
A∗ is Born: Efficient and Scalable
Physical Design for Field-coupled Nanocomputing

Simon Hofmann, Marcel Walter, and Robert Wille
https://www.cda.cit.tum.de/research/nanotech/

Abstract— Field-coupled Nanocomputing (FCN) has emerged
as a promising alternative to traditional CMOS technology,
driven by recent advancements in atomic-scale logic gate fab-
rication and simulation. However, the efficient placement and
routing of logic functions remain significant challenges, with
existing algorithms lacking scalability or quality. In this paper,
we present a novel method aimed at addressing these challenges
by focusing on the generation of layouts with outstanding quality
in a fraction of the time compared to existing approaches.
Through extensive experimentation, we demonstrate that our
method significantly reduces area overhead, outperforming
two state-of-the-art heuristics by more than 70% and 24%,
respectively, while achieving these results at a remarkable 460
times faster pace compared to the latter. Furthermore, we
contribute to open science by releasing our algorithm as an
open-source implementation, fostering collaboration and further
advancements in the field of FCN.

I. INTRODUCTION

Field-coupled Nanocomputing (FCN, [1]) is a class of
post-CMOS technologies operating at the nanoscale without
the flow of electricity, targeting the ever increasing need
for computational power while addressing environmental
concerns. Recently, FCN started to gain momentum by break-
throughs in the manufacturing [2] and simulation [3]–[5] of
logic gates using Silicon Dangling Bonds (SiDBs, [6]).

To keep up with this rapid progress, physical design meth-
ods for layout mapping of logic functions are needed. For
small functions, exact approaches with exponential runtime
behavior [7], [8] are able to determine optimal solutions,
but for larger functions, scalable algorithms [9]–[11] either
generate solutions of sub-par quality in negligible time or
trade-off scalability for improved quality. This work proposes
a scalable algorithm that combines the best of both worlds,
generating near-optimal solutions in a short amount of time.

The remainder of this paper is structured as follows:
Section II reviews technical background on selected FCN
technologies and search algorithms. Section III discusses
heuristic state-of-the-art design automation methods for FCN.
After a computational complexity analysis in Section IV, an
A∗-based physical design algorithm is proposed in Section V,
which constitutes the main contribution of this work. It is
experimentally evaluated on a set of common benchmark
functions in Section VI. Finally, after outlining limitations of
the proposed approach in Section VII, Section VIII concludes
the paper.

An open-source implementation on top of the fiction
framework [12] is available as part of the Munich Nanotech

Simon Hofmann, Marcel Walter, and Robert Wille are with the Chair
for Design Automation, Technical University of Munich, Germany. Marcel
Walter is also with the University of Bremen, Germany. Robert Wille is also
with the Software Competence Center Hagenberg GmbH (SCCH), Austria.
E-mail: {simon.t.hofmann, marcel.walter, robert.wille}@tum.de

Toolkit (MNT, [13]).1 Furthermore, the generated layouts
have been included in the benchmark suite MNT Bench [14].2

II. BACKGROUND

This section covers the preliminaries of the FCN tech-
nologies Quantum-dot Cellular Automata (QCA, [15]) and
Silicon Dangling Bonds (SiDBs, [6]), as well as select search
algorithms.

A. Field-coupled Nanocomputing

1) Quantum-dot Cellular Automata (QCA): In QCA, el-
ementary devices are called cells, which consist of four
quantum dots arranged in a square frame, hosting two
charges. Due to the shorter distance between two adjacent
dots compared to the distance between dots located on the
diagonal, the charges stabilize in either of the two configu-
rations illustrated in Fig. 1a, representing the binary values
of 0 and 1.

By placing multiple of these cells next to each other, the
polarization of one cell influences the next due to electrical
fields, creating a wire that is able to propagate information,
as seen in Fig. 1b. Furthermore, standard logic gates like the
majority-of-three (MAJ3) function, AND, OR, and inverter
can be created by arranging multiple cells in configurations as
shown in Fig. 2. Using this gate library [16], logic functions
can be composed by combining multiple gates.

2) Silicon Dangling Bonds (SiDBs): To create SiDBs, act-
ing as atomically-sized, chemically identical quantum dots, a
scanning tunneling microscope tip [6] can be used to remove
hydrogen atoms from a passivated silicon (H-Si(100)-2×1)
surface [17].

In contrast to the cells with four quantum dots used in
QCA, pairs of SiDBs are used to yield a concept known as
Binary-dot Logic (BDL, [18]), which has been applied to
implement standard gate libraries as well [19].

