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Abstract—Railroad transportation plays a vital role in the
future of sustainable mobility. Besides building new infrastruc-
ture, capacity can be improved by modern train control systems,
e.g., based on moving blocks. At the same time, there is only
limited work on how to optimally route trains using the potential
gained by these systems. Recently, an initial approach for train
routing with moving block control has been proposed to address
this demand. However, detailed evaluations on so-called lazy
constraints are missing, and no publicly available implementation
exists. In this work, we close this gap by providing an extended
approach as well as a flexible open-source implementation that
can use different solving strategies. Using that, we experimentally
evaluate what choices should be made when implementing a
lazy constraint approach. The corresponding implementation and
benchmarks are publicly available as part of the Munich Train
Control Toolkit (MTCT) at https://github.com/cda-tum/mtct.

I. INTRODUCTION

SUSTAINABLE transportation systems are becoming in-
creasingly important. Because of this, the demand for

railway transportation is constantly increasing. Since build-
ing new tracks to increase capacity is resource- and time-
consuming, train control systems should also be utilized to
increase capacity.

Because trains cannot operate on sight due to their long
braking distances, such systems are used to prevent collisions.
Most notable systems are the European Train Control Sys-
tem (ETCS), the Chinese Train Control System (CTCT), or the
Positive Train Control (PTC) [1] as well as Communication
Based Train Control (CBTC) for metro systems [2]. While
these systems differ in detail, the main concepts are very
similar. New specifications allow trains to follow each other
more closely on existing infrastructure and at the same level
of safety. In the ideal case, trains can operate under a so-called
moving block control, which provides enormous potential for
increased capacity.

However, the most efficient specification does not help
without methods to optimize train movements that use this
potential. Respective optimization tasks using classical (i.e.,
“old”) specifications are well studied [3]. At the same time,
there is only a little work on routing under moving block
control [4], [5], none of which is available open-source.

Since the number of constraints preventing collisions is
enormous and, at the same time, many of them are not needed
to describe an optimal solution, a lazy approach is used. First,

the problem is optimized without these conditions. During
the solving process, violated constraints are iteratively added
until a feasible (hence, optimal) solution is obtained. There
are different strategies on which (lazy) constraints to add
in each iteration. However, to the best of our knowledge,
they have not previously been compared, and it is hard to
do corresponding evaluations ourselves due to the lack of
available implementations.

In this work, we aim to improve upon the aforementioned.
The resulting source code is included in the open-source
Munich Train Control Toolkit (MTCT) available at https:
//github.com/cda-tum/mtct. The solving strategy and other pa-
rameters can be chosen flexibly. This allows for experimental
evaluations, in which we analyze what strategy should be
implemented using a lazy approach in train routing under mov-
ing block. Additionally, the proposed model extends previous
solutions to allow more general timetabling requests and can
model train separation more precisely, especially in scenarios
close to stations where a train might occupy multiple (short)
train segments simultaneously.

The remainder of this work is structured as follows: Sec. II
reviews the relevant principles of train control systems, Sec. III
describes the considered routing task and summarizes previous
work as well as our contribution, and Sec. IV and V present
the proposed approach(es). Finally, Sec. VI contains an exper-
imental evaluation, and Sec. VII concludes this paper.

II. TRAIN CONTROL PRINCIPLES

Classically, a railway network is divided into fixed blocks.
Using Trackside Train Detection (TTD) hardware, e.g., Axle
Counters (AC), it is determined whether a particular block is
occupied or not. Because of this, the resulting blocks are also
called TTD sections. A following train can only enter a block
once it is fully cleared by the previous train.

Example II.1. Consider two trains following each other on a
single track as depicted in Fig. 1a. Train tr2 can only move
until the end of TTD2. It cannot enter TTD3 because it is
still occupied and, hence, might have to slow down in order
to be able to come to a full stop before entering the occupied
block section.

Modern control systems allow for more efficient headways.
A train equipped with Train Integrity Monitoring (TIM) can
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Fig. 1: Schematic drawings of different signaling principles

report its safe position to the control system. Hence, no
hardware is needed to safely separate trains. Then, the network
no longer has to be separated into fixed blocks. In the best case,
trains can follow at absolute braking distance. Hence, shorter
headway times are possible. This so-called Moving Block sig-
naling has, e.g., been specified as an extension within ETCS
Level 2 [6], which is also formerly known as Level 3 [7].

