
Hybrid Circuit Mapping:
Leveraging the Full Spectrum of Computational Capabilities

of Neutral AtomQuantum Computers
Ludwig Schmid∗ Sunghye Park† Seokhyeong Kang† Robert Wille∗ ‡

∗Technical University of Munich, Germany
†Pohang University of Science and Technology, Korea

‡Software Competence Center Hagenberg GmbH, Hagenberg, Austria
{ludwig.s.schmid,robert.wille}@tum.de,{shpark96,shkang}@postech.ac.kr

ABSTRACT
Quantum computing based on Neutral Atoms (NAs) provides a wide
range of computational capabilities, encompassing high-fidelity
long-range interactions with native multi-qubit gates, and the abil-
ity to shuttle arrays of qubits. While previously these capabilities
have been studied individually, we propose the first approach of a
fast hybrid compiler to perform circuit mapping and routing based
on both high-fidelity gate interactions and qubit shuttling. We delve
into the intricacies of the compilation process when combining mul-
tiple capabilities and present effective solutions to address resulting
challenges. The final compilation strategy is then showcased across
various hardware settings, revealing its versatility, and highlight-
ing potential fidelity enhancements achieved through the strategic
utilization of combined gate- and shuttling-based routing. With the
additional multi-qubit gate support for both routing capabilities, the
proposed approach is able to take advantage of the full spectrum
of computational capabilities offered by NAs.

1 INTRODUCTION
Neutral Atoms (NAs) have emerged as a compelling choice for uni-
versal quantum computing [8, 9, 18, 19], showcasing a broad spec-
trum of computational capabilities that encompass high-fidelity,
long-range interactions between qubits with native multi-qubit gate
support [7, 8, 10], and remarkable scalability [3, 16]. In response to
these advantages, dedicated software solutions, such as compilers [2,
12, 15], have been developed to optimize performance while ad-
hering to hardware constraints. Moreover, Bluvstein et al. [4] have
demonstrated the ability to dynamically rearrange qubit arrays
during computation with high fidelity. Based on this experimental
progress, further compilation strategies [5, 14, 22] have explored the
potential of using qubit shuttling for circuit mapping and routing,
presenting it as a promising alternative to conventional approaches
reliant on SWAP gate insertion.

Nevertheless, previous work individually only studied a single
aspect or a subset of the full spectrum of the computational capa-
bilities of NAs. In particular, SWAP gate insertion and atom shut-
tling have been considered separately from each other. While these
separate studies of the mapping capabilities facilitate the initial un-
derstanding, they neglect potentially better solutions, arising from
the combined use of both gate-based and shuttling-based mapping
throughout the compilation process.

In this work, a hybrid compilation approach is proposed to ex-
plore the potential advantage of leveraging gate-based SWAP inser-
tion and shuttling-based atom rearrangements. In particular, this

entails the compilation task of mapping and routing a provided
quantum circuit to NA hardware. The resulting compilation process
is able to choose between the two mapping capabilities for each
gate individually within the circuit based on available hardware
information. Challenges arising from the simultaneous considera-
tion of both mapping capabilities are discussed and corresponding
solutions are proposed and integrated into a hybrid mapping pro-
cess. The heuristic approach employs two capability-specific cost
functions, which are designed for rapid evaluation and consider
additional information to enhance parallelism by incorporating
commutation rules and look-ahead functionality.

The approach is evaluated on a set of benchmark circuits with
up to 200 qubits, considering different hardware information. The
evaluations demonstrate the ability of the proposed approach to
correctly identify the preferred mapping capability of different hard-
ware configurations. In particular, it shows fidelity improvements
for mixed hardware that is characterized by similar operation fi-
delities between entangling gates and shuttling. Furthermore, the
performed evaluations indicate a correlation between circuit struc-
ture and preferential mapping capability, offering new research
questions, enabled by the hybrid mapping process.

Overall, the proposed hybrid approach is a further step to take
advantage of the potential provided by NAs, offering new possibili-
ties for mapping quantum circuits to hardware. With the additional
support for arbitrary-sized multi-qubit gates for both gate- and
shuttling-based mapping, it represents the first proposal to lever-
age the full spectrum of computational capabilities offered by the
NA hardware. The full code of the proposed approach, including
evaluation data, is publicly available at [13] and will be integrated
into the Munich Quantum Toolkit (MQT)1 for general use.

The remainder of this paper is structured as follows: Section 2
provides a brief background on NAs and the task of circuit map-
ping employing gate- or shuttling-based capabilities. In Section 3,
the hybrid compilation approach is introduced, by first discussing
challenges and the corresponding solutions arising from the si-
multaneous use of both mapping capabilities, with the complete
process overview and details discussed afterward. In Section 4, we
summarize the results of the numerical evaluations considering
different hardware parameters and compiler settings, demonstrat-
ing the flexibility of the proposed approach and the potential for
fidelity improvements. Finally, Section 5 concludes the paper with
a brief summary of the results of this work.

1https://mqt.readthedocs.io/en/latest/

ar
X

iv
:2

31
1.

14
16

4v
1

 [
qu

an
t-

ph
]

 2
3

N
ov

 2
02

3

https://mqt.readthedocs.io/en/latest/

2 BACKGROUND
This section provides a brief summary of the computational capabil-
ities of the NA platform [8, 9, 18, 19, 20] followed by a review of the
compilation task of mapping quantum circuits onto NA hardware.