A fully functioning SiDB OR gate with a footprint of less
than 30 nm2 was successfully manufactured [18] using recent
breakthroughs in the domain, allowing unparalleled control
over the placement of theses dots [2], [20]–[23].

3) Technology Constraints: The potential of FCN is often
limited by inherent technological constraints. Most FCN
implementations are planar with limited crossing capabili-
ties, complicating wire routing. Additionally, ensuring signal
synchronization requires meticulous management of wire
segment lengths throughout the layout [24].

Clocking mechanisms are integral to FCN implementa-
tions, crucial for maintaining signal stability and controlling

1Code is available at https://github.com/cda-tum/fiction.
2https://www.cda.cit.tum.de/mntbench

https://www.cda.cit.tum.de/research/nanotech/
mailto:simon.t.hofmann@tum.de
mailto:marcel.walter@tum.de
mailto:robert.wille@tum.de
https://github.com/cda-tum/fiction
https://www.cda.cit.tum.de/mntbench

(a) The two polar-
ization states of in-
dividual cells.

(b) A wire segment transmitting a binary 1 signal
via the repulsion of charges. Cells adjust their
polarization in accordance with their neighbors.

Fig. 1: Elementary QCA cells and a wire segment.

(a) MAJ3 (b) AND (c) OR (d) Inverter

(e) Straight wire (f) Bent wire (g) Fan-out (h) Crossing

Fig. 2: The QCA ONE gate library [16].

information flow. The standard QCA clocking system pro-
poses four consecutive signals (clock 1 through 4), which
are distributed to individual tiles through buried electrodes
within the circuit substrate [25], to facilitate a pipeline-like
transmission of information among tiles. Various clocking
schemes, such as 2DDWave [26], offer tailored arrangements
of regular clock zones to streamline FCN layout design.

B. Search Algorithms
Search algorithms play a crucial role in solving problems

across various domains in computer science by finding the
shortest path in, e. g., a graph or maze. Similar to physical
design algorithms in FCN, they often also have to trade-off
efficiency and scalability.

One approach guaranteeing optimality in finding the short-
est path is Dijkstra’s Algorithm [27], which may not always
be the most efficient option, especially in large graphs.
In the worst case, every vertex in a graph or tile in a
maze has to be visited. Greedy Best-First Search sacrifices
optimality for efficiency by always expanding the vertex with
the least (heuristic) cost, but may fail in certain scenarios
without a well-designed heuristic. In contrast, the A∗-Search
Algorithm [28] strikes a balance between these approaches,
offering optimality when the heuristic is admissible, while
maintaining efficiency.

Example 1: Fig. 3 illustrates the application of the three
aforementioned search algorithms in a maze, where walls are
colored black and cannot be passed. In Fig. 3a, Dijkstra’s
algorithm is used to find the shortest path from the blue start
tile S to the red goal tile G by expanding the tile with the
lowest cost, which is the number of steps taken from the
start tile. Due to the structure of the maze, almost every tile
has to be visited before finding the shortest path. In contrast,
the greedy best-first search in Fig. 3b can find a path more

46 5 5

1 2 3 4

S 1 2 3 8

7 8 7 6

7

8

G

7

6

7

(a) Dijkstra

46 5

7 6 5

S 7

5 4 3 2 G1

3

4

2 1

3

(b) Best-first search

810 8

8 8 8 8

S 8 8 8

10 8

8

G

10

8

8

(c) A∗-search

Fig. 3: Application of three different search algorithms to
find a path (green) through a maze from start tile S (blue)
to goal tile G (red).

quickly by consistently expanding the tile with the lowest
heuristic cost—the Manhattan distance from the current tile
to G—although the resulting path may not be the shortest
one. The A∗-search algorithm used in Fig. 3c combines the
best of both worlds by expanding the tile with the least overall
cost, which is the sum of taken steps and an approximation
for the distance to the goal, which is the Manhattan distance
in our example. This allows for finding the shortest path while
exploring fewer tiles compared to Dijkstra’s algorithm.

III. RELATED WORK: SCALABLE PHYSICAL DESIGN
METHODS FOR FIELD-COUPLED NANOCOMPUTING

As outlined earlier, FCN layouts exhibit unique traits that
set them apart from conventional CMOS-based computing
systems. Notably, the physical design challenges inherent in
FCN technologies pose significant hurdles, characterized by
constraints like planarity and signal balancing [25], [29].

