are recursively applied until 1 x 1 matrices or
1-dimensional vectors result. Since these represent just complex numbers, their
multiplication and addition is well defined.

As shown in the middle of these sub-products are then combined with
a decision diagram node to two intermediate state vectors. Finally, these inter-
mediate state vectors have to be added. This addition is recursively decomposed

similarly, namely as in

oro= o]+ 2] =[R2 ®

The recursively determined sub-sums ¥y + ¢¢ and ¥; + ¢ are composed by a
decision diagram node as shown on the right-hand side of

Moreover, decomposition into sub-products and sub-sums does not change
the decision diagram structure. Hence, the complexity of them remains bounded
by the number of nodes of the original representations. Furthermore, redundan-
cies can again be exploited by caching sub-products and sub-sums.

3.3 Measurement

Measurement can efficiently be conducted on the decision diagram structure.
Without loss of generality, consider that the most significant qubit (which is
represented by the root node of the corresponding decision diagram) of the state
vector should be measured. This can be accomplished by applying a SWAP op-
eration or by re-arranging the nodes and edges of the decision diagram. Then,
the probability of choosing either the left or right edge is given by the wup-
stream probability of the successor nodes weighted by the corresponding edge

10 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

OF
OReNCn

¢
(0

(a) Measure g2 = |1) (b) Normalize amplitudes

Fig. 5: Measurement of qubit ¢,

weights [13]. Depending on the used normalization scheme, this calculation may
be simplified [14]. An example illustrates the idea.

Example 7. Consider again the quantum state discussed in and its
corresponding decision diagram shown in [Fig. 1% Then, the probabilities for
measuring gz = 0) and g2 = |1) are |12 [1]* -1 =1 and |1]? - 1] -3 = 3,
respectively.

Having the probabilities for collapsing the most significant qubit to basis
state |0) and |1) allows to sample its new value. If we obtain basis state |0)
(]1)), the amplitudes for all basis states with ¢,—1 = |1) (g,—1 = |0)) are set to
zero. In the decision diagram, the collapse is performed by multiplying with the

My (M;) non-unitary matrix from [Eq. (4)

-] - 3]

Afterwards the decision diagram is renormalized and the probability of the con-
sidered qubit being measurement again in the same basis state in subsequent
measurements is 1.

Example 7 (continued). Assume we measure basis state |1) for qubit go.
shows the resulting decision diagram. To fulfil the normalization con-
straint, we renormalize the decision diagram — eventually resulting in the deci-

sion diagram shown in [Fig. 54

Measuring all qubits can be conducted in a similar fashion. In fact, we re-
peat the procedure discussed above sequentially for all qubits ¢,_1,¢n_2,...,qo.
Assume that qubit g; shall be measured, and that all qubits ¢; where j > i are
already measured. Then, there exists only one node labeled ¢;, which is the root
node of the sub-vector to be measured.

Overall, this allow for an more efficient quantum circuit simulation in many
cases. An implementation of this method is available at https://github.com/
cda-tum/ddsim and via the corresponding Python package mqt.ddsim. In addi-
tion, https://wuw.cda.cit.tum.de/app/ddvis/ provides an installation-free
visualization scheme of the procedure.

https://github.com/cda-tum/ddsim
https://github.com/cda-tum/ddsim
https://pypi.org/project/mqt.ddsim/
https://www.cda.cit.tum.de/app/ddvis/

Decision Diagrams for Quantum Computing 11

4 Noise-Aware Simulation of Quantum Circuits

The methods reviewed above allow for an efficient simulation of perfect, i.e.,
error-free, quantum circuits. While already an important step towards proper
design and evaluation of certain applications, physical quantum computers do
not work perfectly and are affected by noise effects, which cause errors during
quantum computations. Considering those errors during simulation enables a
more accurate and realistic evaluation of the respectively considered quantum
circuits. At the same time, considering errors introduces new challenges for the
already exponentially hard problem of quantum circuit simulation. In this sec-
tion, we review how to conduct noisy simulation with decision diagrams. To
this end, we first review typical noise effects in quantum computing, i.e., recap
frequently occurring errors, and, afterwards, discuss two complementary solu-
tions for noise-aware simulation based on decision diagrams (originally proposed
in [15], [16]).

4.1 Errors in Quantum Computations

During quantum computations, a large variety of errors may occur and affect the
output of the corresponding executions. Most prominently, two types of errors
are distinguished [17]:

Gate errors: Any errors that may alter the originally intended functionality of
an operation or may lead to an operation not being executed at all.