2.1 Neutral Atom Computational Capabilties
In NAs, to realize a computational register, atoms are stored in
optical dipole traps, such as optical lattices or optical tweezer traps.
These are created by interfering laser beams that create an ar-
ray of potential valleys, effectively trapping the atoms at specific
coordinates. Within this work, we assume these traps to lay on a
regular square lattice with lattice constant 𝑑 . Common atom species
include alkali or alkaline-earth-like atoms such as Rb or Sr. The
computational states can be encoded in long-lived atomic states
such as hyperfine- or nuclear spin-states, after laser-cooling the
atoms down to their motional ground states. Single qubit gates are
then realized by laser pulses on individually addressed qubits or
the whole register using globally applied laser beams. Multi-qubit
gates are realized using the Rydberg blockade effect to introduce a
phase shift conditioned on the qubit states of the nearby excited
atoms [7, 10].

This theoretically allows realizations of 𝑚-qubit high-fidelity
multi-controlled C𝑚−1Z phase gates. For these gates to be exe-
cutable, all participating qubits need to bewithin a certain interaction
radius 𝑟int to each other, where 𝑟int depends on the atom species
and the chosen Rydberg state. To reduce crosstalk between gates,
parallel execution is only possible if qubits corresponding to differ-
ent gates keep a distance of at least the restriction radius 𝑟restr ≥ 𝑟int
to all qubits that execute another multi-qubit gate simultaneously.
The resulting region is referred to as restricted volume.

Example 1. The yellow region in Figure 1a indicates the possible
interaction candidates for multi-qubit gates for 𝑟int = 𝑟restr = 2𝑑 . The
red region corresponds to the restricted volume for other multi-qubit
gates to be executed simultaneously.

In addition to these long-range interactions (for large 𝑟int), NAs
provide the capability to shuttle arrays of trapped atoms [4]. To
this end, the qubits are loaded from the static Spatial Light Mod-
ulator (SLM) traps into a 2D Acousto-Optic Deflector (AOD). The
AOD can be described by the corresponding x (column) and y (row)
coordinates of the deflected laser, where each intersection defines
a potential trap. Using more than one row and column allows for
the shuttling of multiple qubits at once, each trapped in one of
the intersecting coordinates. Each row/column coordinate can be
activated, moved, and finally deactivated. This capability allows
for arbitrary rearrangements of the atoms according to the two
following constraints:

First, columns and rows are not allowed to cross each other, i.e.
the ordering of the rows/columns always remains the same. To
move beyond another trapped qubit the first has to be released back
to a static SLM trap by deactivating the corresponding row and/or
column and, then, cross as a second step only. Secondly, empty
AOD intersections still represent a potential trap, disturbing qubits
unintentionally when hovering or passing over them. The effect
of these ghost spots can be circumvented by loading the qubits

sequentially into the AOD traps, each with an additional offset
movement to prevent the ghost spots from hovering over other
qubits at any time.

Example 2. Figure 1b illustrates a scenario where 𝑞0 needs to
be shuttled to 𝑞1 and 𝑞3, 𝑞4 to 𝑞2. As a first step (1), 𝑞0 is loaded
by activating AOD coordinates at 𝑥1 = 2𝑑 and 𝑦0 = 𝑑 . To prevent
problematic ghost spots with the following activations, a small offset
move is applied to the coordinates. Then (2), 𝑞3 and 𝑞4 can be loaded
simultaneously in the same row by activating 𝑥0 = 𝑑 , 𝑥2 = 5𝑑 and row
𝑦1 = 3𝑑 . Note that due to the previous offset, all resulting ghost spots
(light blue) are in the empty inter-qubit regions. The qubits can then
be moved (3) to their destinations without crossing any other AOD
coordinate and placed sequentially using again offset movements (4).

2.2 Quantum Circuit Mapping
The task of circuit mapping consists of assigning circuit qubits
Q = {𝑞𝑖 }𝑖=0,...,𝑛−1 to a set of physical qubits P = {𝑄𝑎}𝑎=0,...,𝑁−1. In
addition, for NAs the mapping task becomes two-folded as the set
of physical qubits P also has to be assigned to the possible trap
coordinates C = {𝐶𝛼 }𝛼=0,...,𝜇 . We assume 𝜇 = 𝑙2 − 1 > 𝑚 ≥ 𝑛 with
a non-zero number of unoccupied coordinates on a regular 𝑙 × 𝑙
lattice. As a result, one has to consider two mapping steps: first, the
qubit mapping 𝑓q of assigning circuit qubits to physical hardware
qubits, represented by trapped atoms. Secondly, the atom mapping
𝑓a of assigning the physical qubits to the coordinates.

Given both mappings, one can define the connectivity graph
𝐺 = (P, E), where E contains all pairs of physical qubits that can
interact with each other, i.e., (𝑄𝑎, 𝑄𝑏) ∈ E ⇔ 𝑑 (𝑄𝑎, 𝑄𝑏) ≤ 𝑟int
with 𝑑 the Euclidean distance. The set of qubits that are connected
to 𝑄 are referred to as vicinity 𝑉𝑟int (𝑄) and 𝐾𝑟int = |𝑉𝑟int (𝑄) | as its
coordination number.

Example 3. The illustration in Figure 2 shows a 3 × 3 lattice with
|C| = 9 SLM traps as well as |P| = 4 physical and |Q| = 3 circuit qubits
to be mapped. The arrows indicate both qubit mapping 𝑓q as well as an
atommapping 𝑓a. For 𝑟int = 𝑑 this results in E = {(𝑄1, 𝑄2), (𝑄2, 𝑄3)}
and, e.g., 𝑉 (𝑄2) = {𝑄1, 𝑄3}.

