
Reducing Wire Crossings in Field-Coupled Nanotechnologies

Benjamin Hien, Marcel Walter and Robert Wille

Abstract— In the realm of circuit design, emerging technolo-
gies such as Field-Coupled Nanotechnologies (FCN) provide
unique opportunities compared to conventional transistor-based
logic. However, FCN also introduces a critical concern: the
substantial impact of wire crossings on circuit robustness.
These crossings are either unrealizable or can severely de-
grade signal integrity, posing significant obstacles to efficient
circuit design. To address this challenge, we propose a novel
approach focused on reducing wire crossings in FCN circuits.
Our methodology introduces a combination of LUT mapping
and decomposition aimed at producing advantageous network
structures during logic synthesis to minimize wire crossings.
This new optimization metric is prioritized over node count and
critical path length to effectively tackle this challenge. Through
empirical evaluations, we demonstrate the effectiveness of the
proposed approach in reducing a first approximation for wire
crossings by 41.69%. This research significantly contributes to
advancing wire crossing optimization strategies in emerging
circuit technologies, paving the way for more reliable and
efficient designs in the post-CMOS logic era.

I. INTRODUCTION & MOTIVATION

As Moore’s Law reaches its limits in transistor-based
logic, emerging technologies garner scientific interest,
promising significant improvements in power consumption
compared to traditional CMOS circuits [1]. Field-coupled
Nanotechnologies (FCN) employ electric and magnetic fields
for logic transfer, diverging from conventional electric cur-
rents [2]. Recent breakthroughs in FCN fabrication, utilizing
Silicon Dangling Bonds (SiDBs, [3], [4]), have propelled
its momentum [3], [5]–[7]. Other FCN implementations
include Quantum-dot Cellular Automata (QCA, [8], [9]) and
Nanomagnet Logic (NML, [10], [11]).

Though these technologies differ in their physical do-
mains, they share similar principles regarding constraints
during logic synthesis and physical design. While these
similarities persist among FCN technologies, they notably
deviate from the constraints typical in conventional CMOS.
In CMOS logic synthesis, primary optimization objectives
involve minimizing the number of nodes and the critical path
early in the process, often using abstract representations like
And-Inverter Graphs (AIGs) as heuristics for circuit size,
power consumption, and delay [12]–[14].

An important characteristic of FCN technologies is the
costly nature of wire crossings, unlike CMOS where wires
are inexpensive. In FCN, existing wire crossing implemen-
tations have been found to compromise signal stability for
QCA [15] and SiDBs [16], with some structures yet to be
fabricated [17]. In contrast, CMOS allows wire crossings to
be routed using multiple metal layers without affecting signal
stability. This distinct feature alters the significance of cost
functions in logic synthesis for FCN.

Benjamin Hien, Marcel Walter and Robert Wille are with the Chair
for Design Automation, Technical University of Munich, Germany. Marcel
Walter is also with the University Bremen. Robert Wille is also with the
Software Competence Center Hagenberg GmbH (SCCH), Austria. E-mail:
{benjamin.hien, marcel.walter, robert.wille}@tum.de

However, in the past, conventional logic synthesis over-
looked the unique challenges of this novel domain, as
wire crossings were only addressed during later physical
design stages. Given that the logic network structure greatly
influences the final circuit [18], the current design flow
significantly increases crossing costs, resulting in suboptimal
solutions in the FCN domain. This also means that optimiza-
tions related to wire crossings are deferred until these late
physical design stages, missing out on the significant impact
of logic synthesis.

This work aims to enhance network structures beyond
conventional logic synthesis, targeting more efficient FCN
circuit designs through crossing minimization. We propose
adapting the FCN design flow to incorporate early-stage op-
timizations using a novel algorithm. Our evaluation demon-
strates a significant reduction of a first approximation for
wire crossings at the logic synthesis level by 41.69%.

The rest of this work is structured as follows. Section II
provides the necessary background on FCN, with a particular
focus on wire crossings. Section III presents a literature
overview of the current Design Automation flow in FCN
and offers the motivation for the proposed methodology.
Our approach to reduce wire crossings in logic synthesis
is proposed and evaluated in Section IV and Section V,
respectively. Finally, Section VI concludes the paper.