Decoherence errors: Any errors caused by the effect that qubits can only hold
information for a limited amount of time.

Gate errors heavily depend on the underlying quantum computer technology
and even on the qubits to which the respective operations are applied. The effect
is that the operation either is not executed at all or that a different operation
is employed. Often, they are approximated using depolarization errors [18], [19]
and, hence, defined by altering the qubit to a completely random state |20]. More
detailed descriptions of the respective effects are additionally often provided by
the vendors of the respective quantum computer, e.g., in case of IBM at [21].

Decoherence Errors occur due to the fragile nature of quantum systems.
Because of this, qubits can only hold information for a limited time and, hence,
qubits in a high-energy state (|]1)) tend to relax towards a low energy state
(10)) (i.e., after a certain amount of time, qubits eventually decay towards |0)).
Moreover, when a qubit interacts with the environment, further errors (such as
phase-flip errors) might occur.

Example 8. Consider a 2-qubit system which is in state [¢') = %(|00> +[11))
and assume that a gate error might affect this state with probability p. Then,
with probability 1 —p, nothing happens (the state remains unchanged) while, with
probability p, a certain error effect is imposed. Both scenarios can be captured by
either employing an I-operation or an operation describing the error effect (e.g.,
a polarization using X, Y, or Z or a completely random effect), respectively.

12 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

In a similar fashion, consider the same quantum state but assume a decoher-
ence error at the second qubit (more precisely, a dampening error which makes
the second qubit decay to |0)) with a probability p = 0.3. Then, a measurement
of this state would not lead to |00) or |11) with equal probabilities anymore (as
in the error-free case), but to |00) in 50% of the cases, |10) in 15% of the cases,
and |11) in 35% of the cases. That is, the probability that the second qubit decays
to |0) is substantially larger due to the decoherence.

Overall, errors effects can be seen as (unwanted) operations employed on
a quantum system. Accordingly, they could in principle be simulated like any
other quantum operation—using, e.g., the methods described before in[Section 3]
The main challenge, however, is that whether an error effect happens or not de-
pends on certain probabilities. These need to be captured during the simulation.
Existing solutions doing that have been proposed, e.g., in [19], [22]-]29].

4.2 Simulation Methods Using Decision Diagrams

In this section, we review how decision diagrams may help in providing a so-
lution for noise-aware quantum circuit simulation. The first solution thereby
relies on a stochastic approach which employs the main concepts reviewed in
while the second solution aims for a deterministic consideration of
noise—requiring a more complex representation of quantum states and opera-
tions.

More precisely, the first solution (stochastic simulation as proposed in [16])
is based on the vanilla decision diagram-based circuit simulator described in
Then, whenever the considered quantum computer might make an
error during its simulated operation, it either mimics the effect of the error by
additionally employing an error operation (with corresponding probability p)
or leaves the state untouched (with probability 1 — p). Consequently, a single
output state is sampled from the whole spectrum of possible output states by
such a run.

By iteratively sampling sufficiently many output states (using, e.g., stochastic
Monte-Carlo approximation) a rather accurate approximation of the quantum
circuit’s behavior under the influence of noise effects can be obtained. The benefit
of this approach is that it does not substantially increase the complexity of
individual simulation runs when compared to the error-free circuit simulation.
Furthermore, individual simulations are independent and, hence, can be executed
in parallel. However, this approach remains stochastic, i.e., it cannot guarantee
the best possible accuracy (although evaluations summarized in [30] show that
a sufficient accuracy can be achieved for practically relevant use cases).

If an exact consideration of noise is desired, a more elaborate solution is re-
quired which describes all noise effects in a deterministic fashion. To this end,
the representation of quantum states and quantum operations in terms of vec-
tors and matrices (as used thus far) is not sufficient anymore. More precisely, a
description is needed which incorporates all possible states a quantum system

Decision Diagrams for Quantum Computing 13

may reside in (including the original state but also states resulting from any
noise effects with certain probabilities).

This is accomplished by extending the state vector representation to density
matrices (also known as density operators) |31]). More precisely, let |¢) be a com-
plex vector representing the state of a quantum system. Then, the corresponding
density matriz is defined as p = |¢) (¢| with (¢] == |¢)".