Due to the limited connectivity between all qubits, in the follow-
ing step, 𝐺 needs to be updated throughout circuit execution such
that whenever a gate is executed, the corresponding physical qubits
are in E. This is referred to as circuit routing and is typically done by
inserting SWAP gates into the circuit, swapping the qubit mapping
assignment of two hardware qubits, and, this way, modifying 𝐺 .
On hardware, the SWAP gates can be realized using 3 CX gates or
equivalently 3 CZ gates with additional single qubit rotations. In
the last decade, multiple software tools to solve this problem for
superconducting hardware have been developed, trying to mini-
mize the number of SWAP gates [6, 11, 21, 23]. For NAs, there are
solutions taking into account variable interaction and restriction
radii [2] as well as time-aware routing [12].

On the other hand, the shuttling capability of NAs additionally
allows for changing the atom mapping by physically moving atoms
to another lattice coordinate and modifying𝐺 this way. This has
the advantage of not introducing additional error-prone CZ gates,
but, depending on the hardware setup, may be significantly slower
than SWAP gate insertion. Recent work has studied the potential

2

Free/occupied SLM trap

Interacting atom

Restricted atom

Ghost spot/ AOD trap

Restricted Volume

Interaction Volume

SLM trap coordinates

AOD trap coordinates

(a) Interactions and restrictions for NA with 𝑟int = 𝑟restr = 2𝑑

(b) Qubit array shuttling with Acusto-Optic Deflectors (AOD) parallelization constraints.

Figure 1: Computational capabilities of Neutral Atoms architectures

SWAP Shuttling

Figure 2: Qubit and atom mapping

of this novel mapping strategy, considering optimal solutions for
a shuttling-only hardware setup by Tan et al. [22] and another
shuttling-only heuristic routing algorithm by Nottingham et al.
[14]. The latter allows the crossing of AOD rows/columns which
allows the reduction of the shuttling problem to be tackled in a
similar way to the SWAP gate insertion and can, therefore, not be
compared directly to the shuttling constraints considered in this
work.

Example 4. Considering again Figure 2, applying SWAP(𝑄1, 𝑄2),
substitutes (𝑄2, 𝑄3) with (𝑄1, 𝑄3) in E. Using shuttling, one can
also modify 𝐺 by placing 𝑄2 at 𝐶7 and, this way resulting in E =

{(𝑄0, 𝑄2)}.
To evaluate the mapping results across different capabilities,

common figures of merit such as SWAP gate count are no longer
valid measures. A possible alternative [20] is the approximate success
probability 𝑃 defined as

𝑃 = exp
(
− 𝑡idle
𝑇eff

)∏
𝑂

F𝑂 , 𝑇eff =
𝑇1𝑇2
𝑇1 +𝑇2

, (1)

where the product runs over all circuit operations, 𝑇1, 𝑇2 are the
coherence times of the system, and F𝑂 ∈ [0, 1] is a measure for
the average operation fidelity of operation 𝑂 . The total idle time

𝑡idle is defined as 𝑡idle = 𝑛 ·𝑇 −∑
𝑂 𝑡𝑂 with 𝑡𝑂 the execution time

of operation 𝑂 and 𝑇 is the total circuit runtime after scheduling,
according to the constraints reviewed in Section 2.1.

3 HYBRID MAPPING PROBLEM
Considering the full spectrum of capabilities of NAs, as reviewed
above, results in a two-fold mapping problem. First, in the gate-
based mapping step, one can route gates that are not connected
trivially by modifying the qubit mapping using SWAP gate inser-
tion. Secondly, using shuttling-based mapping, the qubit mapping
remains unaltered but the connectivity graph is modified by mov-
ing atoms to a new trap coordinate and, therefore, acting on the
atom mapping. Recent approaches [2, 12, 14, 22] only considered
one of the two cases separately, leaving untouched potential room
for improvement. Motivated by that, this work proposes a compila-
tion process that utilizes the two capabilities in a hybrid fashion,
trying to employ the most suitable method to achieve the required
connectivity. This imposes multiple challenges as illustrated in the
following Section 3.1, with the corresponding solutions brought
together to the proposed hybrid compilation approach reviewed in
Section 3.2. Finally, Section 3.3 provides technical details such as
the employed cost functions.

3.1 Challenges and Proposed Solutions
3.1.1 Increased Search Space. The potential utilization of bothmap-
ping capabilities significantly increases the number of possible op-
erations during the mapping process. This amplified search space
may allow finding better solutions but it also imposes a challenge
on the compiler that needs to decide between all possibilities. For
the gate-based mapping, the set of possible SWAP operations cor-
responds to the union of possible SWAPs within 𝑟int for all current
gate qubits. In the worst case, this results in O(𝑛𝐾𝑟int/2), where 𝑛

3

is the number of circuit qubits and 𝐾𝑟int is the coordination number.
Since, as for many circuits, only a subset of all qubits participate in
the next executable gates, this number will be significantly lower
in most practical cases.

For shuttling-based mapping on the other hand, potentially any
of the𝑚 physical atoms can bemoved to any of the 𝜇−𝑚 unoccupied
coordinates. If one, furthermore, considers the possibility of moving
away atoms from certain coordinates to free the space, effectively
any possible rearrangement of qubits is possible. This leads to
O(𝑁 |𝐶 |) potential shuttling operations at each step, making a full
search space exploration unfeasible.