Example II.2. In contrast to Ex. II.1, consider a moving block
control implemented in Fig. 1b. Because trains operate at
the ideal absolute braking distance, tr2 can move up to the
actual end of tr1 (minus a little buffer). In particular, it can
already enter what has been TTD3 previously. Hence, trains
can follow each other more closely.

III. PROBLEM DESCRIPTION AND CONTRIBUTIONS

In this work, we focus on moving block control systems.
This section briefly provides the problem description of a
corresponding routing task, reviews the current state of the
art, and motivates our work.

A. Train Routing under Moving Block Control

Train routing is the task of determining when and where
trains are driving on the respective network, given timetabling
constraints. This includes the choice of specific tracks and
corresponding timings. More formally, it is defined using the
following notation:
T : A set of trains and its relevant properties (e.g., length,

maximal speed, acceleration, braking curves).
N : A railway network including vertices V and (directed)

edges E as described in [8].
S: A set of stations, where each station S ∋ S ⊆ E is a

subset of edges of the network N .
D(tr): A set of demands for every train tr ∈ T consisting of

– a weight w(tr) ≥ 0 of importance,
– an entry node v

(tr)
in ∈ V together with a desired entry

interval [t(tr)in , t
(tr)
in ],

– an exit node v
(tr)
out ∈ V together with a desired exit

interval [t(tr)out , t
(tr)
out ], as well as,

– a set of stations S
(tr)
i ∈ S together with

∗ an interval [α(tr)
i , α

(tr)
i ] in which the train should

arrive at the station,
∗ an interval [δ(tr)i , δ

(tr)

i ] in which the train should
depart from the station, and

∗ a minimal stopping time ∆t
(tr)
i ≥ 0.

Having this notation, the goal is to determine an optimal
routing. In this setting, optimality is defined as minimizing
the (weighted) exit times such that all schedule demands are
obeyed and the constraints by a moving block control system
are satisfied.

B. State of the Art and Contributions

Train routing and related timetabling tasks under classi-
cal train control have long been considered and are well-
studied [3]. On modern control systems using so-called hybrid
train detection, routing is considered in algorithms to design
optimal (virtual) section layouts by using SAT [9], A* [10],
or Mixed Integer Linear Programming (MILP) [11]. While the
arising questions are similar, these solutions do not utilize the
full potential of moving block.

To the best of our knowledge, [4] is the first approach that
considers optimal routing of trains specifically under moving
block control. They describe a MILP formulation to solve a
routing problem similar to the one considered in this paper.
Say s describes the position and t the time; one could say that
their formulation models the function t(s) at discrete positions
given by vertices of the network. Since trains cannot pass
each other on a given edge, this seems to be a reasonable
simplification while still being able to model at a decent level
of accuracy.

However, the number of constraints to ensure that trains
keep enough distance and do not crash into each other is
rather big. At the same time, most of these are unnecessary
because trains operating at different network parts will not
collide even without explicit constraints. Because of this, one
can first optimize without them. If this yields a collision-
free solution, the problem is solved. Otherwise, constraints
preventing collisions from arising need to be added during the
solving process as so-called lazy constraints. By doing this,
the same optimal solution is obtained; however, only a small
number of the original constraints is considered. This can be
beneficial, especially for large models, as discussed in their
follow-up work [5].

At the same time, this previous approach comes with some
downsides:

• Both trains and stations are single points without length.
The authors claim this is not a problem because the length
can be integrated as a buffer in the headway. However,
especially in station environments, this might not be
feasible. For example, some stations separate a platform
into sections. A long train might occupy all of a platform,
whereas two smaller trains can stop simultaneously (in
different sections of the platform). Those scenarios cannot
be modeled using the previous approach.

• There are different strategies to select which (lazy)
constraints to add. This constitutes a trade-off: adding
only a few lazy constraints in each iteration is quickly
possible, however, many iterations might be needed until
a collision-free solution is reported; on the other hand,
adding many lazy constraints simultaneously increases
the time spent in every iteration but, at the same time,



likely reduces the number of iterations needed. In [5], no
evaluation of selection strategies for lazy constraints is
provided.