Example 9. Consider again the quantum state |¢') = %(|00> +[11)) from
[ample 8 The corresponding density matrix p is given by

1

7 3003

0 1 1 0000

0 '[WOOW}: 0000 (5)
5 tood

This representation properly describes the quantum state while, additionally, al-
lowing to store information about the noise-effects on the state. For example, the
diagonal entries encode the probabilities for measuring |00) ,|01), |10}, and |11),
respectively, which is in line with the probabilities obtained from the state vector
representation (|%|2 =31)

Based on this representation, various error effects can now be applied by a
tuple (Eo, En, ..., Ep) of Kraus matrices satisfying the condition

Y ElE =1 (6)
=0

For example, a decoherence error which makes a qubit decay to |0) can be rep-
resented by [20]

. |1 0 _|0yp
(Eo, El) with Ey = |:0 G _p:| and Ey = |:O 0 :| ’ (7>
where the variable p represents the probability of the error occurring. Other noise

effects can be described in a similar fashion. Applying these error descriptions to
a quantum system given by the density matrix p yields the density matrix |20]:

p = Z Eszj (8)
i=0
This formalism allows to deterministically capture all noise effects as illus-
trated in the following example:

Example 10. Consider again the quantum state from above and the decoher-

ence error from making the second qubit decay to |0)) with probabil-
ity p=0.3. Then, the error’s effect can be calculated deterministically by con-

structing the correctly sized matrices with the Kronecker product and summing

14 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

i & d

) Decision diagram of a) Decision diagram of a (c) State after applying
state vector denblty matrix T1 error

Fig. 6: Decision diagram representation of states

them as in|Eq. (9)

0.5 0 0 0.418 00 O O 0.5 0 0 0418
0 0 0 0 00 O O 0 0 O 0
0 00 0 + 0 0 015 0 0 0 0.15 0 (9)
0.418 0 0 0.35 00 O O 0418 0 O 0.35
EopE} E1pE] o’

Again the diagonal encodes the probabilities for measuring |00),]01),|10), and
|11), which are in-line with the values covered before in [Ezample §

The resulting representations are substantially larger than the vectors and
matrices needed for error-free quantum circuit simulation. For example, rather
than vectors of size 2™, matrices of size 2™ x 2" are needed to represent an n-
qubit quantum state. However, density matrices can be represented in terms of
decision diagrams as well. In fact, employing the same decomposition scheme
for matrices as reviewed in yields corresponding decision diagrams for
density matrices.

Example 11. Consider again the quantum state from[Ezample 9in both the vec-
tor as well as density matriz representation. The corresponding decision diagram
representations are provided in [Fig. 6df and [Fig. 6b, respectively. The decision

diagram resulting after applying the error affect (as considered in|Example 10
is shown in [Fig. 64

Obviously, the decision diagram representations of the density matrices (pro-
viding a deterministic representation of all employed error effects) is larger than
the original state representation. After all, a substantially larger amount of in-
formation needs to be stored. Nevertheless, the examples show that, also in these
cases, decision diagrams may offer a more compact representation than offered
by a direct representation in terms of a 2" x 2"-matrix. After all, this helps in
improving deterministic, noise-aware quantum circuit simulation.

Overall, this section showed that decision diagrams can be employed for
noise-aware quantum circuit simulation—both, stochastically as well as deter-
ministically. Further details and evaluations on the respective methods are avail-
able in [15], [16]. An implementation of the stochastic method is available at
https://github.com/cda-tum/ddsim.

https://github.com/cda-tum/ddsim

Decision Diagrams for Quantum Computing 15

11111111
1 w w? w?w!w® W W’
L4 1w?wtw® 1 w?wtwt
LJ2—|H 1 1w? W whw W w? W’
|_|§ VB lw* 1 w?l w1l w
0 H 1w®w? W Wt w Wb w?
1 1wl w?w? 1 Wb wtw?
o H 1w w® W’ w!w®w? w]
a) QFT Circuit G b) Functionality U (w = (1 +14)/v2
y
1z 1z I I I I
4 8
q2 —|H }:: -o : : : —o—P
| ,% %I | I% | | Y
T [N NP Y U e | |
Y T x| <= IR
o I Y NGy, -1 . N2 i'l?l'r\ D
T 2 7 AN ZAN AN A 5% \
| | | | | |
(c) Alternative realization G’

Fig. 7: The QFT, its functionality, and an alternative realization

5 Verification of Quantum Circuits

As a final example for the utilization of decision diagrams in design/software
for quantum computing, we consider the task of verification — more precisely
equivalence checking. Here, the question is whether two quantum circuits G and
G’ realize the same functionality. This is motivated by the design flow in which
a given circuit is decomposed, mapped, and optimized [32]-[42]. During all these
steps, it has to be ensured that the functionality of the correspondingly resulting
circuit descriptions does not change. In the following, we first give an explicit
description of this problem and, then, describe two complementary approaches
for tackling it using decision diagrams.