To reduce the search space, we only consider qubit movements
that move the qubit directly in the vicinity of one of the other
gate qubits. This can be done directly if there is an unoccupied
coordinate. Otherwise, we select one of the nearby qubits to be
moved away, resulting in a chain of two consecutive movements.

Example 5. Figure 3a illustrates the considered search space to
connect two qubits for 𝑟int =

√
2𝑑 . Shown are the possible operations

for the three cases: (1) gate-based SWAPS, (2) directly shuttling to
one of the free coordinates, and (3) requiring a move-away operation
beforehand.

3.1.2 Mapping conflicts. As both, gate- and shuttling-based map-
ping directly affect the connectivity graph𝐺 , they can unintention-
ally conflict with each other. In particular, shuttling qubits away
does not only affect the mapping of the moved qubits and their
vicinity but it may also influence the optimal SWAP path for other
qubits.

Example 6. Figure 3b illustrates the case, where a shuttling op-
eration affects the number of necessary SWAPs 𝑑SWAP also for gates
that do not directly act on the moved qubit. In this case, the distance
between 𝑞0 and 𝑞2 is reduced by the shuttling operation, while the
connection 𝑞0 to 𝑞1 becomes impossible as the previous connection no
longer exists.

3.1.3 Multi-Qubit Gate-basedMapping. As discussed in Section 2.1,
we assume multi-qubit gates (𝑚 ≥ 3) to be executable if all gate
qubits are within the interaction radius of each other. This allows
for different geometric arrangements of the qubits such as bulky
clusters or other more spacious geometries for large 𝑟int. While for
static architectures the geometry is not a problem, the dynamic
rearrangement of the qubits may result in a situation where there
are not enough qubits or with the wrong geometric arrangement.
As a result, one can not employ a distance-based cost function that
directly drives qubits close to each other but it actually has to be
checked if the required geometric realization is possible and, if
yes, where. This can be done with a breadth-first search, starting
simultaneously from all gate qubits. If it is not possible to find a
corresponding set of hardware qubits to execute the multi-qubit
gate with SWAP gates, shuttling-based mapping has to be employed
instead.

Example 7. Assuming 𝑟int =
√
2𝑑 , Figure 3c illustrates a case

where a distance-only “move-together” approach for multi-qubit gates
mapping will fail. Due to the small 𝑟int, the execution of the gate
between qubits 𝑞0,𝑞1 and 𝑞2 requires a rectangular arrangement of

(1) SWAP gates (2) Direct shuttling (3) Move-away shuttling

(a) Increased search space: Considered operations.

(b) Mapping conflicts: Distance change by shuttling.

(c)Multi-qubit gate-basedmapping: Positioning.

Figure 3: Challenges and proposed solutions.

the qubits. Therefore, driving the qubits close to each other results in a
dead end. Instead,𝐺 has to be parsed to find the position with suitable
geometry, as shown on the right.

3.2 Resulting Overall Mapping Process
Taking into account the discussed challenges and the respective
proposed solution ideas, we propose the following overall hybrid
mapping process to leverage gate-based and shuttling-based map-
ping. The process can be described as five major building blocks,
illustrated graphically in Figure 4.
(1) Layer creation: Creates a frontier layer 𝑓 of gates that can be
executed next, taking into account commutation rules. An addi-
tional lookahead layer 𝑙 contains gates following the frontier layer
up to a certain lookahead depth.
(2) Decide for mapping capability: For each gate, an estimate
of the required number of SWAPs and shuttling operations is com-
puted. Based on this estimate, an approximate success probability 𝑃g
and 𝑃s according to Equation (1) is derived in both cases. After
weighing the outcomes with 𝛼g and 𝛼s respectively the gate is as-
signed to the respective front/lookahead layers of gate-based 𝑓g, 𝑙g
or shuttling-based 𝑓s, 𝑙s mapping.
(3) Gate-based Mapping: Computes the best SWAP for all gates
in 𝑓g based on a distance-dependent cost function discussed in
Section 3.3.1. For𝑚 ≥ 3, a suitable position on the graph has to be
found (use shuttling otherwise). This is repeated until at least one
gate can be executed, resulting in updating the layers.
(4) Shuttling-based Mapping: Computes chains of possible shut-
tling operations and chooses the best one according to the cost
function discussed in Section 3.3.2. This is again repeated until
one of the gates can be executed in which case all layers are again

4

(1) Layer creation

Input quantum circuit

(2) Decide for mapping capability

(3) Gate-based Mapping (4) Shuttling-based Mapping

Find position

Select best SWAP: Select best Move:

(5) Processing to hardware operations

Mapped quantum circuit

Compute Move Chains

Check executable gatesCheck executable gates

all gates executed

no
 g

at
e

ex
ec

ut
ab

le

ga
te

s
ex

ec
ut

ab
le

no gate executable

gates executable

no
 p

os
it
io

n
fo

un
d

Figure 4: Resulting hybrid mapping process

updated. To prevent interference with the gate-based mapping, 𝑓s is
only considered if 𝑓g is empty, meaning all necessary SWAP gates
have been already applied.
(5) Processing to hardware operations: Finally, the SWAP gates
are decomposed to natively supported CZ and single-qubit gates.
Simultaneously, the shuttling operations are scheduled in parallel
according to the AOD constraints and converted to native AOD
operations, entailing AOD activation, deactivation, and movements
of the AOD coordinates (see Example 2).
The resulting output can then be scheduled to compute character-
istics such as the total circuit execution time 𝑇 , or the total qubit
idle time 𝑡idle. This scheduling step also takes into account the re-
striction constraint regarding the parallel execution of multi-qubit
gates discussed in Section 2.1.

