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Abstract— As traditional computing technologies near their
physical limits, the demand for beyond-CMOS alternatives
intensifies. Among these, Field-coupled Nanocomputing (FCN)
emerges as a class of multiple promising candidates, offering
computational capabilities at a sub-nanometer scale. Break-
throughs in the fabrication of Silicon Dangling Bonds (SiDBs)
exemplified by sub-30nm2 OR gates and wire segments under-
score FCN’s potential to revolutionize computing paradigms.
However, existing software tools for FCN circuit design lack
functionality and suffer from maintenance issues. Address-
ing this gap, in this work, we introduce the open-source
Munich Nanotech Toolkit (MNT), providing accessible inter-
faces including a Command-Line Interface, a C++ header-only
library, and Python bindings. Our toolkit adheres to modern
software standards, ensuring continuous integration and testing
across diverse platforms with substantial code coverage. This
toolkit aids in advancing FCN design automation, and serves as
a sandbox for designers and researchers in the domain, paving
the way towards the beyond-CMOS era.

I. INTRODUCTION & MOTIVATION

A promising beyond-CMOS paradigm known as Field-
coupled Nanocomputing (FCN) is emerging in the dusk of
Moore’s Law, operating at the atomic level by harnessing
the repulsion of physical fields rather than traditional electric
currents [1]. This groundbreaking approach not only promises
unmatched energy efficiency and remarkable speed but also
has the potential to surmount the limitations of traditional
CMOS architectures. As such, it emerges as a pivotal technol-
ogy that could hold the key to a future of green computation
at the nanoscale.

The transition of FCN from a theoretical framework to a
contender in the beyond-CMOS era of computing has been
marked by experimental breakthroughs in fabrication. No-
tably, the development and commercial exploration of Silicon
Dangling Bonds (SiDBs) by the research enterprise Quantum
Silicon Inc. have attracted significant investment [2]–[12].
SiDBs, functioning as atomic-scale quantum dots, have been
instrumental in manufacturing FCN logic devices and wire
segments [6]. Furthermore, simulations of SiDBs have facili-
tated the creation of standard gate libraries and adaptations of
the Quantum-dot Cellular Automata (QCA) concept, thereby
enhancing FCN’s versatility and incorporating insights from
the QCA domain [13]–[21].

Despite experimental advances in FCN, current software
tools for circuit design in the domain often fall short, offering
limited functionality focused primarily on manual circuit
design, (approximate) physical simulation, or visualization
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tasks. Additionally, these tools frequently suffer from main-
tenance issues, lack user-friendliness, or are closed-source,
making them inadequate for effective and reproducible FCN
development. Therefore, there is an urgent demand for ad-
vanced software tools equipped with cutting-edge methods
that cover the entire FCN stack.

This paper aims to bridge this gap by introducing the
open-source Munich Nanotech Toolkit (MNT). This software
suite offers accessibility through multiple interfaces, includ-
ing a Command-Line Interface (CLI), a C++ header-only
library, and Python bindings distributed via PyPI. Adher-
ing to modern software standards, we ensure continuous
integration and testing across all major platforms with a
diverse set of compilers. Moreover, the rigorous testing
regimen achieves substantial code coverage. For added con-
venience, a supplementary Docker container is provided.
A more detailed overview of the MNT is available at
https://www.cda.cit.tum.de/research/nanotech/mnt/.

The structure of this paper is as follows: Section II delves
into the background of FCN. The subsequent four sections
discuss individual design tasks available in the MNT . To
this end, Section III elucidates the role of logic synthesis,
Section IV discusses physical design, Section V goes over
formal verification, and Section VI elaborates on physical
simulation. Section VII culminates the four tasks into a walk-
through with code examples. Finally, Section VIII concludes
the paper.

II. FIELD-COUPLED NANOCOMPUTING

To maintain self-containment, this paper begins by in-
troducing FCN’s elementary devices for information repre-
sentation and manipulation in Section II-A. Following this,
Section II-B elucidates information propagation and synchro-
nization mechanisms via clocking, which pose constraints on
the design of FCN circuits.