Predictably, the tasks of placement and routing in FCN cir-
cuits are acknowledged to be NP-complete [30], rendering
the quest for optimal solutions impractical, even for circuits
of modest scale when using exact approaches [7], [8].

To address this issue, numerous heuristic algorithms have
been proposed in the literature, many of which are specifi-
cally designed for employment with the 2DDWave clocking
scheme or demonstrate superior performance when utilized
with it as opposed to other clocking schemes. In layouts
clocked by 2DDWave, data propagation is restricted to
left-to-right and top-to-bottom directions, providing symme-
try and the ability to integrate a 45◦ rotation [31] to convert
resulting layouts into a hexagonal arrangement suitable for
accommodating Y-shaped SiDB gates [19].

A. ortho

The heuristic algorithm ortho [9] leverages an approxima-
tion to orthogonal graph drawing and is applicable to logic
networks with thousands of gates. This approach obviates the
necessity of pre-defining the layout area before placement, as
the required size is determined automatically.

B. NanoPlaceR

Another heuristic strategy called NanoPlaceR [10], [11]
employs reinforcement learning to anticipate advantageous
positions for logic gates, coupled with A∗-search for routing.
Although, on average, it produces layouts with less than
half the area overhead compared to ortho, it exhibits longer
runtimes and necessitates pre-defining the layout’s dimension
to initialize policy and value networks for the reinforcement
learning agent.

(a) Network comprised of nine
nodes (gates), including pri-
mary inputs and outputs.

1

2

3

2

3

4 1

3

4

4 1 2

(b) One out of two possible
2:1 MUX FCN layouts on a
3× 4 2DDWave-clocked grid.

Fig. 4: Logic network and its corresponding optimal FCN
layout for the 2:1 multiplexer function.

C. Post-Layout Optimization

A novel post-layout optimization technique [32], [33] aims
at reducing the area overhead after the physical design stage
by relocating gates to more favorable positions, leading to an
overall compaction of the given layout. However, the initial
layout plays a significant role in this post-layout optimization
process, as the computation time not only increases with the
number of gates but also with the initial size of the layout.
It has been observed that layouts generated by NanoPlaceR
exhibit not only less area overhead compared to ortho before
optimization, but also after, further highlighting the impor-
tance of an effective initial physical design algorithm.

The necessity of these heuristic approaches prompts the
question: why is the underlying physical design problem so
challenging?

IV. COMPLEXITY

The computational complexity of the physical design prob-
lem in FCN is characterized by the disproportion between the
number of possible solutions and the vast search space. In the
following, the logic network for the 2:1 multiplexer illustrated
in Fig. 4a will be used to illustrate this phenomenon.

Selecting the optimal position for each gate in a logic
network on a layout is a combinatorial problem, where the
number of possibilities is determined by

PG(t, g) =
t!

(t− g)!
(1)

possible placements for g gates on t = w · h available tiles
when not taking symmetries into account.

We assume that adjacent gates are automatically connected
if they are also neighbors in the logic network, and that
the underlying clocking scheme is 2DDWave, which further
limits the number of possible configurations, as there are only
seven ways to fill the remaining empty tiles while taking
signal flow directions into account: four different single wire
segments (original and rotated versions the straight wire
in Fig. 2e and the bent wire in Fig. 2f), two different double
wire segments (either the crossing shown in Fig. 2h or the

overlay of the bent wire in Fig. 2f and its rotated version),
or no wiring at all. Therefore there are

PW (t, g) = 7t−g (2)

possibilities to fill the remaining t − g tiles with wires or
leave them empty, which results in

P (t, g) = PG(t, g) · PW (t, g) =
7t−g · t!
(t− g)!

(3)

total possibilities to fill each tile with gates and wires.
Example 2: The 2:1 multiplexer shown in Fig. 4a consists

of g = 9 gates that need to be placed on a layout. Assuming
a layout size of t = w× h = 3× 4 = 12, there are a total of

P (12, 9) =
712−9 · 12!
(12− 9)!

= 27 382 924 800 (4)

possible combinations for placing gates and wires.
Using a brute-force approach, we created all

27 382 924 800 permutations and tested them for functional
equivalence with the logic network. Of all these possibilities,
only 2 layouts were found valid, one of which is shown
in Fig. 4b. Therefore, the probability of determining a valid
layout for this network by random assignment on a 3 × 4
grid is only

2

27382924800
≈ 7.304× 10−11, (5)

similar to the probability of guessing the correct outcome of
a coin toss 33 times in a row, which further underscores the
complexity of the physical design problem in FCN.