In the following, some parts of the compilation process are dis-
cussed in more detail, in particular, the employed cost functions and
multi-qubit mapping for𝑚 ≥ 3. The full code, including evaluation
data is publicly available as open-source software at [13].

3.3 Implementation Details
3.3.1 Gate-based Routing. According to the previous discussions
in Section 3.1.3, for the gate-based mapping it is necessary to differ-
entiate between two and multi-qubit gates with𝑚 ≥ 3. The former
can be swapped close to each other, while the latter requires the
search for a suitable geometric position to execute the gate. This
position is found by employing a breadth-first search on 𝐺 , start-
ing simultaneously from all gate qubits and choosing the resulting
position that requires the least number of SWAPS. Assuming a
position 𝑃𝑔 is found for gate 𝑔, the following cost function based
on the two-qubit cost of Li et al. [11] is evaluated for each SWAP
candidate 𝑆 :

𝐶g (𝑆) = 𝑒−𝜆
𝑡 𝑡 (𝑆)

[
𝐶
𝑓
g (𝑆) +𝑤𝑙 ·𝐶𝑙g (𝑆)

]
(2)

𝐶
𝑓
g (𝑆) =

∑︁
𝑔∈ 𝑓g ,𝑚=2

Δ𝑑SWAP (𝑆, 𝑔) +
∑︁

𝑔∈ 𝑓g ,𝑚≥2
Δ𝑑SWAP (𝑆, 𝑃𝑔) , (3)

where Δ𝑑SWAP (𝑆, 𝑔 |𝑃𝑔) returns the difference in the number of
SWAPs for gate 𝑔 or position 𝑃𝑔 after the application of 𝑆 . 𝐶g com-
putes the cost for the front and lookahead layer, with a lookahead

weighting factor 𝑤𝑙 . This sum is then weighted with an exponential
factor constituted by a decay rate 𝜆𝑡 and a “last used” integer 𝑡 (𝑆)
to favor the use of SWAPs acting on different qubits to increase
parallelism. In difference to Li et al. [11], 𝑡 (𝑆) also takes into ac-
count restricted qubits due to the NA-specific constraint of 𝑟restr.
By choosing different values for 𝜆 ∈ R+, this allows a continuous
control between high parallelism and minimizing the absolute num-
ber of SWAP gates. Depending on the given hardware setup, one of
the two figures of merits may be favorable over the other [20], and,
tuning 𝜆 allows for more hardware adaptive mapping compared to
other NA compilers such as Baker et al. [2] or Li et al. [12].

3.3.2 Shuttling-based Routing. As discussed in Section 3.1.1, con-
sidering all possible shuttling operations is unfeasible, and only the
operations moving the qubits directly to their destination are taken
into consideration. In general, there are two cases (as discussed
in Example 5): a direct move 𝑀 to an unoccupied coordinate, or
a move combination (𝑀away, 𝑀) consisting of a first move-away
operation, followed by the direct move to the now free coordinate.
These moves are then combined into a chain of movements, listing
all shuttling operations required to execute a certain gate, where
the chain length is bounded by 2(𝑚 − 1). This represents the worst
case where all gate qubits have to use a move-away combination to
make the gate executable. These movement chains are created for
each gate qubit, always keeping chains of minimal length, based on
the intuition that two move operations are unlikely to be faster than
a direct single operation, even if they can be shuttled in parallel. The
chains themselves are created by recursively choosing a qubit of the
vicinity 𝑉 of the central gate qubit and considering the possibility
of moving all other gate qubits close to this position. This is done
by first choosing qubits that allow for a direct move, resulting in a
fast and close-to-optimal selection of interesting move operations.

Each move chain is then evaluated by summing the following
cost function over all individual moves𝑀 contained in the chain:

𝐶s (𝑀) = 𝐶 𝑓
s (𝑀) +𝑤𝑙 𝐶

𝑙
s (𝑀) +𝑤𝑡𝐶𝑡parallel (𝑀) (4)

𝐶
𝑓
s (𝑀) =

∑︁
𝑔∈ 𝑓s

Δ𝑑 (𝑀), 𝐶𝑡parallel (𝑀) =
∑︁
𝑀𝑡

Δ𝑇 (𝑀,𝑀𝑡) , (5)

where the first two terms correspond to a distance reduction in the
front and lookahead layer, similar to Equation (2). 𝐶𝑡parallel takes
into account if the the moves of the move chain can be executed in
parallel to the last 𝑡 move operations𝑀𝑡 , i.e.,

Δ𝑇 (𝑀,𝑀𝑡) =

0 , parallel loading & shuttle
𝑡act + 𝑡deact , parallel loading
𝑡act + 𝑠 (𝑀)/𝑣 + 𝑡deact , else

where 𝑡 (de)act is the (de)activation time of the AOD coordinates,
𝑣 the shuttling velocity, and 𝑠 (𝑀) the rectangular shuttling dis-
tance of movement 𝑀 . By varying the time weight 𝑤𝑡 one can
therefore control the contribution of the parallelism constraint to
the overall cost function and, therefore, it plays a similar role to
𝜆𝑡 in Equation (2) controlling the trade-off between choosing the
most effective operation versus the one that can be executed best
in parallel with previous operations.