II. FIELD-COUPLED NANOTECHNOLOGIES

Field-coupled Nanotechnologies (FCN) offer promising
post-CMOS solutions for increased computing power while
addressing environmental concerns [2]. Recent advance-
ments, particularly in manufacturing using Silicon Dangling
Bond (SiDB) technology [3], [5]–[7], demonstrate the poten-
tial for nanoscale circuit implementation without electrical
current flow, such as a fully functioning OR gate on less
than 30nm2 of substrate area. Since SiDB circuits can be
derived from Quantum-dot Cellular Automata (QCA, [8],
[9]) circuits [19], QCA is considered as the representative
FCN technology in this paper for its clear visual representa-
tion. This choice remains applicable to all FCN technologies
examined in this work.

Each QCA cell consists of four quantum dots placed at
the corners of a square shape. Binary values 0 and 1 are
encoded using the stable states resulting from charges placed
in diagonally opposing quantum dots, driven by the Coulomb
force (Fig. 1). The electrostatic force from cell polarization
can affect neighboring cells, enabling computation and infor-
mation propagation. When organized in a 5 × 5 grid, QCA
cells form various logic gates, exemplified by gates from the
QCA ONE library [20] (Fig. 2). Unlike conventional CMOS
where wires are cheaper than gates, in QCA, wires are gates,
equating delay and area costs between wires and gates in the
final circuit layout.

mailto:benjamin.hien@tum.de
mailto:marcel.wlater@tum.de
mailto:robert.wille@tum.de

Fig. 1: Elementary QCA cells.

(a) INV (b) MAJ (c) AND (d) OR

(e) Straight
wire

(f) Bent wire (g) Splitter (h) Crossing

Fig. 2: The QCA ONE gate library [20].

(a) 3D QCA
wire crossing.

(b) Co-Planar
wire crossing.

Fig. 3: Different QCA wire crossing implementations.

In Fig. 2a, an inverter is depicted, functioning via diagonal
cell interaction. Inputs, as with other gates in the library,
are colored blue, while outputs are red. From the 3-input
MAJ gate in Fig. 2b, an AND gate (Fig. 2c) and an OR
gate (Fig. 2d) can be easily derived by fixing one input to a
constant 0 or 1, respectively. Additionally, wire types, also
known as buffers, are shown in Figs. 2e, 2f, and 2g, while
the symbol for a wire crossing is depicted in Fig. 2h.

Wire crossings, although seemingly innocuous, present
significant challenges. One approach to implementing a wire
crossing in QCA is through three-dimensional fabrication, as
depicted in Fig. 3a. However, despite some proposals [17], it
remains unclear how this fabrication method can be achieved
at the nanoscale. Another idea is using co-planar wire cross-
ings, as shown in Fig. 3b [15]. Here, rotated and non-rotated
cells act as independent wires, preventing interference due
to rotation. However, this method is prone to signal stability
issues within the circuit, as the coupling between non-rotated
cells is weak over the gap. Moreover, cell rotation introduces
overhead, requiring pre- and post-crossing rotations. These
challenges extend beyond QCA cells, as demonstrated by the
susceptibility of SiDB crossings to thermal noise [16].

III. CONTEMPORARY FCN DESIGN FLOW

In this section, we provide a comprehensive review of the
current FCN design flow, offering both a brief overview and
an in-depth analysis of its key steps. We then highlight the
reasons why wire crossings should be optimized earlier in
the flow, thus motivating the novel approach proposed in
this work.

module full_adder_d (

 input a,b,cin,

 output sum,carry

);

assign sum = a ^ b ^ cin;

assign carry = (a & b) | (b & cin) | (cin & a) ;

endmodule

QCA

NML

SiDBs

2
I2

I1

I3LUT1

LUT2

LUT3
I4

2

2

2

1

1

1

1

3

3

3

3

4

4

4

Logic Optimization

Exact networks Post-technology mapping

Technology mapping

Fig. 4: The design flow for FCN. The steps marked in green
are novel to the design stage. The red step already exists but
is modified by including our decomposition algorithm.

A. Overview
A design flow represents the journey from an abstract

description of a circuit’s functionality to its physical real-
ization in a specific technology (Fig. 4, excluding green
segments). Steps (1)–(5) fall under Logic Synthesis, while
steps (6) and (7) are termed Physical Design. The process
begins with an Register-transfer level (RTL) description
of the circuit (1), translated into a technology-independent
graph, such as an AIG (2). Logic optimizations like rewrit-
ing [12] can be performed (3), followed by technology
mapping (4) to a technology-dependent structure (5). Post-
mapping, technology-dependent optimizations can be ap-
plied (5.1). The structure undergoes placement and routing
using an FCN algorithm (6), which is then translated into a
specific technology (7).