A. Cells and Gates

FCN technologies utilize the cell as the fundamental
unit for binary information, characterized by three universal
properties [1]: 1) representation of binary states, 2) estab-
lishment of states through physical fields (electric or mag-
netic), and 3) alignment of adjacent cell states via field
coupling [21]–[24]. This mechanism facilitates information
transmission without relying on electrical current, achieved
through state alterations induced by field interactions [21].

In charge-based FCN cells—as utilized in QCA and SiDB
technologies—, binary states arise from Coulomb interactions
among quantum dots [6], [21]. QCA cells typically feature
four dots arranged in a square layout, while SiDB units
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(a) QCA and BDL elementary cells implemented using SiDBs.

(b) QCA Majority gate [25]. (c) BDL OR gate [6].

Fig. 1: Elementary FCN devices and logic gates.

(BDL pairs) consist of two dots, with charge distributions
representing binary states [2]–[5] as depicted in Fig. 1a.

Logic gates and wire segments are fashioned by arranging
cells spatially, exploiting field interactions for processing
information [17], [25]–[27]. Notable examples include the
QCA Majority gate and the BDL OR gate, showcased in
Fig. 1b and Fig. 1c, respectively [27].

B. Clocking

In contrast to CMOS technologies, clocking plays a crucial
role in both combinational and sequential FCN circuits, en-
suring signal stability and guiding information flow [22], [28].
FCN layouts are segmented into tiles activated by external
clocks, employing square tiles for QCA and hexagonal tiles
for SiDB to control signal propagation effectively across tiles.

Often, a four-phase clocking system is adopted, enabling
a sequential information pipeline across tiles, albeit requiring
meticulous design to ensure synchronization and balanced
path lengths across the layout [29]. However, challenges such
as local and global synchronization violations underscore the
criticality of clock management in FCN circuit functionality.

The transmission of clock signals to individual tiles is a
subject extensively explored in the literature. It is generally
agreed upon that these signals can be conveyed through
buried electrodes within the substrate of the circuit [13], [28].

Various clocking schemes have been proposed in the
literature, each providing a distinct arrangement of regular
clock zones to facilitate the physical design of FCN layouts
as floor plans [30]–[32].

C. Related Work on FCN Tools

Over the years, some academic FCN tools have been
proposed in the literature. The following is a brief breakdown
of the most prominent ones.

1) QCADesigner [33]: QCADesigner is an open-source
CAD tool for QCA design. Its GUI allows for the hand-design
of custom-clocked multi-layer QCA circuits and simulation
using two heuristic physics engines: Bistable Approximation
and Coherence Vector. Both engines may yield inaccurate
results due to approximations on quantum-mechanical cell
coupling.

2) ToPoliNano [34] & MagCAD [35]: The closed-source
suite ToPoliNano & MagCAD offers automatic physical de-
sign and simulations for in-plane and perpendicular NML

technologies. MagCAD serves as the logic-level equivalent
of QCADesigner for nanomagnets, featuring a rich feature
set. ToPoliNano focuses on automatic hierarchical placement,
routing, and simulation of NML circuits from VHDL or gate-
level Verilog input.

3) NMLSim [36]: NMLSim is an open-source simulator
and visualizer for in-plane NML circuits, similar to QCADe-
signer. Its graphical interface facilitates hand-designing of
custom-clocked NML circuits and simulation using the
Landau-Lifshitz-Gilbert equation. NMLSim offers various
configuration options for simulation runs, including material
properties and magnet shapes.

4) Ropper [37]: Ropper is a placement and routing frame-
work for FCN technologies. It supports different clocking
schemes and technology configurations for placement and
routing but lacks visualization and technology mapping ca-
pabilities, generating gate-level descriptions of FCN circuits.

5) SiQAD [13]: SiQAD is an open-source CAD tool for
SiDB circuits, similar to QCADesigner. Its graphical interface
enables hand-designing of SiDB circuits and simulation using
different physics engines. SiQAD facilitates the exploration of
field-driven modulation with electrodes, offering a versatile
platform for SiDB circuit design and analysis.

III. LOGIC SYNTHESIS

In the realm of nanotechnology circuit design, traditional
CMOS logic synthesis methodologies fall short due to their
inability to accurately account for the peculiar cost metrics
in the FCN domain dominated by wiring used for intercon-
nects [38]. Since in FCN, wire segments possess the same
characteristics as gates in terms of area and delay cost, their
optimization is a prime target. Furthermore, unconventional
elementary gates like Majority (MAJ) require adjustments
to conventional logic representation and optimization tech-
niques. Consequently, applying CMOS-focused approaches
yield non-optimal results and, thereby, cause overhead in the
subsequent stages of the design flow.