For further technical details, we refer to the code which is pub-
licly available at [13].

5

Table 1: Mapping Results for different NA hardware settings with different compilation strategies

(a) Mapping results

Compiler Settings
(A) Shuttling-based only (B) Gate-based only (C) Proposed Hybrid Approach

ΔCZ Δ𝑇 [µs] 𝛿F RT [s] ΔCZ Δ𝑇 [µs] 𝛿F RT [s] ΔCZ Δ𝑇 [µs] 𝛿F RT [s] 𝛼

H
ar
dw

ar
e
Se
tt
in
gs

(1
)S

hu
ttl
in
g

graph 0 6.3 0.45 4.9 1086 0.1 7.37 4.9 0 6.3 0.45 4.9

1

qft 0 357.0 25.20 60.6 12141 5.4 88.47 60.7 0 357.0 25.20 60.4
qpe 0 313.5 22.79 61.7 11928 3.5 87.23 61.4 0 313.5 22.79 61.7
bn 0 11.0 1.21 0.3 522 0.1 4.06 0.3 0 11.0 1.21 0.3
call 0 16.6 1.27 35.8 1146 0.3 8.10 35.5 0 16.6 1.27 35.5
gray 0 5.8 0.44 0.5 483 0.1 3.34 0.5 0 5.8 0.44 0.5

(2
)G

at
e

graph 0 11.8 0.94 2.8 324 0.0 0.10 0.4 324 0.0 0.10 0.4
qft 0 465.7 32.15 70.2 2733 2.3 0.96 17.4 2733 2.3 0.96 17.4
qpe 0 563.4 39.80 50.2 3021 2.3 1.05 17.4 3021 2.3 1.05 17.5
bn 0 29.9 2.12 0.6 132 0.0 0.04 0.1 132 0.0 0.04 0.1
call 0 28.9 2.07 28.2 309 0.1 0.10 26.4 309 0.1 0.10 26.4
gray 0 9.2 0.64 0.2 72 0.0 0.02 0.0 72 0.0 0.02 0.0

(3
)M

ix
ed

graph 0 9.9 0.59 4.6 846 0.1 2.54 0.4 0 9.9 0.59 4.6 0.95
qft 0 607.3 36.08 67.9 8898 4.4 27.24 18.3 6867 54.1 24.09 24.0 1.04
qpe 0 613.7 36.51 59.6 7980 2.9 24.41 20.1 6987 26.9 22.82 22.9 1.06
bn 0 21.6 1.28 0.3 492 0.2 1.47 0.1 78 10.0 0.83 0.2 1.01
call 0 34.3 2.04 37.9 693 0.2 2.09 35.0 363 11.4 1.77 36.3 1.01
gray 0 8.6 0.52 0.5 285 0.1 0.86 0.1 66 4.5 0.46 0.2 0.99

(b) Benchmark descriptions

Name 𝑛 nCZ nC2Z nC3Z
graph 200 215 0 0
qft 200 9998 0 0
qpe 200 10340 0 0
bn 48 133 87 0
call 25 0 192 56
gray 33 0 62 0

(c) Hardware settings

Paramters Shuttling Gate Mixed
𝑟int = 𝑟rest 2 4.5 2.5

FCZ 0.994 0.9995 0.995
FH 0.995 0.9999 0.999

FShuttling 1 0.999 0.9999
𝑡U3 [µs] 0.5
𝑡CZ [µs] 0.2
𝑡CCZ [µs] 0.4
𝑡CCCZ [µs] 0.6
𝑣 [µm µs−1] 0.55 0.2 0.3
𝑡act/deact [µs] 20 50 40

T1 [µs] 100000000
T2 [µs] 1500000

ΔCZ and Δ𝑇 represent the difference in the number of CZ gates and circuit execution time, respectively. 𝛿F measures the relative fidelity decrease, taking the negative logarithm of
the approximate success probability (less is better). RT is the runtime of the mapping process in CPU seconds, 𝛼 = 𝛼g/𝛼s is the ratio between gate- and shuttling-based mapping.

4 NUMERICAL EVALUATIONS
The advantage of the hybrid mapping approach proposed in this
work is its flexibility when it comes to different hardware configura-
tions. By leveraging SWAP gate insertion and shuttling, the mapper
can choose for each gate in the front layer the currently favorable
mapping capability with potential improvements regarding circuit
runtime and average circuit fidelity. These benefits have been con-
firmed in experimental evaluations, with the main results of the
evaluations summarized in this section.

4.1 Experimental Setup
We performed mapping experiments across three different hard-
ware configurations whose corresponding settings are summa-
rized in Table 1c. They correspond to a (1) shuttling-optimized,
a (2) gate-optimized, and a (3) mixed configuration that does not
have a favorable mapping capability. The considered hardware size
is a 15 × 15 lattice with 𝑑 = 3 µm and 𝑁 = 200 atoms in all cases.

As benchmarks, we utilized three representative quantum cir-
cuits [17], namely the Quantum Fourier Transform (QFT), Quantum
Phase Estimation (QPE), and a graph state preparation circuit (graph)
for 𝑛 = 200 qubits. To account for multi-qubit gates, we additionally
considered three benchmark circuits representing classical binary
reversible functions synthesized by [1] using C𝑚X gates with𝑚 ≤ 4
denoted bn, call, and gray (Table 1b). For all circuits, C𝑚X have
been decomposed to natively supported C𝑚Z gates.