5.1 The Quantum Circuit Equivalence Checking Problem

Equivalence checking in the domain of quantum computing—as we consider
it in this work—is about proving that two quantum circuits G and G’ are
functionally equivalent (i.e., realize the same function), or to show the non-
equivalence of these circuits by means of a counterexample. To this end, con-
sider two quantum circuits G = go ... gm—1 and G’ = g, ... g},,_, operating on n
qubits. Then, the functionality of each circuit can be uniquely described by the

respective system matrices U = U,,,_1--- Uy and U’ = U/ -- U}, where the

m/—1"
matrices Ui(/) describe the functionality of the i-th gate of the respective circuit
(with 0 < i < mU)). Consequently, deciding the equivalence of both computa-
tions amounts to comparing the system matrices U and U’. More precisely, U
and U’ are considered equivalent, if they at most differ by a global phase factor

(which is fundamentally unobservable [43]), i.e., U = e!®U’ with « € [0, 27).

16 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

(1+2) _
0 2=
V2

(&W& L
7)

—

Fig. 8: Decision diagram for the functionality U of G shown in

Example 12. Consider the circuit G of the three qubit Quantum Fourier Trans-
form shown in[Fig. 7d Its corresponding functionality is described by the densely-
populated 8 x 8 matriz U shown z'n . Additionally, shows an
alternative realization G’ of the functionality of G. Since both circuits exhibit the
same system matriz U, they are considered equivalent.

Unfortunately, the whole functionality U (and similarly U’) is not readily
available for performing this comparison, but has to be constructed from the
individual gate descriptions g;—requiring the subsequent matrix-matrix multi-
plications U®) = U,, UU) = U; - UU=D for j =1,...,m — 1 to construct the
whole system matrix U = U =1, While conceptually simple (as the matrix-
vector multiplication for simulation discussed in , this quickly con-
stitutes an extremely complex task due to the exponential size of the involved
matrices with respect to the number of qubits. In fact, equivalence checking of
quantum circuits has been shown to be QMA-complete .

Due to their potential for compactly representing and efficiently manipulat-
ing the functionality of a quantum circuit, decision diagrams are a perfect fit
for this task. However, merely using decision diagrams to construct a represen-
tation of both circuits’ functionality and comparing them, still has significant
shortcomings. In fact, representing the entire functionality of a quantum circuit
still might be exponential in the worst case. However, this can be addressed by
additionally exploiting the reversibility of quantum circuits.

Example 13. Consider the functionality U of the QFT circuit G from[Fig. }
Its corresponding decision diagram (shown in with color legend to the
right-hand side) is as densely populated as the matriz it represents since no
redundancy can be exploited, i.e., each mode’s successors point to unique child
nodes.

Decision Diagrams for Quantum Computing 17

5.2 Exploiting Reversibility

Most classical logic operations are not reversible (e.g., neither Ay =0 nor
x Vy =1 allows one to determine the values of x and y). As there is no bijective
mapping between input and output states, in general, the concept of the inverse
of a classical operation (or a sequence thereof) is not meaningful. In contrast, all
quantum operations are inherently reversible. Consider an operation g described
by the unitary matrix U. Then, its inverse U ! is efficiently calculated as the
conjugate-transpose U'. Given a sequence of m operations g, . . ., gm_1 With as-
sociated matrices Uy, ..., U,,_1, the inverse of the corresponding system matrix
U=U,;_1---Uyis derived by reversing the operations’ order and inverting each
individual operation, i.e., U= = Ut = Ug e U,,T@_l.

This characteristics can be exploited to improve the performance of the ver-
ification approach presented above. To this end, consider two quantum circuits
G and G’'. In case both circuits are functionally equivalent, this allows for the
conclusion that concatenating one circuit with the inverse of the other realizes
the identity function I, i.e., G'~! - G = I. This offers significant potential since
the identity constitutes the best case for decision diagrams (the identity can be
represented by a decision diagram of linear size). Unfortunately, creating such
a concatenation in a naive fashion, e.g., by computing U - U’t hardly yields any
advantage because, even if the final decision diagram would be as compact as
possible, the full (and potentially exponential) decision diagram of at least one
of the circuits would be generated as an intermediate result.