In the following, first the steps (4) to (7) are more closely
reviewed, as these steps form the basis onto which this paper
is built. Secondly, the shortcomings of the contemporary
design flow are discussed.

B. Technology Mapping & Physical Design
During technology mapping (4), the technology-

independent representation (2) (e.g., as an AIG) is converted
into a technology-dependent netlist (5.1) using a Standard
Cell Library (SCL). This library offers standard cells with
Boolean functions and metrics like area, delay, and power,
derived from the target technology (e.g., QCA or NML).
Subsequently, the technology mapper assigns standard
cells to cover AIG nodes, ensuring each standard cell’s
Boolean function matches the corresponding AIG nodes
it covers. This process yields a technology-dependent
netlist (5.1), which can be visualized once more as a graph.
This netlist represents standard cell covers instead of AND
nodes, maintaining consistency with conventional CMOS
electronics. However, rather than having AND nodes, it
comprises standard cells, each serving as a cover of a
corresponding set of AND nodes implementing the (usually
more complex) standard cell function. Notably, up to this
point, the FCN flow mirrors that of conventional CMOS
electronics.

14

4

2

3

3

1

2

32

4

1

(a) Non-planar: 3 ×
4 = 12 tiles.

32

1

4

2 3

2

1

3

3

2

4

4 1

1

(b) Planar: 3×5 = 15
tiles.

Fig. 5: Area comparison of two 2:1 MUX layouts.

Post-mapping algorithms [21] optimize the technology-
dependent graph further, focusing on objectives that are
neglected or cannot be targeted during technology mapping.
In CMOS, this involves gate sizing or fan-out optimization.
In FCN, elements such as buffers and splitters [22] can be
inserted.

In the subsequent physical design stage (6), designers
choose a placement and routing algorithm, such as [23]–[25],
to map the technology-dependent netlist onto an FCN layout.
Certain algorithms can alter netlists to enhance routability,
as evidenced in [18]. Post-layout optimization algorithms,
exemplified in [26], further refine the layout. Finally, in the
last step (7) of physical design, abstract standard cell layouts
are transformed into precise physical representations in the
target technology for fabrication.

C. Early Optimization of Wire Crossings
Following this design flow, wire crossings become ap-

parent only at the physical design stage. And even at this
stage, most algorithms do not optimize for wire crossings
but for layout area instead [26], or minimize crossings as
a secondary objective, as in [18], [24]. Optimizing for wire
crossings instead might contradict current design objectives,
as shown in the following example.

Example 1: Consider the FCN layouts depicted in Fig. 5,
both implementing a simple 2:1 MUX circuit. The layout
in Fig. 5a uses a single wire crossing (highlighted with a
red frame) and occupies a total area of 12 tiles. Conversely,
the layout in Fig. 5b is planar, without any wire crossings,
but incurs an area overhead with a total of 15 tiles. While
area optimization is typically prioritized, critical issues like
manufacturing challenges and signal stability are disregarded
in such decisions.

Even from this minimal example, it becomes apparent that
it is possible to trade unfavorable wire crossings for less
critical layout area. Consequently, optimizing for area might
introduce more crossings into the final layout—as is often the
case with state-of-the-art algorithms [25]—, which should
generally be considered highly disadvantageous.

Furthermore, as mentioned earlier, the significance of wire
crossings is typically recognized only during the physical
design stage. However, structural manipulations of the netlist
before passing it to placement and routing can significantly
affect the resulting layout’s characteristics—also in terms of

the total crossing cost. The effect of logic synthesis on these
final layout characteristics has been extensively demonstrated
in CMOS throughout the literature [12]–[14]; yet, it is almost
completely disregarded in the FCN domain to date. Thus, we
aim to address the minimization of wire crossings during the
logic synthesis stage rather than postponing it to the physical
design phase.

IV. PROPOSED METHODOLOGY

In this section, we initially present our general proposed
idea. Then, we propose a new design flow utilizing a pre-
computed database of small FCN sub-circuits with optimal
crossing count, as motivated in Section III. This design
flow facilitates our primary contribution, which involves
approximating wire crossings at the logic synthesis level and
minimizing this proxy using an algorithm during the post-
mapping stage. Thus, we introduce the concept of the algo-
rithm, followed by a demonstration of its implementation.