V. PROPOSED APPROACH:
A∗ SEARCH SPACE TRAVERSAL

Iterative placement of gates can be viewed as a walk
through a search space graph, where each placement event
can be represented as a search space vertex characterized
by a partial layout at that instance. Edges between a partial
layout a and b exist iff a can be transformed into b via
a single placement event. Similar to navigating through a
maze, A∗-search can be employed to discover a path from
the starting vertex (the empty layout) to the exit of the
maze (a layout with all gates placed). This characterizes the
fundamental concept of the proposed approach.

In the subsequent sections, the individual steps will be
elucidated using Fig. 5.

A. Topological Sort

First, the input logic network’s gates are topologically
sorted. This process establishes a sequential ordering of gates
based on their interdependence, ensuring that the predeces-
sors of a gate already exist on a layout when it is placed,
making it possible to connect them with wires if a path can
be found.

3

1

2

1

1

2

1 2 1 2

43

1

2

3

1

2 3

2 1

2 3

2 3

4

1

2

3

2

3

4

1

2

3

2

3

4 1

3

4

1

2

3

2

3

4 1

3

4

2

4

1

2

3

2

3

4 1

3

4

1

4 1 2

START

1 2
...

...

...

...

1

2

3

2

3

4 1

3

4

1

2

4

A

1 2 3

B

Level 0

Level 1

Level 2

Level 3

Level 4

Level 9

...

Fig. 5: The search space graph created for the 2:1 multiplexer,
consisting of a total of 453 vertices with the optimal solution
in the bottom right corner.

B. Initialization

Initially, the explored search space contains only the empty
layout, representing the start vertex of each exploration. The
first element to be placed from a topological arrangement of
a logic network is always a primary input pin, which has to
be located at the border of a layout to enable interconnection
with other parts of a circuit.

Example 3: Fig. 5 visualizes a part of the search space
graph for the placement and routing problem outlined in
Fig. 4. The initial empty layout is represented by the vertex
labeled START. The first primary input can then be placed
anywhere in the first row or column.

C. Cost Definition

As outlined in Section II-B, the A∗-search algorithm em-
ploys both the actual cost and a heuristic for exploration of
the underlying graph. In the proposed method, the primary
cost factor is the count of gates still to place, prioritizing the
establishment of any valid layout. To prevent the selection of
suboptimal solutions as in greedy best-first search, the layout
size is integrated as a heuristic cost function to break ties
between various incomplete layouts with the same number
of placed gates.

Example 4: Following initialization, the cost of the START
vertex on Level 0 is equal to the number of gates in the logic
network since no gate has been positioned yet, and the layout
size is zero. In Fig. 5 the cost of the initial vertex is, thus,
equal to g = 9.

1

2

3

2

3

4 1

3

4

4 1 2

(a) Valid placement.

1

2

3

2

3

4 1

3

4

4 1 2

(b) Invalid placement.

Fig. 6: Empty coordinates are checked for validity.

Upon placing the initial primary input, the cost decreases
by 1. However, the layout size can fluctuate based on the
input’s placement. For instance, there is only one tile in the
layout when placing the input in the first column, but two
when placing it in the second column of the first row, as
seen on Level 1 of the graph in Fig. 5. Consequently, placing
the input in the top left corner results in the lowest overall
cost, and will be prioritized for further exploration.

D. Search Space Vertex Expansion
To restrict the size of the search space (which extends in-

finitely with an ever-increasing layout size), multiple checks
ensure that new partial layouts explored during the expansion
of a vertex fulfill certain criteria:

1) Primary inputs can only be located at the layout’s top
and left, and outputs only at the right and bottom
borders.

2) A path must exist between a placed gate and its pre-
decessors to be able to connect them after placement.

3) A valid path must exist between a placed gate and a
virtual drain tile D, which is located in the bottom right
corner, as any signal has to arrive at one of the borders
either directly or through other gates. This heuristic is
employed to detect deadlocks early during the search
to prevent revisiting lower levels in the graph too often.

4) Placed gates are not allowed to block other gates
that are already placed on the layout but are still
unconnected to their successors.