A. Data Structures & Algorithms

Recognizing these needs, the MNT adopts its core data
structures and algorithms for logic synthesis and optimiza-
tion from the mockturtle library [39]. It offers state-of-
the-art techniques and established logic representations like
And-Inverter Graphs (AIGs) but also emerging ones like
Majority-Inverter Graphs (MIGs) [40].

Building upon this foundation, well-known logic optimiza-
tion methodologies designed for AIGs can be employed.
These techniques cater not only to the area-efficient layout
of circuits but also ensure delay optimization, addressing
the critical wire overhead inherent to planar nanotechnolo-
gies. Moreover, working with MIGs enables the effective
utilization of novel logic optimization algorithms specifically
designed for majority-based emerging technologies [41]. The
seamless integration of these representations within the mock-
turtle library enables effortless transitioning depending on the
use case.
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Fig. 2: The FCN physical design flow.

B. Custom Technology Library
To map technology-independent circuit representations like

AIGs and MIGs into technology-dependent contexts, the
MNT provides custom technology mapping libraries suitable
for QCA, NML, and SiDB circuit layouts. These libraries
are readily available for use with mockturtle’s technology
mapper [40] and ensure cost-effective implementations in the
subsequent physical design stage.

C. Tool Support
By supporting various established file formats in the realm

of logic synthesis tools, an interface with powerful conven-
tional tools such as ABC [42] is created. While yielding
non-optimal results in the FCN domain as is, its powerful
algorithms may serve as a basis for subsequent technology-
dependent optimizations. Among others, the MNT supports
gate-level Verilog, AIGER, BLIF, and GENLIB, facilitating
a seamless integration process and enabling designers to
employ a broad spectrum of synthesis strategies in accordance
with their needs.

IV. PHYSICAL DESIGN

Conventionally, physical design describes the process of
obtaining circuit layout descriptions from technology-mapped
netlists (cf. Section III) and involves gate placement, wire
routing, clock-tree synthesis, and others. However, in the
FCN domain, design constraints differ significantly from
CMOS technologies, mandating a reinvention of these core
methodologies.

Prominent examples of differences in this regard are clock-
ing for information propagation and data synchronization in
both combinational and sequential circuits, the planarity of
layouts, causing wires to congest fast, as well as the shared
area and delay cost of gates and wire segments.

The MNT supports specialized methodologies to tackle
every stage of FCN physical design, outlined in the following
and illustrated in Fig. 2. For all algorithms, we strive for
technology-independence as long as possible. In practice, this
means that we operate on data structures that abstract from
cell technologies, e. g., QCA or SiDB, and only consider
shared technology features. This way, all physical design
algorithms work for any technological implementation of the
FCN concept.

A. Placement & Routing
Recognizing the diverse needs of design scenarios, the

MNT accommodates both exact and heuristic design solu-
tions. This flexibility allows designers to balance between
optimal layout area and the necessity for the fast obtainment
of designs.

1) Exact: Encoding the placement and routing problem
with the FCN design constraints (planarity, signal synchro-
nization via clocking, etc.) in first-order logic, an SMT
solver can be employed to obtain exact, i. e., minimal
layouts in terms of area for any given network up to a
certain (rather moderate) size [43]. Due to the problem’s
NP-completeness [44], an exponentially growing runtime re-
quirement cannot be avoided even via the most sophisticated
solvers. However, this approach finds its application in the
generation of optimal sub-layouts in hierarchical designs.

2) Heuristic: The other end of the spectrum is marked
by heuristic algorithms that can handle larger input net-
works in short time but produce layouts of sub-par quality,
usually causing area and wiring overhead. We offer imple-
mentations of several heuristics that are characterized by
their different positions on the scalability-quality trade-off
spectrum [45]–[47].