For each hardware and circuit, the mapper is executed in three
different modes: (A) gate-based only: 𝛼s = 0, (B) shuttling-based
only: 𝛼g = 0, and (C) hybrid mapping utilizing the full hybrid
compilation process proposed in Section 3. For the hybrid mode,
different decision radios 𝛼 = 𝛼g/𝛼s are tested, keeping only the best.
The remaining mapping parameters are 𝜆𝑡 = 0,𝑤𝑙 = 0.1,𝑤𝑡 = 0.1,
and 𝑡 = 4. A trivial identity mapping is chosen for the initial layout,
i.e., 𝑞𝑖 ↔ 𝑄𝑖 ↔ 𝐶𝑖 for all circuit qubits.

To evaluate the results, both the original and the mapped circuits
are scheduled, taking again state-of-the-art hardware parameters of
Table 1c. The difference in circuit execution timeΔ𝑇 and the number
of CZ gates ΔCZ are computed, where the latter correspond to the
eventually inserted and decomposed SWAP gates. Additionally,
in both cases, a total average mapping fidelity is computed and
compared taking the negative logarithm of the approximate success
probability 𝑃 ratio 𝛿F = − log(𝑃mapped/𝑃original) with a smaller
value representing a smaller fidelity decrease caused by themapping
process. The results with the corresponding mapper runtimes (RT)
in CPU seconds are listed in Table 1a.

4.2 Discussion
It is obvious that shuttling-only mapping results in ΔCZ = 0, as
no additional gates are added. For gate-based mapping, on the
other hand, the inserted SWAP gates are decomposed and, there-
fore, result in a higher ΔCZ, while the time overhead Δ𝑇 is mag-
nitudes of order smaller compared to the slower shuttling-only
mapping. Nevertheless, for the (1) shuttling-optimized hardware it
is still favorable to utilize the slow shuttling compared to the error-
prone CZ gates, due to the long coherence times. Similarly, for the
(2) gate-optimized hardware with improved CZ fidelity, SWAP gate
insertion represents the preferred mapping capability as expected.
The proposed hybrid mapper directly utilizes the hardware param-
eters to decide between the two capabilities and can, therefore,
correctly identify the more suitable strategy, resulting in the best
output in all shown cases.

Moreover, the full flexibility of the proposed hybrid approach
is demonstrated in the last row of Table 1a, corresponding to the
(3) mixed hardware setup, representing reasonable operation fideli-
ties for near-term devices. Instead of using the same computational
capability through the whole mapping process, the hybrid mapper
can choose the most suitable way to map each gate within the

6

circuit, resulting in a combination of SWAP gates and shuttling
moves. By leveraging both mapping capabilities the hybrid mapper
can reduce the fidelity decrease 𝛿F caused by the mapping, for
all considered benchmarks except for the graph-state preparation.
Here, the mapper correctly identifies the shuttling-only approach
to be still the best choice. Note that the optimal ratio 𝛼 between
gate- and shuttling-mapping varies for different circuits, indicating
a connection between circuit structure and preferred mapping ca-
pability. The proposed hybrid mapper allows, for the first time, to
study this correlation, with a systematic case study left for future
work.

5 CONCLUSIONS
In this work, we proposed a hybrid compilation methodology, incor-
porating both gate-based SWAP insertion and shuttling-based qubit
array rearrangements, i.e., both mapping capabilities of the Neutral
Atom (NA) platform. We addressed challenges arising from the si-
multaneous utilization of both mapping capabilities and integrated
corresponding solutions into an overall hybrid compilation process,
inclusive of direct support for multi-qubit gates. The versatility
of the proposed approach has been demonstrated across diverse
hardware configurations, showcasing its adaptability and potential
for enhancing fidelity. By applying the proposed mapping process
to quantum circuits featuring up to 200 qubits, we have shown
its effectiveness in harnessing the complete spectrum of compu-
tational capabilities provided by NAs, encompassing high-fidelity
long-range interactions, native multi-qubit gate support, and qubit
shuttling. This opens new possibilities for future studies and com-
piler development for the NA platform.

ACKNOWLEDGMENTS
The authors thank Johannes Zeiher for fruitful discussions and
comments regarding Neutral Atoms.

L.S. and R.W. acknowledge funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 101001318) and this
work was part of the Munich Quantum Valley, which is supported
by the Bavarian state government with funds from the Hightech
Agenda Bayern Plus,

REFERENCES
[1] S. Adarsh et al. Syrec synthesizer: an mqt tool for synthesis

of reversible circuits. Software Impacts, 14:100451, 2022.
[2] J. M. Baker et al. Exploiting Long-Distance Interactions and

Tolerating Atom Loss in Neutral Atom Quantum Architec-
tures. In ACM/IEEE Int’l Symposium on Computer Architec-
ture, pages 818–831, 2021. doi: 10.1109/ISCA52012.2021.
00069.

[3] D. Barredo et al. An atom-by-atom assembler of defect-free
arbitrary two-dimensional atomic arrays. Science, 354(6315):1021–
1023, 2016. doi: 10.1126/science.aah3778.

[4] D. Bluvstein et al. A quantum processor based on coherent
transport of entangled atom arrays. Nature, 604(7906):451–
456, 2022. doi: 10.1038/s41586-022-04592-6.

[5] S. Brandhofer et al. Optimal Mapping for Near-Term Quan-
tum Architectures based on Rydberg Atoms. In Int’l Conf.
on CAD, pages 1–7, 2021. doi: 10.1109/ICCAD51958.2021.
9643490.