A. General Idea

In order to utilize logic synthesis for crossing cost mini-
mization, we propose the following main ideas. 1) To draw
inspiration from general logic synthesis literature, where
exact solutions for small sub-AIG structures are employed
to replace their corresponding counterparts within the AIG,
thereby iteratively optimizing the overall graph for various
metrics; an established method called rewriting [12]. We
propose a similar approach with an application to FCN
crossing minimization, where we can utilize a precomputed
database of small FCN sub-circuits with favorable character-
istics. 2) To approximate wire crossings at the logic synthesis
stage and to utilize them as a cost function, guiding rewriting
algorithms.

Our primary contribution lies in an optimization algorithm
aimed at minimizing this approximative crossing cost value
to achieve a favorable network structure conducive to wire
crossing minimization, in alignment with the findings of [18].
In the following, the design flow is proposed to facilitate our
main contribution.

B. Novel Synthesis Flow for FCN

We introduce an innovative design flow to enhance wire
crossing minimization by modifying the logic synthesis
stage (5) shown in Fig. 4, highlighted in green. We suggest
transitioning to an alternative technology mapping strat-
egy (5.1a) using an Field Programmable Gate Array (FPGA)
mapper. Unlike the current technology mapper, which relies
on a standard cell library, this mapper utilizes lookup ta-
bles (LUTs)—generic Boolean functions with a fixed number
of input variables, known as its size—for mapping. Precom-
puted sub-layouts (5.1b) with minimized wire crossings are
then inserted for the LUTs, enhancing performance and scal-
ability. It has been shown that precomputing such a database
is feasible for an input size of 4 [12]. Hence, this size is used
as the LUT size for the rest of the paper. Most importantly,
the post-mapping stage, marked in red, gains flexibility with
the introduction of an extra step. Algorithms can now be
executed not only after standard cells are apparent in the
netlist (5.1), but also directly after LUT mapping (5.1a).

(a) LUT representation.

32

1

4

2 3

2

1

3

3

2

4

4 1

1

(b) FCN representation

Fig. 6: Edge crossing to wire crossing.

C. Post-Mapping Wire Crossing Approximation

Our goal is to approximate wire crossings at this new stage
and minimize them using an algorithm. Our proposed ap-
proximation method relies on a simple concept: in a mapped
netlist represented as a graph, nodes represent cells/sub-
layouts to be placed, and edges represent wires to be routed.
Identifying instances where two wires cross translates to
intersecting edges in the graph. This basic idea, borrowed
from layered graph drawing, forms the foundation of our
wire crossing approximation method, facilitating integration
with subsequent optimization algorithms.

Example 2: Consider the LUT-mapped network shown in
Fig. 6a. It consists of two nodes labeled 5 and 6, driving
outputs out1 and out2, respectively. Each node relies on
primary inputs a and b. The signal flow is illustrated by
graph edges, with red edges indicating intersections. In
Fig. 6b, the corresponding QCA circuit is displayed, where
the LUTs are represented by their respective gates. Inputs
(blue cells), gates (outlined in green), and outputs (red cells)
are positioned on the layout and connected via wires. In
this example, intersections of graph edges translate to wire
crossings in the QCA layout, outlined red.

To compute wire crossing costs, we use a technique called
layered graph drawing. Initially, all nodes in the graph are
assigned levels based on their distance from the inputs. Edges
spanning multiple levels are divided by buffer insertion, and
each node is given a rank within its level. Crossings between
adjacent levels are detected by comparing the coordinates
of all edge combinations. After traversing all levels, we
obtain the total graph crossings, forming the cost function.
The order of nodes within a level affects crossings, leading
to various techniques to reduce them by swapping nodes.
However, minimizing crossings across the entire graph is
NP-hard.

D. Post-Mapping Crossing Reduction

With our approximation method for wire crossings, viewed
as edge crossings in a graph, we introduce our algorithm
to minimize these crossings. While existing methods like
layered graph drawing algorithms tackle this, we aim for
a more comprehensive optimization. Our strategy focuses on
reducing crossings by restructuring the graph using Boolean
decomposition. An example will clarify this approach.

Network s t ruc ture v isua l ized by ABC
Benchmark " top" . Time was Fr i Feb 23 15:22:46 2024.

The ne twork conta ins 2 logic nodes and 0 la tches .

x y

7
0 1 1 1 1

8
0 0 1 1 1

a bc d

(a) Original sub-network (b) New sub-network

Fig. 7: Decomposition of two four input LUTs.