Example 5: In the leftmost layout on Level 4 of Fig. 5,
four gates are already placed and the next gate to be placed
is an AND gate with its two predecessors being the input at
the top of the second column and the fanout in the second row
of the first column, which are colored blue in a recreation
of this partial layout in Fig. 6. By placing the AND gate
right next to the fanout tile, as seen in Fig. 6a, all criteria
are satisfied, as paths exist from any predecessor to the gate
and from the gate to the drain tile D. Therefore, the partial
layout is included as a valid vertex in the search space graph.
If the gate was placed in the third row next to the inverter,
as illustrated in Fig. 6b, not all criteria are satisfied, as no
valid paths exists between its predecessors and the placed
gate, because two wires are not allowed to enter or exit a tile
from the same direction.

E. Termination
After determining a first functionally-valid layout, its size

is used as another criteria while backtracking, i. e., traversing

TABLE I: Comparative experimental evaluation of the state of the art against the proposed algorithm.

STATE OF THE ART PROPOSED APPROACH

BENCHMARK CIRCUIT [34], [35] NANOPLACER [10], [11] ORTHO [9] HIGH EFFICIENCY HIGH EFFORT

Name I / O |G| w × h = A t[s] w × h = A t[s] w × h = A t[s] ∆tNP ∆ANP ∆Aortho w × h = A t[s] ∆ANP ∆Aortho

2:1 MUX 3 / 1 9 3 × 4 = 12 1.58 6 × 8 = 48 < 0.01 3 × 4 = 12 0.01 −99.37% ±0.00% −75.00% 3 × 4 = 12 0.05 ±0.00% −75.00%
XOR 2 / 1 9 3 × 6 = 18 1.27 5 × 8 = 40 < 0.01 6 × 3 = 18 < 0.01 −99.61% ±0.00% −55.00% 6 × 3 = 18 0.02 ±0.00% −55.00%
XNOR 2 / 1 11 3 × 6 = 18 2.82 6 × 9 = 54 < 0.01 6 × 3 = 18 < 0.01 −99.97% ±0.00% −66.67% 6 × 3 = 18 < 0.01 ±0.00% −66.67%
Half Adder 2 / 2 14 4 × 6 = 24 1.93 9 × 10 = 90 < 0.01 7 × 4 = 28 0.14 −99.27% +16.67% −68.89% 7 × 4 = 28 0.50 +16.67% −68.89%
Parity Gen. 3 / 1 18 7 × 9 = 63 18.90 9 × 14 = 126 < 0.01 8 × 5 = 40 < 0.01 −99.99% −36.51% −68.25% 7 × 5 = 35 36.28 −44.44% −72.22%
Parity Check. 4 / 1 26 9 × 9 = 81 18.37 12 × 20 = 240 < 0.01 14 × 5 = 70 < 0.01 −99.98% −13.58% −70.83% 5 × 10 = 50 6.11 −38.27% −79.17%
XOR5_R1 5 / 1 40 14 × 14 = 196 24.69 14 × 33 = 462 < 0.01 7 × 20 = 140 < 0.01 −99.97% −28.57% −69.70% 6 × 15 = 90 8.96 −54.08% −80.52%
cm82a 5 / 3 68 25 × 25 = 625 105.14 26 × 51 = 1326 < 0.01 26 × 11 = 286 0.48 −99.54% −54.24% −78.43% 28 × 10 = 280 0.10 −55.20% −78.88%
2bitAdderMaj 5 / 2 82 29 × 29 = 841 175.43 26 × 64 = 1664 < 0.01 22 × 19 = 418 0.05 −99.97% −50.30% −74.88% 22 × 19 = 418 0.36 −50.30% −74.88%
xor5Maj 5 / 1 102 30 × 45 = 1350 290.56 30 × 79 = 2370 < 0.01 44 × 22 = 968 0.08 −99.97% −28.30% −59.16% 18 × 41 = 738 362.06 −45.33% −68.86%
parity 16 / 1 150 48 × 48 = 2304 1005.67 48 × 120 = 5760 < 0.01 61 × 9 = 549 0.41 −99.96% −76.17% −90.47% 61 × 9 = 549 2.53 −76.17% −90.47%

Average Difference −99.78% −24.64% −70.66% −31.56% −73.69%

I , O, and |G| are the number of primary inputs, primary outputs, and gates including fanouts in the logic network, respectively; w, h and A are the width,
height, and resulting area of the layout, respectively; due to the probabilistic nature of NanoPlaceR (NP), its runtime indicates the average of 3 successful
runs; numbers in bold indicate the best layout area across all four approaches; ∆t and ∆A compare the runtime and area of the proposed methods to the
two heuristics. The high-effort mode manages multiple search space graphs at the same time to determine better solutions.

backwards and forwards through different levels of the graph,
to find better solutions. Any vertex with a partial layout that
already possesses a bigger layout size than the current best
solution is cut from the graph with all its outgoing vertices to
further speed-up the algorithm by restricting the search space
to explore. The proposed algorithm terminates either when
a sufficiently small layout, as initially specified, is found,
when the whole search space graph has been explored, or
after reaching a timeout, yielding the best solution found to
that point in terms of area.