• The implementation of the solution is not publicly avail-
able. This prevents us from doing corresponding evalua-
tions and restricts the proposed solution’s applicability.

Overall, this motivates an alternative MILP formulation,
which properly considers train separation even on shorter
edges by considering the respective train lengths as well as
incorporating more flexible timetable requests. At the same
time, we aim to shed light on which strategy for lazy con-
straint selection might be best by conducting a corresponding
evaluation. Finally, we provide a flexible open-source imple-
mentation at https://github.com/cda-tum/mtct, thus allowing
the community to access such methods.

IV. MILP MODEL

This section presents the MILP model motivated in
Sec. III-B. For reasons of comprehensibility, we limit our-
selves to the relevant variables and constraints. The interested
reader can find the complete model in the open-source imple-
mentation available at https://github.com/cda-tum/mtct.

A. Symbolic Formulation

To model the approach, we need variables describing each
train’s routes and relevant timings. As discussed in Sec. III-B,
we follow the basic strategy by [4] with slight extensions to
incorporate the actual train lengths by tracking each train’s
rear point. Hence, we include the following variables:

• x
(tr)
e ∈ {0, 1} denotes whether a certain edge e ∈ E is

used by train tr ∈ T .
• a

(tr)
v ∈

[
0, t

(tr)
out

]
is the time at which the front of train

tr ∈ T arrives at v ∈ V .
• d

(tr)

v ∈
[
0, t

(tr)
out

]
is the time at which the front of train

tr ∈ T departs from v ∈ V .
• d(tr)v ∈

[
0, t

(tr)
out

]
is the time at which the rear of train

tr ∈ T departs from v ∈ V , hence, tr has entirely left
the previous edge.

The speed is included by extending the vertices accordingly.
Let P(tr)

v ⊆ [0, v
(tr)
max] be a finite set of discretized velocities

(paces) a train tr ∈ T might have at v ∈ V 1. The extended
graph has a (directed) edge ϵ

(tr)
e,p1→p2 ∈ E(tr) connecting

(u, p1) and (v, p1) for e = (u, v) ∈ E, p1 ∈ P(tr)
u , and

p2 ∈ P(tr)
v if, and only if, it is possible for train tr ∈ T

to accelerate/decelerate from p1 to p2 while traveling on e.
For every such extended edge ϵ

(tr)
e,p1→p2 , the variable

• y
(tr)
e,p1→p2 ∈ {0, 1} denotes whether train tr ∈ T uses the

corresponding extended edge.

Example IV.1. Consider again the setting of Ex. II.2, where
two trains follow each other. For presentation purposes, we
choose the segment to consist of three vertices. In Fig. 2, the

1For this work, we have used a uniform discretization of 10km/h as these
values can be displayed by a standard speed indicator [12, Signal Zs 3].
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Fig. 2: Example Setting for Symbolic Formulation

extended graph for tr1 is drawn above and the one for tr2
below the track. Values of relevant variables are written at
the fitting places. Furthermore, note that x

(tr1)
e1 = x

(tr1)
e2 =

x
(tr2)
e1 = x

(tr2)
e2 = 1.

B. Constraints

Of course, the above variables must be constrained to
represent valid train movements. In the following, we present
the most important constraints. We leave out some technical
constraints needed to connect variables according to their
desired purpose for ease of understanding. Furthermore, we
might formulate some constraints in its logical, rather than
linear, form. In either case, adding and reformulating the
missing constraints using big-M and possibly some helper
variables is straightforward. They are irrelevant to presenting
this work’s crucial concepts and ideas.

1) Valid Train Movements: Each train tr ∈ T has to travel
on a valid path from its entry to exit. Hence,∑

e∈δ+
(
v
(tr)
in

)x(tr)
e =

∑
e∈δ−

(
v
(tr)
out

)x(tr)
e = 1 (1)

where δ+(·) and δ−(·) denote outgoing and incoming edges
respectively. Moreover, a flow-conserving constraint (which
also considers the respective velocity) has to be fulfilled at
every other vertex. Thus, for every v ∈ V −

{
v
(tr)
in , v

(tr)
out

}
and

p ∈ P(tr)
v we have∑

ϵ∈δ−(v,p)

y(tr)ϵ =
∑

ϵ∈δ+(v,p)

y(tr)ϵ (2)

within the velocity extended graph. To prevent cycles, the in-
and out-degrees are furthermore bound by one, respectively.