Instead, the full potential of this observation is utilized if the associativity
of the respective multiplications is fully exploited. More precisely, given two
quantum circuits G and G’, it holds that

G G=(g 90 ") (90 gm—1)
= U1+ Uo) - (U -+ UI,_))

ZUm—1'-'U0'H'U6T~-~U,/,J£,_1
=G-1«@G".

Here, G — I «+ G’ symbolizes that, starting from the identity I, either gates from
G can be “applied from the left”, or (inverted) gates from G’ can be “applied
from the right”. If the respective gates of G and G’ are applied in a fashion
frequently yielding the identity, the entire equivalence checking process can be
conducted on rather small (intermediate) decision diagrams. This is illustrated
by the following example.

Example 14. Consider again the two circuits G and G' from[Ezample 19 and
assume that, starting with a decision diagram representing the identity, for every
gate applied from G all gates from G’ until the next red barrier shown z'n
are applied. Applying the gates from G and G’ in such a particular order “from
the left” and “from the right”, respectively, yields situations where the impact of
a gate from circuit G (increasing the size of the decision diagram) is reverted by
multiplications with inverted gates from G’ (decreasing the size of the decision

18 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

diagram back to the representation of the identity function). This way, the equiv-
alence check can be conducted on much smaller intermediate representations and,
hence, much more efficiently.

Moreover, even if the considered circuits G and G’ are not functionally equiv-
alent (and, hence, identity is not achieved), the observations from above still
promise improvements compared to creating the complete decision diagrams
for G and G’. This is, because in this case, the result of G — I « G’ inherently
provides an efficient representation of the circuit’s difference that allows one
to obtain counterexamples almost “for free” (while those have to be explicitly
generated using additional inversion and multiplication operations otherwise).

Overall, following those ideas, equivalence checking of two quantum circuits
can be conducted very efficiently on rather compact decision diagrams, as shown
in [45]. But determining when to apply gates from G and when to apply (in-
verted) gates from G’ is not at all obvious. Designing dedicated strategies for
specific applications is a topic of ongoing research. As an example, a dedicated
strategy for verifying the results of compilation flows can be derived by exploit-
ing knowledge about the compilation flow itself [46]. An implementation of this
method is available at https://github.com/cda-tum/qcec|and via the corre-
sponding Python package mqt.qcec. In addition, https://www.cda.cit.tum.
de/app/ddvis/| provides an installation-free visualization scheme of the proce-
dure that also can be used to try out different gate-application schemes.

5.3 The Power of Simulation

The second characteristic we are exploiting rests on the observation that simula-
tion is much more powerful for equivalence checking of quantum circuits than for
equivalence checking of classical circuits. More precisely, in the classical realm, it
is certainly possible to simulate two circuits with random inputs to obtain coun-
terexamples in case they are not equivalent. However, this often does not yield
the desired result. In fact, due to masking effects and the inevitable information
loss introduced by many classical gates, the chance of detecting differences in
the circuits within a few arbitrary simulations is greatly reduced (e.g., x A0
masks any difference that potentially occurs during the calculation of z). Conse-
quently, sophisticated schemes for constraint-based stimuli generation [47]-50],
fuzzing [51], [52], etc. are employed in order to verify classical circuits.

In quantum computing, the inherent reversibility of quantum operations dra-
matically reduces these effects and frequently yields situations where even small
differences remain unmasked and affect entire system matrices—showing the
power of random simulations for checking the equivalence of quantum circuits.
Because of that, it is in general not necessary to compare the entire system
matrices—in particular when two circuits are not equivalent and, hence, their
system matrices differ from each other.

Given two unitary matrices U and U’, we define their difference D as the
unitary matrix D = UTU’ and it holds that U - D = U’. In case both matrices
are identical (i.e., the circuits are equivalent), it directly follows that D = I. One

https://github.com/cda-tum/qcec
https://pypi.org/project/mqt.qcec/
https://www.cda.cit.tum.de/app/ddvis/
https://www.cda.cit.tum.de/app/ddvis/

Decision Diagrams for Quantum Computing 19

characteristic of the identity function I resulting in this case is that all diagonal
entries are equal to one, i.e., (i|UTU’|i) = 1 for i € {0,...,2" — 1}, where [i)
denotes the i*" computational basis state. More generally—in case of a potential
relative/global phase difference between G and G'—all diagonal elements have
modulus one, i.e., | (il UTU’ |i) |* = 1. This expression can further be rewritten
to

@UTT i) [P = (@) O)17 =)) [

where |u;) and |u}) denote the i'" column of U and U’, respectively. This es-
sentially resembles the simulation of both circuits with the initial state |¢) and,
afterwards, calculating the fidelity F between the resulting states |u;) and |u}).
Hence, if only one simulation yields F; :== F(|u;),|u;)) # 1, then |i) proves the
non-equivalence of G and G’.