Example 6: In Fig. 5, the first found solution (A) is not
optimal, as determining any valid placement is preferred over
the smallest possible layout size while expanding vertices.
This preference is chosen as the number of solutions is
often disproportional to the size of the search space, as
outlined in Section IV. In comparison to the 27 382 924 800
different possibilities for placement and routing determined
in Section IV, the explored graph only consists of 453
vertices. The optimal solution in the bottom right corner (B),
as already highlighted in Fig. 4b, was found after visiting
157 vertices, which took around 10ms on an M1 MacBook
Pro.

VI. EXPERIMENTS

In this section, we present the results of an experimental
evaluation performed with the proposed physical design
algorithm on logic networks taken from a set of benchmark
circuits commonly utilized in the domain [34], [35]. We
conducted a comparative analysis on an M1 MacBook Pro,
evaluating its performance against state-of-the-art heuristic
methodologies [9]–[11] and validating the correctness of the
created layouts using formal verification [36].

The proposed algorithm comes in two flavors, namely a
high-efficiency mode, which is fast but may not produce
the best achievable results, and a high-effort mode, which
creates multiple search space graphs based on different fanout
substitution strategies, topological sorts, etc., which is usually
slower but often finds even better layouts and overcomes
the limitations outlined later in Section VII. The following
discussion concerns the high-efficiency mode (with results
for the high-effort mode in parentheses).

The data presented in Table I exclusively pertains to QCA
implementations using the 2DDWave clocking scheme due to
the underlying Cartesian grid suitable for gates from the QCA
ONE library shown in Section II-A.1. However, each layout

can be adapted for SiDBs by transforming the Cartesian
layout into a hexagonal one utilizing a 45◦-turn [31].

Our proposed approach achieves significant average area
reductions in every but one benchmark of more than
24% (31%) and 70% (73%) compared to the state-of-the-
art heuristic algorithms NanoPlaceR and ortho, respectively,
while maintaining similar runtime performance relative to
ortho and beating NanoPlaceR by more than a factor of 460
in high-efficiency mode and still more than a factor of 2 in
high-effort mode. High runtimes for the xor5Maj and Parity
Gen. function in high-effort mode are due to the necessity of
revisiting lower levels after a first valid layout was found to
determine even smaller solutions.

For the largest benchmark function, parity, NanoPlaceR
manages to find a solution in 951 s on a layout with 2304
tiles, while ortho accomplishes this task in less than 0.01 s,
albeit with twice the area, totaling 5760 tiles. In contrast, our
proposed approach achieves a layout size of 549 tiles in only
0.41 s using the high-efficiency mode, almost matching ortho
in speed, and more than 2400 times faster than NanoPlaceR,
while reducing area utilization by 76% and 90% compared
to NanoPlaceR and ortho, respectively.

The results outlined in Table I underscore the superiority
of our proposed approach over NanoPlaceR in terms of
scalability and over all heuristic techniques with regard to
layout area utilization, thus, for the first time, offering a
compelling synergy of scalability and efficiency beating all
other competitors and enabling advanced physical design for
FCN.

VII. LIMITATIONS AND FUTURE WORK

While the proposed algorithm excels at swiftly generating
compact layouts, early unfavorable visited vertices in the
search space graph can significantly impede its efficiency if
detected too late. This can happen if the search algorithm has
to backtrack through a lot of vertices and levels to get back
to a state where this unfavorable placement can be reverted.

Example 7: Fig. 7a illustrates one such instance of sub-
optimal placement: In this scenario, the two fanouts in the
first column—depending on I1—were placed before I2 and
its successive gates in the third column. Consequently, there
is no feasible way to route both of I1’s fanouts, as two
wires cannot exit a tile in the same direction, as already
seen in Fig. 6b. A comparison of two functions with and
without this phenomenon are shown in Table II. For cm42a

1

2

3

2

3

4 1

3

4

4

1

2

1

2

3

1 2 3 44

(a) One of I1’s fanouts
is blocked (deadlock).