2) Travel Times: Denote by τ (tr)
(
ϵ
(tr)
e,p1→p2

)
∈ R≥0 the

minimal time it takes train tr ∈ T to traverse ϵ
(tr)
e,p1→p2 ∈ E(tr)

of the velocity-extended graph. For details on how these
may be calculated, we refer to [4, Fig. 3], but it suffices

https://github.com/cda-tum/mtct
https://github.com/cda-tum/mtct


to consider them as an arbitrary oracle. Analogously, let
τ (tr)

(
ϵ
(tr)
e,p1→p2

)
∈ R≥0 ∪ {∞} denote the maximal time. In

this case, it is noted that a train might be allowed to stop on
some of the edges, in which case ∞ is possible. Again, we
refer to [4, Fig. 4].

Hence, assuming e = (u, v), we have

a(tr)v ≤ d
(v)

u + τ (tr)
(
ϵ(tr)e,p1→p2

)
+M ·

(
1− y(tr)e,p1→p2

)
(3)

a(tr)v ≥ d
(v)

u + τ (tr)
(
ϵ(tr)e,p1→p2

)
−M ·

(
1− y(tr)e,p1→p2

)
(4)

where M ≥ 0 is large enough (e.g., M = t
(tr)
out )2 to ensure

that the constraint is only activated if the respective edge is
used.

Finally,
d
(tr)

v ≥ a(tr)v ∀v ∈ V, tr ∈ T (5)

and a train can only stop at a vertex (i.e., “̸=” in Eq. (5)) if
it has velocity 0, i.e.,

d
(tr)

v ≤ a(tr)v +M ·
∑

ϵ∈δ(v,0)

y(tr)ϵ . (6)

3) Track Release: In contrast to [4], we do not model a
train as a single point. This allows for more accurate train
separation in the model. For this, we need to relate the end
of a train to its front. Let R = {e1, . . . , ek} ⊆ E be a route
starting in v, such that

∑k−1
i=1 l(ei) < l(tr) ≤ ∑k

i=1 l(ei)
3.

Similarly to above, let τ (tr)λ→µ(ϵ) and τ
(tr)
λ⇝µ(ϵ) be the minimal

and maximal travel time from point λ to µ on the velocity
extended edge ϵ ∈ E(tr), where 0 ≤ λ ≤ µ ≤ l(ϵ). Then, the
following bounds have to hold

x(tr)
e = 1∀e ∈ R ⇒ d(tr)u1

≥ d
(tr)

uk
+

∑
ϵ∈Ek

y(tr)ϵ · τ (tr)0→s(ϵ) (7)

x(tr)
e = 1∀e ∈ R ⇒ d(tr)u1

≥ a(tr)vk
−

∑
ϵ∈Ek

y(tr)ϵ · τ (tr)s→lk
(ϵ) (8)

assuming ei = (ui, vi), s := l(tr)−∑k−1
i=1 l(ei), lk := l(ek),

and Ek being the set of all edges connecting uk to vk in the
velocity extended graph.

While we chose to write the logical form in Eq. (7) and (8)
for better readability, they can easily be reformulated into
linear constraints using big-M. We do not add upper bounds
because the objective of small headways pushes the variables
down wherever needed.

4) Headway: Reference [4] models train headways on sin-
gle edges, which is precise if edges are rather long. However,
the braking distance considered might range multiple edges,
particularly close to stations. We use and proceed similarly to
Sec. IV-B3 to model this more precisely. However, the length
of the train is replaced by its braking distance.

On each edge e ∈ E, we introduce binary variables
otr1≻tr2
e ∈ {0, 1}, which is 1 if, and only if, tr1 ∈ T

2Note that Eq. (4) is only added if τ (tr)
(
ϵ
(tr)
e,p1→p2

)
≤ t

(tr)
out because

otherwise bounding by the maximal travel time has no effect.
3In general we denote by l(·) the length of an object

follows tr2 ∈ T on edge e. The respective headway constraints
relating a of the following and d of the preceding train are
then analog to Eq. (7) and (8); however, with the additional
conditions that the following train has a specific velocity and
the respective ordering variable is one.