[6] A. Cowtan et al. On the qubit routing problem. In W. van
Dam et al., editors, Theory of quantum computation, commu-
nication and cryptography, 2019.

[7] S. J. Evered et al. High-fidelity parallel entangling gates on a
neutral-atom quantum computer. Nature, 622(7982):268–272,
2023. doi: 10.1038/s41586-023-06481-y.

[8] T. M. Graham et al. Multi-qubit entanglement and algorithms
on a neutral-atom quantum computer.Nature, 604(7906):457–
462, Apr. 2022. doi: 10.1038/s41586-022-04603-6.

[9] L. Henriet et al. Quantum computing with neutral atoms.
Quantum, 4:327, 2020. doi: 10.22331/q-2020-09-21-327.

[10] H. Levine et al. Parallel Implementation of High-Fidelity
Multiqubit GateswithNeutral Atoms. Physical Review Letters,
123(17):170503, 2019. doi: 10.1103/PhysRevLett.123.170503.

[11] G. Li et al. Tackling the Qubit Mapping Problem for NISQ-
Era Quantum Devices. In Int’l Conf. On Architectural Support
for Programming Languages and Operating Systems, 2019.
doi: 10.1145/3297858.3304023.

[12] Y. Li et al. Timing-Aware Qubit Mapping and Gate Sched-
uling Adapted to Neutral Atom Quantum Computing. IEEE
Trans. on CAD of Integrated Circuits and Systems:1–1, 2023.
doi: 10.1109/TCAD.2023.3261244.

[13] MQT QMAP fork. url: https://github.com/lsschmid/mqt-
qmap/tree/hybrid-mapper.

[14] N. Nottingham et al. Decomposing and Routing Quantum
Circuits Under Constraints for Neutral Atom Architectures,
2023. doi: 10.48550/arXiv.2307.14996. arXiv: 2307.14996.

[15] T. Patel et al. Geyser: a compilation framework for quan-
tum computing with neutral atoms. In Int’l Symposium on
Computer Architecture, pages 383–395, 2022. doi: 10.1145/
3470496.3527428.

[16] L. Pause et al. Supercharged two-dimensional tweezer array
with more than 1000 atomic qubits, 2023. doi: 10 .48550/
arXiv.2310.09191. arXiv: 2310.09191.

[17] N. Quetschlich et al. MQT Bench: benchmarking software
and design automation tools for quantum computing. Quan-
tum, 2023.

[18] M. Saffman. Quantum computing with atomic qubits and
Rydberg interactions: progress and challenges. Journal of
Physics B: Atomic, Molecular andOptical Physics, 49(20):202001,
2016. doi: 10.1088/0953-4075/49/20/202001.

[19] M. Saffman et al. Quantum information with Rydberg atoms.
Reviews of Modern Physics, 82(3):2313–2363, 2010. doi: 10.
1103/RevModPhys.82.2313.

[20] L. Schmid et al. Computational Capabilities and Compiler
Development for Neutral Atom Quantum Processors: Con-
necting Tool Developers and Hardware Experts, 2023. doi:
10.48550/arXiv.2309.08656. arXiv: 2309.08656.

[21] B. Tan et al. Optimal Layout Synthesis for Quantum Com-
puting. In Int’l Conf. on CAD, pages 1–9, 2020.

[22] D. B. Tan et al. Compiling Quantum Circuits for Dynamically
Field-Programmable Neutral Atoms Array Processors, 2023.
doi: 10.48550/arXiv.2306.03487. arXiv: 2306.03487.

7

https://doi.org/10.1109/ISCA52012.2021.00069
https://doi.org/10.1109/ISCA52012.2021.00069
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1109/ICCAD51958.2021.9643490
https://doi.org/10.1109/ICCAD51958.2021.9643490
https://doi.org/10.1038/s41586-023-06481-y
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/TCAD.2023.3261244
https://github.com/lsschmid/mqt-qmap/tree/hybrid-mapper
https://github.com/lsschmid/mqt-qmap/tree/hybrid-mapper
https://doi.org/10.48550/arXiv.2307.14996
https://arxiv.org/abs/2307.14996
https://doi.org/10.1145/3470496.3527428
https://doi.org/10.1145/3470496.3527428
https://doi.org/10.48550/arXiv.2310.09191
https://doi.org/10.48550/arXiv.2310.09191
https://arxiv.org/abs/2310.09191
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.48550/arXiv.2309.08656
https://arxiv.org/abs/2309.08656
https://doi.org/10.48550/arXiv.2306.03487
https://arxiv.org/abs/2306.03487

[23] A. Zulehner et al. An Efficient Methodology for Mapping
Quantum Circuits to the IBM QX Architectures. IEEE Trans.
on CAD of Integrated Circuits and Systems, 2019. doi: 10.1109/
TCAD.2018.2846658.

8

https://doi.org/10.1109/TCAD.2018.2846658
https://doi.org/10.1109/TCAD.2018.2846658

	Abstract
	1 Introduction
	2 Background
	2.1 Neutral Atom Computational Capabilties
	2.2 Quantum Circuit Mapping

	3 Hybrid Mapping Problem
	3.1 Challenges and Proposed Solutions
	3.2 Resulting Overall Mapping Process
	3.3 Implementation Details

	4 Numerical Evaluations
	4.1 Experimental Setup
	4.2 Discussion

	5 Conclusions
	Acknowledgments