B. Clocking
To reduce complexity in FCN physical design, many flows

rely on pre-defined clocking schemes onto which gates are
placed and wires are routed. The MNT supports a wide
range of pre-defined clocking schemes from the literature,
e. g., 2DDWave [30], USE [48], RES [49], and ESR [50].
Moreover, this set is easily extensible to future proposals
in the domain. Finally, irregular schemes can be defined
on-the-fly and individual zones of established schemes can
be overwritten to allow for greater flexibility in the design
process if required.

C. Post-Layout Optimization
Hidden optimization potential in circuit layouts can be

uncovered using post-layout optimization algorithms [51].
These are capable of enhancing both area and delay effi-
ciency, revealing unexploited optimization opportunities in
both manually and automatically designed layouts.

D. Technology-specific Gate Libraries
The technology-independent physical design process cul-

minates in the mapping of layouts to specific technology-
dependent cell implementations. To this end, gate libraries
from the literature can be applied, e. g., QCA ONE [27] or
Bestagon [17]. Furthermore, utilizing a 45° turn [52], any
Cartesian, 2DDWave-clocked [30] layout can be transformed
into a hexagonal configuration to accommodate Y-shaped
SiDB gates.

E. Tool Compatibility
Compatibility with the tools QCADesigner [33], ToPoli-

Nano [34], [53], MagCAD [35], SiQAD [13], SCERPA [54],
and QCA-STACK [55] via file format support ensures com-
prehensive design, simulation, and visualization capabili-
ties across different nanotechnology platforms, facilitating a
holistic design environment.



Furthermore, existing layouts can be shared via the
MNT Bench [56] layout library that provides best known
results for a set of benchmark functions [39], [57]–[59].

V. FORMAL VERIFICATION

Checking FCN layout correctness on the logic level might
not be sufficient, even when assuming that each gate tile
robustly implements a well-defined Boolean function. The
reasons mainly lie in data synchronization via clocking,
i. e., in violations of the local and global synchronization
constraints.

To this end, an FCN layout implementation I can be said
to be strongly, weakly, or not equivalent to its specification S
(given as a logic network or other FCN layout) according to
the following rules.

• Strong equivalence if I is logically equivalent to S, and
I has a throughput of 1/1 due to the absence of global
synchronization violations.

• Weak equivalence if I is logically equivalent to S,
and I has a throughput of 1/x, with x > 1, due to global
synchronization violations.

• No equivalence if I is not logically equivalent to S,
or I violates local synchronization.

MNT implements algorithms for Design-Rule Viola-
tion (DRV) checking and equivalence checking through for-
mal methods within the constraints of data synchronization.
These methodologies enable rapid verification of layouts,
ensuring reliability even in highly complex designs via the
application of SAT solvers [60].

VI. PHYSICAL SIMULATION

Physical simulation serves as a cornerstone to validate
circuit behavior beyond the logic level, especially due to
the high costs associated with manufacturing, which includes
manual labor. To mitigate these costs, it is imperative that lay-
outs derived from the physical design flow are meticulously
simulated under realistic physical assumptions. This ensures
their operability in real-world conditions before proceeding
to fabrication. Alternatively, potential errors are discovered
early in order to revert to physical design in an effort of
obtaining revised implementations.

The MNT offers physical simulation engines (particularly
for SiDBs as the most promising FCN implementation to
date) designed to tackle the inherent complexity of these
tasks, which often manifest as high-dimensional optimization
problems reflecting quantum-physical phenomena. Through
advanced methods such as physically-informed search space
pruning, partial solution caching, and efficient state enumer-
ation, these engines optimize the simulation process.

A. Electrostatic Ground-State Simulation

Even in classical mechanics, techniques capable of accu-
rately analyzing electrostatic ground states constitute opti-
mization problems with an exponential search space. How-
ever, this analysis is crucial for a comprehensive under-
standing of physical circuit behavior—particularly at low
temperatures—and identification of potential design flaws
that were obscured at the logic level.
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the binary input pattern 10 in the
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for (ϵr, λtf) determined with grid
search [13], [61].

Fig. 3: The physical simulation flow for the Bestagon [17]
OR gate. The simulation in Fig. 3a, Fig. 3b, and Fig. 3c is
conducted with ϵr = 5.6, λtf = 5.0 nm, and µ− = −0.32 eV.