This constitutes an exponentially easier task than constructing the entire
system matrices U and U’—although the complexity of simulation still remains
exponential with respect to the number of qubits (for which the decision diagram-
based solution reviewed above provides an efficient solution in many cases).
Regarding the complexity, creating the entire system matrices corresponds to
simulating the respective circuit with all 2" different computational basis states.
All this, of course, does not guarantee that any difference is indeed detected by
just simulating a limited number of arbitrary computational basis states |i). This
brings up the following question: How significantly do the matrices U and U’
differ from each other in case of non-equivalence, i.e., how many computational
basis states |i) yield JF; % 1 for a given difference matrix D. Since the difference
D of both matrices is unitary itself, it may as well be interpreted as a quantum
circuit Gp. In the following, we assume that each gate of Gp either represents
a single-qubit or a multi-controlled operatiorﬂ

Example 15. Assume that Gp only consists of one (non-trivial) single-qubit
operation defined by the matrix Us applied to the first of n qubits. Then, the
system matriz D is given by diag(Us,...,Us). The process of going from U to
U, i.e., calculating U - D, impacts all columns of U. Thus, an error is detected
by a single simulation with any computational basis state.

Among all quantum operations, single-qubit operations possess a system ma-
trix least similar to the identity matrix due to the tensor product structure of
their corresponding system matrix.

Example 16. In contrast to [Ezample 15, assume that Gp only consists of one
operation Uy targeted at the first qubit and controlled by the remaining n — 1
qubits. Then, the corresponding system matriz is given by diag(la, ..., Is, Uy).

5 This does not limit the applicability of the following findings, since arbitrary single-
qubit operations combined with CNOT form a universal gate-set [43].

20 Robert Wille, Stefan Hillmich, and Lukas Burgholzer

In this case, applying D to U only affects the last two columns of U. As a conse-
quence, a maximum of two columns (out of 2™) may serve as counterexamples—
the worst case scenario.

These basic examples cover the extreme cases when it comes to the difference
of two unitary matrices. In case G p exhibits no such simple structure, the anal-
ysis is more involved, e.g., generally quantum operations with ¢ € {0,...,n — 1}
controls will exhibit a difference in 2"~ ¢ columns. Furthermore, given two op-
erations showing a certain number of differences, the matrix product of these
operations in most cases (except when cancellations occur) differs in as many
columns as the maximum of both operands.

The gate-set provided by (current) quantum computers typically includes
only (certain) single-qubit gates and a specific two qubit gate, such as the
CNOT gate. Thus, multi-controlled quantum operations usually only arise at
the most abstract algorithmic description of a quantum circuit and are then de-
composed into elementary operations from the device’s gate-set before the circuit
is mapped to the target architecture. As a consequence, errors occurring during
the design flow will typically consist of (1) single-qubit errors, e.g., offsets in the
rotation angle, or (2) errors related to the application of CNOT or SWAP gates.
In both cases, non-equivalence can be efficiently concluded by a limited number
of simulations with arbitrary computational basis states. If a counterexample
was not obtained after a few simulations, this yields a highly probable estimate
of the circuit’s equivalence—in contrast to the classical realm, where this gen-
erally does not allow for any conclusion. Further details and evaluations on the
respective methods are available in [45], [53].

6 Conclusions

The power of quantum computing comes with new computing primitives and
the need for suitable design automation methods. In this work, we reviewed
decision diagrams for quantum computing as well as their application in quan-
tum circuit simulation (with and without noise) as well as the verification of
quantum circuits. Decision diagrams offer a complementary approach for tack-
ling the complexity of these tasks with a potential impact comparable to their
conventional counterparts. With this work, we want to encourage their usage in
the quantum (design automation) community. Implementations of the methods
presented here are available at the corresponding GitHub repositories mentioned
above.