Similarly, one can proceed with trains traveling in opposite
directions. Then, however, the respective track segments be-
have like a TTD section, and a train’s moving authority can
only enter a track segment once the opposing train has entirely
left it.

5) Timetable: Of course, also the timetable demands D(tr)

have to be satisfied. Reference [4] can bind the respective
timing variables directly since the exact stopping points are
predefined. While, in our case, this is true for the entry and exit
nodes, each stop at station S

(tr)
i ∈ S could be at a particular

set of vertices, say V
(tr)
Si

. For every such v ∈ V
(tr)
Si

, we add a
respective binary variable stop

(tr)
i,v ∈ {0, 1}. Then,

stop
(tr)
i,v = 1 ⇒ a(tr)v ∈ [α

(tr)
i , α

(tr)
i ], (9)

stop
(tr)
i,v = 1 ⇒ d

(tr)

v ∈ [δ
(tr)
i , δ

(tr)

i ], and (10)

stop
(tr)
i,v = 1 ⇒ d

(tr)

v − a(tr)v ≥ ∆t
(tr)
i . (11)

Again, these logical constraints can easily be reformulated into
linear constraints using big-M.

C. Objective

Finally, the goal is to enable every train to leave the network
as early as possible. If a train leaves after its predefined earliest
departure time, it is caused by the routing choice, not the
respective request. We minimize this difference according to
the given weights, which we normalize to one. Thus, the
objective is given by

min
1∑

tr∈T w(tr)
·
∑
tr∈T

w(tr) ·
(
d(tr)vout

− t
(tr)
out

)
. (12)

V. LAZY HEADWAY CONSTRAINTS

Note that there are many headway constraints of the
form described in Sec. IV-B4, more precisely of or-
der O

(
|T | ·∑tr∈T

∑
v∈V |P(tr)

v |
)

= O
(
|T |2 · |V | · |P|

)
,

where |P| denotes the average number of velocity extensions.
For instances with many trains on more extensive networks,
the time to explicitly add all these constraints to a model
is substantial. However, most of these constraints are not
explicitly needed because they describe a scenario far from
optimal. This motivates a lazy approach.

For this, we optimize using all except the headway con-
straints. The obtained solution could violate some of the
requirements. If so, one has to add a set of violated constraints
to the model and reoptimize, whereby the solver can use
information from the previous iteration to warm start. This
procedure is continued until the solution is feasible and, hence,
optimal.

However, the question arises of which constraints to add in
each iteration. A given conjectured solution determines each



Fig. 3: Runtime of Different Lazy Constraint Strategies

train’s route and velocity profile uniquely. Hence, at most
O
(
|T | ·∑tr∈T |X (tr)|

)
= O

(
|T |2 · |X |

)
conditions need to

be checked, where |X (tr)| denotes the number of edges used
by a respective train and, again, |X | the respective average.
In fact, the number is even smaller because only trains whose
routes intersect need to be compared.

Note that the headway constraints are transitive in the sense
that if tr1 follows tr2 at a safe distance at a given point,
then it also safely follows all trains that might have passed
before tr2. In particular, it suffices to check (and possibly add)
only headways regarding the immediate preceding train. This
reduces the number of checked constraints to O

(
|T | · |X |

)
.

Finally, one could either add all checked constraints (to give
as much information as possible to the solver) or only such
constraints that are violated (to not overload the solver with
unnecessary information). In the extreme case, one could even
only add one violated constraint and stop checking further
constraints immediately. In the first case, one is likely to only
need a few iterations. Conversely, a first violated constraint
might be found very quickly; however, more iterations are
needed in the end. The best strategy might depend on the
specific problem and is worth evaluating.

VI. IMPLEMENTATION AND EVALUATION

The approach presented above has been implemented, made
publicly available as open-source, and used to evaluate lazy
constraint selection strategies. It is included in the Munich
Train Control Toolkit available at https://github.com/cda-tum/
mtct and under active development. In this section, we describe
both the resulting implementation as well as the evaluations
and results obtained.

A. Implementation

We implemented the model described in Sec. IV using the
C++ API of Gurobi [13]. The resulting tool allows the user
to choose between different strategies for lazy constraints to
be added in each iteration by controlling various parameters.

Lazy constraints are implemented using the (custom) callback
framework provided by Gurobi.