1

2

3

2

3

4 1

3

4

4

2

1

1

2

3

2 3 414

(b) A possible solution
using tile reservations.

1

2

3

2

3

4 1

3

4

4

2

1

1

2

3

324 1 4

(c) Another solution us-
ing a different topolog-
ical sorting.

Fig. 7: A placement configuration leading to a deadlock and
two possible solutions.

TABLE II: Comparison of runtimes for a function with early
unfavorable placements (cm42a) and without (i3).

BENCHMARK CIRCUIT [37] ORTHO [9] PROPOSED APPROACH

Name I / O |G| w × h = A t[s] w × h = A t[s] ∆Aortho

cm42a 4 / 10 79 37 × 57 = 2109 < 0.01 35 × 22 = 756 65 −64.15%
i3 132 / 6 456 139 × 456 = 63384 < 0.01 22 × 138 = 3036 5 −95.21%

with only 79 gates, the proposed approach needs 13 times
longer compared to i3 with 456 gates.

Two potential remedies of this limitation are suggested:
Firstly, reserving more space next to such configurations, as
depicted in Fig. 7b. Alternatively, changing the order of the
topological sorting, either before the application of the search
algorithm or when encountering this configuration, could lead
to placing the two fanouts later, thereby avoiding blockages.

By addressing these issues, which is left for future work,
the proposed approach could potentially scale to accom-
modate logic networks with even more gates while still
exhibiting fast runtimes like for the i3 function in Table II,
for which it only took 5 s to generate a layout with an area
reduction of more than 95% compared to the state of the
art. Furthermore, the high-effort mode can be accelerated by
parallelizing the exploration of multiple search space graphs,
thereby regaining some of its forfeited performance.

VIII. CONCLUSION

With the rise of Field-coupled Nanocomputing (FCN)
as a promising post-CMOS technology, the necessity for
efficient methods in automatic physical design becomes in-
creasingly apparent. This study presented a novel approach
that constructs a search space graph for gate placement and
applies a modified A∗-search algorithm to yield layouts with
near-optimal area, outperforming the state-of-the-art heuristic
physical design algorithms NanoPlaceR and ortho by more
than 24% and 70%, respectively. Compared to NanoPlaceR,
the proposed approach demonstrates remarkable efficiency
in generating valid circuit layouts with over 99.7% runtime
reduction. This amalgamation of scalability and efficiency
enables advanced physical design for FCN and acts as a first
step toward the creation of layouts with thousands of gates
with minimal area overhead.

REFERENCES

[1] N. G. Anderson and S. Bhanja, Eds., Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Springer, 2014.

[2] J. Pitters et al., “Atomically Precise Manufacturing of Silicon Elec-
tronics,” ACS Nano, 2024.

[3] J. Drewniok et al., “QuickSim: Efficient and Accurate Physical Simu-
lation of Silicon Dangling Bond Logic,” in IEEE-NANO, 2023.

[4] ——, “Minimal Design of SiDB Gates: An Optimal Basis for Circuits
Based on Silicon Dangling Bonds,” in NANOARCH, 2023.

[5] ——, “The Need for Speed: Efficient Exact Simulation of Silicon
Dangling Bond Logic,” in ASP-DAC, 2024, pp. 576–581.

[6] R. Achal et al., “Lithography for robust and editable atomic-scale
silicon devices and memories,” Nat. Commun., vol. 9, no. 1, 2018.

[7] M. Walter et al., “An Exact Method for Design Exploration of
Quantum-dot Cellular Automata,” in DATE, 2018, pp. 503–508.

[8] ——, “One-pass Synthesis for Field-coupled Nanocomputing Tech-
nologies,” in ASP-DAC, 2021, pp. 574–580.

[9] ——, “Scalable Design for Field-Coupled Nanocomputing Circuits,”
in ASP-DAC, 2019, pp. 197–202.

[10] S. Hofmann et al., “Late Breaking Results From Hybrid Design
Automation for Field-coupled Nanotechnologies,” in DAC, 2023, pp.
1–2.

[11] ——, “Thinking Outside the Clock: Physical Design for Field-coupled
Nanocomputing with Deep Reinforcement Learning,” in ISQED, 2024,
pp. 1–8.

[12] M. Walter et al., “fiction: An Open Source Framework for the Design
of Field-coupled Nanocomputing Circuits,” 2019, arXiv:1905.02477.