Acknowledgments

We sincerely thank all co-authors and collaborators who work(ed) with us in

this exciting area. Special thanks go to Alwin Zulehner and Thomas Grurl.
This work received funding from the European Research Council (ERC) un-

der the European Union’s Horizon 2020 research and innovation program (grant

Decision Diagrams for Quantum Computing 21

agreement No. 101001318), was part of the Munich Quantum Valley, which
is supported by the Bavarian state government with funds from the Hightech
Agenda Bayern Plus, and has been supported by the BMWK on the basis of a
decision by the German Bundestag through project QuaST, as well as by the
BMK, BMDW, and the State of Upper Austria in the frame of the COMET
program (managed by the FFG).

References

[1] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2,
p. 79, 2018.

[2] Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans.
Comput., vol. C-35, no. 8, pp. 677-691, 1986.

[3] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits using binary
moment diagrams,” Software Tools for Technology Transfer, vol. 3, no. 2, pp. 137—
155, 2001.

[4] S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems,” in Design Automation Conf., 1993, pp. 272-277.

[5] T.van Dijk, R. Wille, and R. Meolic, “Tagged BDDs: Combining reduction rules
from different decision diagram types,” in Int’l Conf. on Formal Methods in CAD,
2017, pp. 108-115.

[6] S.-A. Wang, C.-Y. Lu, L.-M. Tsai, and S.-Y. Kuo, “An XQDD-based verification
method for quantum circuits,” in IFICE Trans. Fundamentals, 2008, pp. 584—
594.

[7] A. Abdollahi and M. Pedram, “Analysis and synthesis of quantum circuits by
using quantum decision diagrams,” in Design, Automation and Test in Europe,
2006.

[8] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “High-performance QuIDD-
Based simulation of quantum circuits,” in Design, Automation and Test in Eu-
rope, 2004.

[9] D. Miller and M. Thornton, “QMDD: A decision diagram structure for reversible
and quantum circuits,” in Int’l Symp. on Multi- Valued Logic, 2006.

[10] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler, “QMDDs:
Efficient quantum function representation and manipulation,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 35, no. 1, pp. 86—99, 2016.

[11] S. Hillmich, I. L. Markov, and R. Wille, “Just like the real thing: Fast weak
simulation of quantum computation,” in Design Automation Conf., 2020.

[12] R. Wille, L. Burgholzer, and M. Artner, “Visualizing decision diagrams for quan-
tum computing,” in Design, Automation and Test in Europe, 2021.

[13] A. Zulehner and R. Wille, “Advanced simulation of quantum computations,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 38, no. 5, pp. 848—
859, 2019.

[14] S. Hillmich, I. L. Markov, and R. Wille, “Just like the real thing: Fast weak
simulation of quantum computation,” in Design Automation Conf., 2020.

[15] T. Grurl, J. Fuf, and R. Wille, “Considering decoherence errors in the simulation
of quantum circuits using decision diagrams,” in Int’l Conf. on CAD, 2020.

[16] T. Grurl, R. Kueng, J. Fuk, and R. Wille, “Stochastic quantum circuit simulation
using decision diagrams,” in Design, Automation and Test in Europe, 2021.

22

(17]

(18]

[19]
[20]

(21]

22]
23]
[24]
[25]
[26]
[27]
28]
[29]
(30]

31]

32]

[33]

[34]

[35]

Robert Wille, Stefan Hillmich, and Lukas Burgholzer

S. S. Tannu and M. K. Qureshi, “Not All Qubits Are Created Equal: A Case for
Variability-Aware Policies for NISQ-Era Quantum Computers,” in Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems, 2019,
pp. 987-999.

N. Khammassi, I. Ashraf, X. Fu, C. G. Almudéver, and K. Bertels, “QX: A high-
performance quantum computer simulation platform,” in Design, Automation
and Test in Europe, D. Atienza and G. D. Natale, Eds., 2017, pp. 464-469.

H. Abraham et al., Qiskit: An open-source framework for quantum computing,
2019.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion (10th Anniversary edition). Cambridge University Press, 2016.

Gambetta, Jay and Sheldon, Sarah, Cramming more power into a quantum de-
vice, https : //www . ibm . com/blogs / research /2019 /03 / power - quantum -
device/), Accessed: 2021-04-08, 2019.

Atos SE, Quantum learning machine, atos.net/en/products/quantum-learning-
machine, Accessed: 2021-04-08, 2016.

N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels, “QX: A high-
performance quantum computer simulation platform,” in Design, Automation
and Test in Europe, 2017.

D. Wecker and K. M. Svore, “LIQUi|>: A software design architecture and
domain-specific language for quantum computing,” CoRR, vol. abs/1402.4467,
2014.