Example 3: In Fig. 7a, the network consists of four inputs
and two outputs, efficiently represented by a single 4-input
LUT for each output. This setup achieves optimal traditional
costs, with area and delay both at 2, but entails 6 edge
crossings. However, conventional techniques like layered
graph drawing offer no improvements due to the already
minimized crossings.

The network in Fig. 7b presents the same Boolean function
as the original design but with a different LUT configuration.
Instead of two 4-input LUTs, it employs one 3-input LUT
and two 2-input LUTs. Despite structural differences, the
logic remains consistent, ensuring intended functionality.
Notably, this setup reduces edge crossings to 1, aligning more
closely with optimization objectives, even though increasing
both area and delay by 1.

The improved crossing costs on the right-hand side are
due to Boolean decomposition of the network on the left-
hand side, introducing shared logic nodes. In Fig. 7b, the
shared node 8 is highlighted in green as it contributes to
both outputs, consolidating crossings within this node.

Motivated by the efficacy of decomposition and shared
nodes, we propose an algorithm to minimize edge crossings
in resulting networks. This algorithm targets structures with
numerous edge crossings, which can be mitigated by shared
logic nodes. This algorithm operates after FPGA mapping,
starting with a LUT network with 4-input LUTs (Section IV-
B). It identifies pairs of LUTs sharing a common node,
requiring a minimum of two shared inputs. Initially, the algo-
rithm searches for such LUT pairs and tests if decomposition
can reduce crossings. If decomposition is viable, it applies
the change iteratively, continuing to optimize the network’s
structure and minimize edge crossings.

From the example, we infer that both the area and delay
increase. However, this poses no issue for us since, as
discussed, minimizing crossings takes precedence over these
considerations. Furthermore, the introduction of decompo-
sition may not necessarily increase delay, particularly in
larger networks where the new node is not on the critical
path. In such cases, delay remains unaffected, illustrating
the negligible impact of additional nodes in certain contexts.

E. Crossing Reduction Implementation

The FPGA mapping facilitated by the novel design flow
is executed using the ABC synthesis framework [27], em-
ploying the command if -K 4. The proposed algorithm is

Algorithm 1: Shared Nodes
Input: 4-input LUT network N
Output: true iff shared nodes could be decomposed

1 foreach lut1, lut2 ∈ N , with lut1 ̸= lut2 do
2 if lut1 and lut2 share fanins then
3 d←DECOMPOSITION(lut1, lut2) // Algorithm 2
4 if d ̸= ∅ then
5 replace lut1, lut2 in N with d
6 return true
7 end if
8 end if
9 end foreach

10 return false

Algorithm 2: Decomposition
Input: Two 4-LUTs lut1, lut2
Output: Decomposition of lut1, lut2 or ∅ if no decomposition exists
// Check for valid decompositions ranked by the

number of crossings
// Exemplary decomposition with shared node size 3

1 foreach f3 ∈ B3 → B1 do
2 foreach f2

1 , f
2
2 ∈ B2 → B1 do

3 if f3 ◦ f2
1 |= lut1 and f3 ◦ f2

2 |= lut2 then
4 return (f3, f2

1 , f
2
2)

5 end if
6 end foreach
7 end foreach
// Check other valid decompositions

8 return ∅

integrated into the mapper and activates decomposition when
the new -w flag is passed to the if command. The algorithm
consists of two primary tasks.

Initially, Algorithm 1 identifies pairs of nodes sharing
inputs through a depth-first search of the network with two
loops. The first loop iteratively selects one LUT after another,
while the second loop traverses the LUT network until a
shared-input LUT is found. The number of crossings—1, 3,
and 6—increases with the number of shared inputs (from 2
to 4 respectively), preferring nodes with more shared inputs
for decomposition due to greater optimization potential.

Next, the algorithm evaluates the possibility of a valid
decomposition by introducing a shared node between the two
LUTs. One possible decomposition with a shared node of
input size 3 is as depicted in Algorithm 2 and Fig. 7b. Uti-
lizing an exhaustive approach, the algorithm iterates through
all 3-input LUTs, combining them with 2-input LUTs to
reconstruct the original logic for both outputs. The search
for other decompositions works accordingly. This process
iterates over all valid decompositions, prioritizing the ones
reducing more crossings in the sub-network until a valid
decomposition is found, then applying it to the original
network.