The state-of-the-art simulators QuickSim [14] and QuickEx-
act [16] distributed with the MNT offer a runtime advantage
of up to three orders of magnitude over other engines from the
literature, and are furthermore included in SiQAD as official
plugins. Fig. 3a depicts an SiDB OR gate together with its
electrostatic ground state obtained via physical simulation of
the binary input pattern 10.

B. Temperature Simulation

In nanoscale systems, small differences in energy between
ground and excited states, typically only a few meV, can
significantly affect system behavior. Therefore, temperature
simulation is essential. This allows for an assessment of
circuit performance across different thermal conditions, iden-
tifying issues that may not be evident at lower temperatures.
In Fig. 3b, the occupation probability of the ground state and
all excited states is illustrated as a function of the temperature,
which is used to infer the robustness of a given gate against
thermal noise. This framework hinted at the existence of
room temperature-enabled SiDB gate implementations before
physical experiments could confirm this prediction.

C. Atomic Defect Simulation

In the context of nanotechnologies, even atomic-scale de-
fects can significantly affect device functionality. Such mate-
rial variations and (sub-)surface imperfections cannot be fully
mitigated with contemporary manufacturing capabilities. Our
simulation methodologies include atomic defect modeling to



evaluate device behavior in the presence of such imperfec-
tions, ensuring robust design validation in realistic scenarios.
In Fig. 3c, an OR gate with input 10 is depicted alongside
a positively charged arsenic atomic defect positioned to the
left (red dot). The physical simulation reveals a significant
alteration in the gate’s ground state, resulting in an output
value of 0 instead of the desired 1, thereby revealing the
gate’s sensitivity to this defect.

D. Operational Domain Analysis

To fully understand a layout’s behavior under varying
material property conditions, the Operational Domain has
been established in the literature as a plot of logic correctness
over a multidimensional range of physical parameter points.
The obtainment of an operational domain plot involves a
series of physical simulations, offering a detailed perspective
on expected layout correctness given material variations. Our
algorithms achieve operational domain reconstructions with
fewer simulator calls compared to existing methods while
retaining resolution. Fig. 3d illustrates the operational domain
of the OR gate from the previous examples for the parameter
range (ϵr = [1, 10], λtf = [1, 10]) [13], [61].

E. Tool Compatibility

Distributed via the MNT , these simulation engines are
accessible through the SiQAD GUI for any SiDB layout.
We facilitate their use as plugins for SiQAD, allowing for
the inspection, editing, and simulation of layouts directly in
SiQAD, leveraging the advanced capabilities of our engines.
This integration ensures a seamless transition from design
to simulation, bridging the gap between theory and practical
application.

VII. ILLUSTRATING DESIGN TASKS IN MNT fiction

In this section, we demonstrate three distinct design tasks
using MNT fiction [62], demonstrating the toolkit’s adapt-
ability across different interfaces. Each task is designed to
showcase a particular aspect of the MNT as discussed in the
previous sections, employing different functions as illustrative
examples. However, it is important to note that every task
could be executed with each interface, emphasizing flexibility.

A. The Command-Line Interface (CLI)

The following snippet showcases a typical session in
fiction’s interactive CLI mode, focusing on the execution
of a physical design task. Each command in the sequence
is geared towards advancing through the stages of physical
design, from reading and mapping a logic network to the final
output preparation for simulation or analysis.

1 fiction> read -a ISCAS85/c17.v
2 fiction> map -aoi
3 fiction> exact -x -b -s 2ddwave
4 fiction> fgl c17.fgl
5 fiction> exact -x -d -s use
6 fiction> store -g
7 [i] gate layouts in store:
8 0: c17 (2DDWAVE) - 4 x 8, I/O: 5/2, gates: 7, wires: 27, CP: 11, TP: 1/1
9 * 1: c17 (USE) - 5 x 6, I/O: 5/2, gates: 7, wires: 18, CP: 14, TP: 1/3

10 fiction> cell -l QCA-ONE
11 fiction> ps -c
12 [i] c17 (QCA) - 25 x 30, I/O: 5/2, cells: 144
13 fiction> qca c17.qca