In the current version, the tool allows to e.g., compare the
following selection strategies:

• “Full Model:” The entire model is explicitly constructed
in advance and passed to the solver. No callback is used.

• “All Checked Lazy Constraints:” In case of infeasibility,
all O

(
|T |2 · |X |

)
constraints corresponding to overlap-

ping routes are added in each iteration regardless if they
are violated or not.

• “All Adjacent Train Constraints:” Similarly, all checked
constraints are added in case of infeasibility. However,
only O

(
|T | · |X |

)
conditions corresponding to adjacent

trains directly following each other are considered.
• “Adjacent Violated Constraints:” Again, only constraints

corresponding to adjacent trains are considered. This
time, however, only violated constraints are passed to the
solver in each iteration. Conditions already fulfilled are
ignored but might be added to a later callback.

• “Only First Violation:” As soon as one violated con-
straint is found, only this one is added, and the callback
is immediately aborted without checking the remaining
conditions.

B. Evaluation

We tested these different strategies on an Intel(R) Xeon(R)
W-1370P system using a 3.60GHz CPU (8 cores) and 128GB
RAM running Ubuntu 20.04 and Gurobi version 11.0.2. As
benchmarks, we use the railway networks and schedules
from [11, Appendix A]. Additionally, we create random
timetables of up to 50 trains on two of the networks, including
the Munich S-Bahn Stammstrecke. Since optimizing up to the
millisecond is unreasonable, we stop at a proven optimality
gap of 10 seconds.

The results are provided in Fig. 3. On the x-axis, we plot
the runtimes in seconds. Note that we chose a logarithmic
scale for better readability. The y-axis provides the fraction
of samples that were solved in the given time or faster. The
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lines are monotonously increasing by design. Generally, if a
line is over/left of another line, the corresponding algorithm
performs faster/better.

To avoid distorting the analysis because of infeasible in-
stances, we present two plots. On the left, we included
instances known to be feasible; on the right, we included
instances proven to be infeasible. In the latter case, the time
plotted corresponds to the time it took the proposed approach
to prove infeasibility.

Clearly, the numbers confirm that a lazy approach is ben-
eficial: one should not explicitly specify the entire model in
advance. The only exception to this is that only adding one
constraint at a time performs even worse, which becomes
especially clear when considering infeasible examples.

Among the other strategies, no one clearly outperforms the
others. At the same time, there seems to be a slight advantage
of only considering adjacent trains directly following each
other instead of all possible pairs of trains. However, it is
questionable if this effect is significant.

Overall, it seems reasonable to only add violated constraints
corresponding to adjacent trains. However, other strategies
might also be beneficial depending on the context in which
the algorithm is used since the observed benefit is only minor.

Having the proposed approach available as open-source will
allow adding and evaluating further strategies easily.

VII. CONCLUSIONS

In this work, we considered train routing within a moving
block environment. We introduced a MILP formulation that
can more accurately (than existing solution methods) model
train separation on layouts with short track segments by
incorporating the actual train length. Moreover, we discussed
how a lazy constraint approach can be implemented using
different strategies in each callback. Various such strategies
have been implemented open-source and are available at
https://github.com/cda-tum/mtct. The user can control the pa-
rameters affecting the solving process.

An experimental evaluation confirms that the solution pro-
cess benefits from the lazy approach as long as multiple
constraints are added simultaneously. On the other hand, there
seems to be no significant difference between some of the
tested strategies. At the same time, the open source imple-
mentation allows for the use of different strategies depending
on the instance, and it is not necessary to decide on the one
and only best approach in this setting.

Previous work focuses on the optimal design of other
modern train control systems relying on so-called hybrid train
detection. These systems combine the efficiency of moving
block with the practicability of classical train control [14].
Design automation methods in this context must both route
trains and place so-called virtual subsections. However, both of
these tasks alone are already hard, and optimization methods
in this context can highly benefit if routing is considered
separately [11]. While the details are out of scope for this
paper, it is reasonable to believe that optimal routes under
moving block are good choices in this case. In particular,

we aim to include this work (and possible future work on
routing under moving block control) as a first step within an
optimization pipeline for automated planning of train control
systems with hybrid train detection, which, again, will also
be made available open-source as part of the aforementioned
Munich Train Control Toolkit.
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