Despite its simplicity, this implementation is computation-
ally intensive. For each LUT, the network must be traversed
again to find another LUT with shared nodes, resulting
in significant runtime expenses. Moreover, for nodes with
shared inputs, the iteration proceeds through multiple de-
compositions, necessitating the iteration through numerous
LUTs until a valid solution is found. This process becomes
particularly burdensome for LUTs that share inputs but
cannot be decomposed, as each loop must be fully executed
in such cases.

V. SIMULATION EVALUATIONS

In this section, we make a comparative analysis of the
novel design flow utilizing FPGA mapping without and with
post-mapping optimization using structural manipulation.

A. Evaluation Setup

The algorithm has been implemented in C using the open-
source synthesis framework ABC [27] and analyzed with the
ISCAS85 [28] and EPFL [29] benchmark suites. We gener-
ated LUT netlists twice: once for basic LUT mapping with
an input size of 4 and once for LUT mapping followed by
LUT decomposition. Subsequently, we evaluated the netlists
employing layered graph drawing and simulated annealing
to optimize the NP-hard crossing minimization problem in
the graphs before and after decomposition. Our analysis
tracked network-dependent metrics such as area, delay, and
the number of crossings, along with the time required for
the proposed algorithm and the evaluation process. All eval-
uations were conducted on an AMD Ryzen 7 PRO 6850U
with 2.7GHz to 4.7GHz with 16 CPU cores and 32GB of
RAM, running Ubuntu 23.10.

B. Obtained Results

The results obtained are presented in Table I. The ta-
ble compares standard LUT mapping with the proposed
approach, LUT mapping with Decomposition. Analysis of
the edge crossing numbers reveals that the decomposition
method consistently achieves fewer edge crossings across all
benchmarks with an average of 41.69%. It is important to
note that these results are obtained after the execution of the
evaluation script, which involves 1000 sweeps of the net-
work. Each sweep entails a simulated annealing call for every
network level. Due to the increasing complexity with larger
network sizes, we were only able to obtain results for small
and medium-sized benchmarks, ensuring a fair comparison.
This can be seen in the increasing evaluation times for bigger
benchmarks. For the other metrics area and delay, which
relate to the LUT count and critical path in the LUT-network,
we can see that for every benchmark both increase with an
average of 16.50% for area and 43.06% for delay. Notably,
the percentage-wise increase in delay is very substantial
due to the generally small delay values in the original
circuits. For the smallest network, c17, the decomposition
method eliminates crossings entirely, resulting in a crossing
improvement of 100%, a 100% worsening of delay and a
50% worsening of area. Additionally, benchmarks router and
c6288 show significant improvements in wire crossings, with
reductions of 83.22% and 73.61%, respectively. However,
it’s noteworthy that both benchmarks also exhibit the largest
increase in delay (excluding c17), with a deterioration of
70.00% for router and 88.00% for c6288. For area c6288
also has the highest deterioration of 43.13%, while router
has a deterioration of 19.00%.

VI. CONCLUSIONS

To ensure the robustness of fabricated Field-coupled Nan-
otechnology (FCN) circuits, the optimization target on all
abstraction levels has to be shifted to the minimization of
wire crossings. In this paper, we proposed a novel design
flow, with the main contribution being an algorithm that

TABLE I: Comparative simulation evaluation of FPGA mapping without and with decomposition.

BENCHMARK CIRCUIT STANDARD LUT MAPPING LUT MAPPING /W DEC (OURS) DIFFERENCE

Name I O |G| D A D C tr[s] te[s] Ndec A D C tr[s] te[s] A[%] D[%] C[%]
IS

C
A

S8
5

[2
8]

c17 5 2 6 3 2 1 3 < 0.01 1.09 1 3 2 0 0.03 1.25 50.00 100.00 −100.00
c432 36 7 208 26 98 10 167 < 0.01 94.35 10 108 13 109 0 75.74 5.10 30.00 −34.73
c499 41 32 398 19 74 4 719 < 0.01 184.34 20 94 6 502 4.45 146.39 16.22 50.00 −30.18
c880 60 26 325 25 135 8 351 < 0.01 216.27 4 139 10 190 0 168.29 2.22 25.00 −45.87
c1355 41 32 502 25 74 4 765 < 0.01 188.35 20 94 6 395 4.48 148.17 16.22 50.00 −48.37
c1908 33 25 341 27 127 9 823 < 0.01 213.63 8 135 11 334 0.04 146.65 6.30 22.22 −59.42
c2670 157 64 716 20 220 7 2207 < 0.01 1044.88 13 234 8 1763 0.07 928.69 1.82 14.29 −20.12
c3540 50 22 1024 41 351 12 4385 < 0.01 1663.08 57 409 17 2095 1.5 912.39 15.10 41.67 −52.22
c5315 178 123 1776 37 494 9 19054 0.01 6157.62 24 523 14 11097 0.18 5048.81 3.04 55.56 −41.76
c6288 32 32 2337 120 517 25 1853 0.01 1322.7 228 740 47 489 0.56 642 43.13 88.00 −73.61
c7552 207 108 1469 26 618 8 18958 0.01 7210.27 48 677 11 14438 0.16 4476.01 6.15 37.50 −23.84