Firstly, read -a parses a logic network as an AIG
from the given file. The subsequent command map -aoi
performs technology mapping utilizing AND, OR, and In-
verter gates. For layout obtainment, exact is used while
enabling crossings (-x), routing the I/O pins to the layout
borders (-b), and utilizing the 2DDWave clocking scheme
(-s). The layout is saved to a fiction gate layout (*.fgl)
file via command fgl. A second layout is then generated
with exact under different parameters, namely enabled
desynchronization (-d) and the USE clocking scheme. At
this point, both gate-level layouts are held in a store, and their
characteristics can be displayed using the store -g com-
mand, which displays the layouts’ names, clocking schemes,
dimension in tiles, input and output pins, number of gates and
wire segments as well as their critical path and throughput.
The active layout is marked with an asterisk (*). To that
layout, the following command cell applies the QCA ONE
library to map it into the QCA realm. To print the resulting
cell-level layout’s statistics, the ps -c command is applied,
which displays its name, technology, dimension in cells, input
and output pins as well as its total number of cells. Finally,
qca writes the layout to a QCADesigner file for subsequent
physical simulation.

B. The C++ API

The FGL file created in the previous CLI session is picked
up again in the following code snippet that uses fiction’s C++
API. The main function is omitted for the sake of brevity.

1 #include <fiction/algorithms/physical_design/post_layout_optimization.hpp>
2 #include <fiction/algorithms/verification/equivalence_checking.hpp>
3 #include <fiction/io/read_fgl_layout.hpp>
4 #include <fiction/types.hpp>
5
6 using namespace fiction;
7
8 auto lyt1 = read_fgl_layout<cart_gate_clk_lyt>("c17.fgl");
9 auto lyt2 = lyt1.clone();

10 post_layout_optimization(lyt2);
11
12 auto equiv = equivalence_checking(lyt1, lyt2);

First, the required headers are included from the fiction
library and its namespace is imported. Next, the FGL
file is parsed into a Cartesian gate-level clocked layout type
(cart_gate_clk_lyt) variable called lyt1 and imme-
diately deep-copied to create an identical lyt2. Afterward,
lyt2 is structurally optimized using a post-layout optimiza-
tion algorithm [51]. Finally, the two layouts are checked for
equivalence [60].

C. Python Bindings

The provided Python bindings are a thin wrapper around
fiction’s C++ implementation to preserve its performance
while tapping into the convenience of Python’s ecosystem.
The bindings are available on PyPI and can be installed via
pip install mnt.pyfiction.

1 from mnt.pyfiction import *
2
3 lyt = read_sqd_layout(’lyt.sqd’)
4
5 sim_params = sidb_simulation_parameters()
6 sim_params.lambda_tf = 5.0
7 sim_params.epsilon_r = 5.6
8 sim_params.mu_minus = -0.28
9

10 qe_params = quickexact_params()
11 qe_params.physical_parameters = sim_params
12
13 result = quickexact(lyt, qe_params)



Assume an SiDB layout has been designed in SiQAD
and exported as an SQD file. In the script above, the
mnt.pyfiction package is imported first. Next, the afore-
mentioned SQD file is parsed as a layout variable called lyt.
Afterward, physical simulation parameters are prepared and
set to λtf = 5.0 (nm), ϵr = 5.6, and µ− = −0.28 (eV).
Finally, a physical simulation of lyt is conducted using the
QuickExact engine with the respective simulation parameters.

VIII. CONCLUSION

The transition of Field-coupled Nanocomputing (FCN)
from a theoretical framework to a potential contender for
the beyond-CMOS era has been driven by experimental
breakthroughs in fabrication. However, despite these ex-
perimental strides, the development of FCN is hindered
by the inadequacies of existing software tools for circuit
design. These tools often lack comprehensive functionality
and suffer from maintenance issues. Therefore, there is an
urgent demand for advanced software tools equipped with
cutting-edge methods that cover the entire FCN stack. This
paper presents the Munich Nanotech Toolkit (MNT), an open-
source software project. The paper delves into its compre-
hensive feature set and explains how users can leverage
its capabilities across multiple interfaces. From command-
line functionality to a versatile C++ header-only library and
Python bindings, MNT offers accessibility on multiple fronts.
This toolkit marks a significant stride forward, providing FCN
researchers and developers with cutting-edge software tools
and methodologies. More information on the MNT is avail-
able at https://www.cda.cit.tum.de/research/nanotech/mnt/.
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