C. Developers, Cirg, 2021.

T. Jones, A. Brown, I. Bush, and S. Benjamin, “Quest and high performance
simulation of quantum computers,” arXiv:1802.08032, 2018.

M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik, “qHiPSTER: The quan-
tum high performance software testing environment,” CoRR, vol. abs/1601.07195,
2016.

B. Villalonga et al., “A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware,” npj Quantum
Information, vol. 5, no. 1, pp. 1-16, 2019.

Forest SDK, https://www.rigetti.com/systems, Accessed: 2020-07-22, 2020.
T. Grurl, R. Kueng, J. Jufs, and R. Wille, “Stochastic quantum circuit simulation
using decision diagrams,” in Design, Automation and Test in Europe, 2021.

T. Grurl, J. Fuk, and R. Wille, “Considering decoherence errors in the simulation
of quantum circuits using decision diagrams,” in Int’l Conf. on CAD, IEEE, 2020,
140:1-140:7.

A. Barenco et al., “Elementary gates for quantum computation,” Phys. Rev. A,
vol. 52, no. 5, pp. 3457-3467, 1995.

D. Maslov, “On the advantages of using relative phase Toffolis with an application
to multiple control Toffoli optimization,” Phys. Rev. A, vol. 93, no. 2, p. 022311,
2016.

R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler, “Improving the mapping
of reversible circuits to quantum circuits using multiple target lines,” in Asia and
South Pacific Design Automation Conf., 2013.

P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-
adaptive compiler mappings for Noisy Intermediate-Scale Quantum computers,”
in Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems, 2019, pp. 1015-1029.

https://www.ibm.com/blogs/research/2019/03/power-quantum-device/
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/
https://atos.net/en/products/quantum-learning-machine
https://atos.net/en/products/quantum-learning-machine
https://www.rigetti.com/systems

(36]

37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]

[53]

Decision Diagrams for Quantum Computing 23

M. Y. Siraichi, V. F. dos Santos, S. Collange, and F. M. Q. Pereira, “Qubit
allocation,” in Proc. Int’l Symp. on Code Generation and Optimization, 2018,
pp. 113-125.

A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for mapping quan-
tum circuits to the IBM QX architectures,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 38, no. 7, pp. 1226-1236, 2019.

R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to IBM
QX architectures using the minimal number of SWAP and H operations,” in
Design Automation Conf., 2019.

G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-
era quantum devices,” in Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2019.

A. Matsuo, W. Hattori, and S. Yamashita, “Reducing the overhead of mapping
quantum circuits to IBM Q system,” in IEEE International Symposium on Clir-
cuits and Systems, 2019.

T. Ttoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization of quan-
tum circuit mapping using gate transformation and commutation,” Integration,
vol. 70, pp. 43-50, 2020.

G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transfor-
mations with three controlled-NOT gates,” Phys. Rev. A, vol. 69, no. 1, p. 010 301,
2004.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2010.

D. Janzing, P. Wocjan, and T. Beth, ““Non-identity check” is QMA-complete,”
Int. J. Quantum Inform., vol. 03, no. 03, pp. 463-473, 2005.

L. Burgholzer and R. Wille, “Advanced equivalence checking for quantum cir-
cuits,” IEEE Trans. on CAD of Integrated Circuits and Systems, 2021.

L. Burgholzer, R. Raymond, and R. Wille, “Verifying results of the IBM Qiskit
quantum circuit compilation flow,” in Int’l Conf. on Quantum Computing and
Engineering, 2020, pp. 356-365.

J. Yuan, C. Pixley, and A. Aziz, Constraint-based verification. Springer, 2006.
J. Bergeron, Writing Testbenches using System Verilog. Springer, 2006.

N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained random
simulation,” in Int’l Conf. on CAD, 2007, pp. 258-265.

R. Wille, D. Grofe, F. Haedicke, and R. Drechsler, “SMT-based stimuli genera-
tion in the SystemC Verification library,” in Forum on Specification and Design
Languages, 2009.

K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ: Coverage-
directed fuzz testing of RTL on FPGAs,” in Int’l Conf. on CAD, 2018.

H. M. Le, D. Grofe, N. Bruns, and R. Drechsler, “Detection of hardware trojans
in SystemC HLS designs via coverage-guided fuzzing,” in Design, Automation
and Test in Europe, 2019, pp. 602-605.

L. Burgholzer, R. Kueng, and R. Wille, “Random stimuli generation for the
verification of quantum circuits,” in Asia and South Pacific Design Automation
Conf., 2021.

	Decision Diagrams for Quantum Computing