E
PF

L
[2

9]

adder 256 129 1020 255 339 85 254 < 0.01 778.67 43 382 128 281 0.01 907.44 12.68 50.59 10.63
cavlc 10 11 693 16 297 6 18563 < 0.01 2825.65 45 342 7 11234 2.7 1874.16 15.15 16.67 −39.48
ctrl 7 26 174 10 55 3 632 < 0.01 123.52 12 67 5 247 0.6 69.44 21.82 66.67 −60.92
dec 8 256 304 3 288 2 34080 < 0.01 2460.96 16 304 3 30952 0 2235.95 5.56 50.00 −9.18
i2c 147 142 1342 20 506 6 6415 < 0.01 4231.71 43 550 8 5770 0.78 3569.14 7.51 33.33 −10.05
int2float 11 7 260 16 88 6 1183 < 0.01 205.16 15 103 7 653 0.66 139.8 17.05 16.67 −44.80
priority 128 8 978 250 302 62 437 < 0.01 484.8 26 328 62 328 0.04 347.07 8.61 0.00 −24.94
router 60 30 257 54 100 10 149 < 0.01 130.76 19 119 17 25 0.22 69.02 19.00 70.00 −83.22

Average Difference 16.50 43.06 −41.69

I , O, and |G| are the number of primary inputs, primary outputs, and gates in the logic network, respectively; A, D and C are the area, delay, and resulting
edge crossings of the LUT network, respectively; the runtime for the decomposition algorithm is given as tr and the evaluation time is given as te; the
table holds the values for LUT mapping without and with out decomposition strategy and compares the network relevant values in the difference column.

optimizes wire crossings at first approximation at the logic
synthesis level. The proposed method uses LUT mapping
with decomposition and showed a 41.69% improvement
over standard LUT mapping in the number of resulting
wire crossings. Therefore, this research marks a significant
advancement in the design automation of FCN, facilitating
the realization and integration of large-scale circuits within
this domain.

REFERENCES

[1] P. M. Solomon, “Device Proposals Beyond Silicon CMOS,” Future
Trends in Microelectronics: From Nanophotonics to Sensors and
Energy, pp. 127–140, 2010.

[2] N. G. Anderson and S. Bhanja, Field-coupled Nanocomputing.
Springer, 2014.

[3] T. Huff, H. Labidi, M. Rashidi, L. Livadaru, T. Dienel, R. Achal,
W. Vine, J. Pitters, and R. A. Wolkow, “Binary Atomic Silicon Logic,”
Nature Electronics, vol. 1, no. 12, pp. 636–643, 2018.

[4] R. A. Wolkow, L. Livadaru, J. Pitters, M. Taucer, P. Piva, M. Salomons,
M. Cloutier, and B. V. Martins, “Silicon Atomic Quantum Dots
Enable Beyond-CMOS Electronics,” Field-Coupled Nanocomputing:
Paradigms, Progress, and Perspectives, pp. 33–58, 2014.

[5] R. Achal, M. Rashidi, J. Croshaw, D. Churchill, M. Taucer, T. Huff,
M. Cloutier, J. Pitters, and R. A. Wolkow, “Lithography for Robust
and Editable Atomic-scale Silicon Devices and Memories,” Nature
communications, vol. 9, no. 1, p. 2778, 2018.

[6] F. Altincicek, C. Leon, T. Chutora, M. Yuan, R. Achal, J. Croshaw,
L. Livadaru, J. Pitters, and R. Wolkow, “Atomically Defined Wires on
P-Type Silicon,” in APS March Meeting Abstracts, vol. 2022, 2022.