[13] ——, “The Munich Nanotech Toolkit (MNT),” in IEEE-NANO, 2024.
[14] S. Hofmann et al., “MNT Bench: Benchmarking Software and Layout

Libraries for Field-coupled Nanocomputing,” in DATE, 2024.
[15] C. Lent et al., “Quantum Cellular Automata: The Physics of Computing

with Arrays of Quantum Dot Molecules,” in PhysComp, 1994, pp. 5–
13.

[16] D. A. Reis et al., “A Methodology for Standard Cell Design for QCA,”
in ISCAS, 2016, pp. 2114–2117.

[17] M. B. Haider et al., “Controlled Coupling and Occupation of Silicon
Atomic Quantum Dots at Room Temperature,” Phys. Rev. Lett., vol.
102, p. 046805, 2009.

[18] T. Huff et al., “Binary atomic silicon logic,” Nat. Electron., vol. 1,
no. 12, pp. 636–643, 2018.

[19] M. Walter et al., “Hexagons are the Bestagons: Design Automation for
Silicon Dangling Bond Logic,” in DAC, 2022, pp. 739–744.

[20] T. Huff et al., “Atomic White-Out: Enabling Atomic Circuitry through
Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon
Surface,” ACS Nano, vol. 11 9, pp. 8636–8642, 2017.

[21] R. A. Wolkow et al., “Silicon Atomic Quantum Dots Enable Beyond-
CMOS Electronics,” in Field-Coupled Nanocomputing, 2013.

[22] N. Pavliček et al., “Tip-induced passivation of dangling bonds on
hydrogenated Si(100)-2×1,” APL, vol. 111, no. 5, p. 053104, 2017.

[23] M. Rashidi et al., “Initiating and Monitoring the Evolution of Single
Electrons Within Atom-Defined Structures,” PRL, vol. 121, p. 166801,
2018.

[24] F. Sill Torres et al., “On the Impact of the Synchronization Constraint
and Interconnections in Quantum-dot Cellular Automata,” MICPRO,
vol. 76, pp. 103–109, 2020.

[25] K. Hennessy and C. S. Lent, “Clocking of Molecular Quantum-dot
Cellular Automata,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1752–
1755, 2001.

[26] V. Vankamamidi et al., “Clocking and Cell Placement for QCA,” in
IEEE-NANO, vol. 1, 2006, pp. 343–346.

[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[28] P. E. Hart et al., “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[29] F. Sill Torres et al., “Synchronization of Clocked Field-Coupled
Circuits,” in IEEE-NANO, 2018.

[30] M. Walter et al., “Placement and Routing for Tile-Based Field-Coupled
Nanocomputing Circuits Is NP-Complete (Research Note),” JETC,
vol. 15, no. 3, 2019.

[31] S. Hofmann et al., “Scalable Physical Design for Silicon Dangling
Bond Logic: How a 45° Turn Prevents the Reinvention of the Wheel,”
in IEEE-NANO, 2023, pp. 872–877.

[32] ——, “Post-Layout Optimization for Field-coupled Nanotechnologies,”
in NANOARCH, 2023, pp. 1–6.

[33] ——, “Late Breaking Results: Wiring Reduction for Field-coupled
Nanotechnologies,” in DAC, 2024, pp. 1–2.

[34] A. Trindade et al., “A Placement and Routing Algorithm for Quantum-
dot Cellular Automata,” in SBCCI, 2016, pp. 1–6.

[35] G. Fontes et al., “Placement and Routing by Overlapping and Merging
QCA Gates,” in ISCAS, 2018, pp. 1–5.

[36] M. Walter et al., “Verification for Field-coupled Nanocomputing Cir-
cuits,” in DAC, 2020, pp. 1–6.

[37] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0,” Tech. Rep.,
1993.

	Introduction
	Background
	Field-coupled Nanocomputing
	Quantum-dot Cellular Automata (QCA)
	Silicon Dangling Bonds (SiDBs)
	Technology Constraints

	Search Algorithms

	Related Work: Scalable Physical Design Methods for Field-coupled Nanocomputing
	ortho
	NanoPlaceR
	Post-Layout Optimization

	Complexity
	Proposed Approach: A* Search Space Traversal
	Topological Sort
	Initialization
	Cost Definition
	Search Space Vertex Expansion
	Termination

	Experiments
	Limitations and Future Work
	Conclusion
	References