[7] N. Pavliček, Z. Majzik, G. Meyer, and L. Gross, “Tip-induced Passi-
vation of Dangling Bonds on Hydrogenated Si (100)-2× 1,” Applied
Physics Letters, vol. 111, no. 5, 2017.

[8] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum
Cellular Automata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993,
publisher: IOP Publishing.

[9] C. S. Lent, B. Isaksen, and M. Lieberman, “Molecular Quantum-dot
Cellular Automata,” Journal of the American Chemical Society, vol.
125, no. 4, pp. 1056–1063, 2003, publisher: ACS Publications.

[10] R. Cowburn and M. Welland, “Room Temperature Magnetic Quantum
Cellular Automata,” Science, vol. 287, no. 5457, pp. 1466–1468, 2000.

[11] G. H. Bernstein, A. Imre, V. Metlushko, A. Orlov, L. Zhou, L. Ji,
G. Csaba, and W. Porod, “Magnetic QCA Systems,” Microelectronics
Journal, vol. 36, no. 7, pp. 619–624, 2005.

[12] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
Rewriting a Fresh Look at Combinational Logic Synthesis,” in DAC,
2006.

[13] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets, “Delay Opti-
mization Using SOP Balancing,” in ICCAD, 2011.

[14] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scal-
able Don’t-Care-Based Logic Optimization and Resynthesis,” TRETS,
vol. 4, no. 4, pp. 1–23, 2011.

[15] P. D. Tougaw et al., “Logical devices implemented using Quantum
Cellular Automata,” Journal of Applied Physics, vol. 75, no. 3, pp.
1818–1825, 1994.

[16] J. Drewniok, M. Walter, and R. Wille, “Temperature Behavior of
Silicon Dangling Bond Logic,” in IEEE-NANO, 2023.

[17] A. Gin et al., “An Alternative Geometry for Quantum-dot Cellular
Automata,” Journal of Applied Physics, vol. 85, no. 12, pp. 8281–
8286, 1999.

[18] M. Walter, B. Hien, and R. Wille, “Versatile Signal Distribution Net-
works for Scalable Placement and Routing of Field-coupled Nanocom-
puting Technologies,” in ISVLSI, 2023.

[19] S. Hofmann, M. Walter, and R. Wille, “Scalable Physical Design for
Silicon Dangling Bond Logic: How a 45 Turn Prevents the Reinvention
of the Wheel,” in IEEE-NANO, 2023.

[20] D. A. Reis, C. A. T. Campos, T. R. B. Soares, O. P. V. Neto, and
F. S. Torres, “A Methodology for Standard Cell Design for QCA,” in
ISCAS. IEEE, 2016, pp. 2114–2117.

[21] R. Murgai, “Technology-dependent Logic Optimization,” Proceedings
of the IEEE, vol. 103, no. 11, pp. 2004–2020, 2015.

[22] A. T. Calvino and G. De Micheli, “Depth-optimal Buffer and Splitter
Insertion and Optimization in AQFP Circuits,” in ASP-DAC, 2023.

[23] M. Walter, W. Haaswijk, R. Wille, F. S. Torres, and R. Drechsler,
“One-pass Synthesis for Field-coupled Nanocomputing Technologies,”
in ASP-DAC, 2021, pp. 574–580.

[24] M. Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler,
“An Exact Method for Design Exploration of Quantum-dot Cellular
Automata,” in DATE, 2018, pp. 503–508.

[25] M. Walter, R. Wille, F. S. Torres, D. Große, and R. Drechsler,
“Scalable Design for Field-coupled Nanocomputing Circuits,” in ASP-
DAC, 2019.

[26] S. T. Hofmann, M. Walter, and R. Wille, “Post-Layout Optimization
for Field-coupled Nanotechnologies,” in NANOARCH, 2023.

[27] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
strength Verification Tool,” in CAV, 2010.

[28] F. Brglez et al., “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Targeted Translator in FORTRAN,” in ISCAS, June
1985.

[29] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL Combi-
national Benchmark Suite,” in IWLS, 2015.

	Introduction & Motivation
	Field-Coupled Nanotechnologies
	Contemporary FCN Design Flow
	Overview
	Technology Mapping & Physical Design
	Early Optimization of Wire Crossings

	Proposed Methodology
	General Idea
	Novel Synthesis Flow for FCN
	Post-Mapping Wire Crossing Approximation
	Post-Mapping Crossing Reduction
	Crossing Reduction Implementation

	Simulation Evaluations
	Evaluation Setup
	Obtained Results

	Conclusions
	References

