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Abstract—With beyond-CMOS circuit technologies emerging
from scientific endeavors in an effort to outperform transistor-
based logic in feature size, operation speed, and energy dissi-
pation, it has become apparent that besides their differences in
physical implementations, their design automation techniques
also have to evolve past established norms. While conventional
logic synthesis aggressively optimizes the number of nodes in
logic networks (as a proxy criterion for area, delay, and power
improvements), this trope does not incorporate the additional
costs caused by inverters and interconnects in the form of
wire segments, signal splitters, and cross-over cells as imposed
onto novel circuit implementations such as photonic crystals
and field-coupled nanotechnologies. In this work, we propose a
novel scalable technology mapping algorithm that captures these
unconventional costs by utilizing subcircuit databases that are
obtained by applying technology-aware exact physical design
techniques. This overcomes the substantial quality loss that
previously inevitably occurred when generating beyond-CMOS
circuit layouts from conventionally optimized logic networks.
Our method achieves average improvements of 84.5%, 74.5%,
and 65.2% for the number of buffers, the number of crossings,
and the critical path length, respectively, as compared to a
state-of-the-art physical design algorithm for FCN circuits.

Index Terms—Logic Synthesis, Technology Mapping, Beyond-
CMOS, Physical Design Constraints

I. INTRODUCTION

As Moore’s Law has lost momentum, alternative circuit
technologies that transcend past conventional transistor-based
logic are arising from studies into material science and
physics. These beyond-CMOS devices promise enhance-
ments over CMOS circuits in various aspects. While Photonic
Crystals perform logic operations through wave interference
of photons at the speed of light, for instance [1], [2],
Silicon Dangling Bonds (SiDBs) conduct logic-in-memory
computations via the repulsion of electric fields with ultra-
low power dissipation [3]–[5]. Similar Field-coupled Nan-
otechnologies (FCN) [6] are, e. g., Quantum-dot Cellular
Automata (QCA) [7], [8] and Nanomagnet Logic (NML) [9],
[10].1 While these and future emerging technologies have
their own design constraints, some similarities that are not
captured by conventional optimization criteria continue to
reappear.

To this end, an abundance of design flows for emerging
circuit technologies rely on conventional logic synthesis that
aggressively optimizes the number of nodes in logic net-
works, e. g., represented as an And-Inverter Graphs (AIGs),
before incorporating technology-specific constraints on the
physical design level. When dedicated placement and routing
tools attempt to legalize such sub-par logic networks, it

1New technologies are continually being proposed, but their physical
details are not crucial for the motivation and comprehension of this work.

usually results in increased layout costs due to the prior
negligence of, e. g., inverter and/or interconnect costs, which
add to the total area, delay, and power metrics [11], [12] (see
Section II-A).

In beyond-CMOS technologies, the interconnect costs
come from a variety of constraints such as path-balancing,
branching, and planarization (see Section II-A). In some
such technologies, interconnect costs commonly dominate
gate costs by several orders of magnitude [11]. Therefore,
optimizing logic networks primarily for their number of
nodes can be counterproductive as more important cost
factors are completely ignored. For superconducting elec-
tronics technologies, there have been attempts to mitigate
interconnect overheads due to path-balancing and branching
constraints [13], [14]. However, in technologies such as FCN,
the main source of interconnect cost is planarization; to the
best of our knowledge, no prior work has considered such
costs in logic synthesis.

In this work, we propose to avoid the substantial overhead
incurred when generating beyond-CMOS circuit layouts from
conventionally optimized logic networks by incorporating
recurring generic physical design constraints of emerging
technologies into the logic synthesis step through optimizing
for unconventional but realistic cost functions. To this end,
we present a technology mapping algorithm that utilizes
databases of exact subcircuits implemented in specific tech-
nologies. Our proposed algorithm provides average improve-
ments of 84.5%, 74.5%, and 65.2% for the number of
buffers, the number of crossings, and the length of the critical
path, respectively, compared to a state-of-the-art physical
design algorithm for FCN. The proposed algorithm is not
limited to a particular technology but applies to a wide range
of non-conventional circuit implementations that may exhibit
one or more of the generic design constraints discussed in
Section II-A.

Organization of the paper: Section II describes background
and related work. Section III presents our novel technology
mapping approach. Section IV shows the experimental results
and Section V concludes the paper with a brief discussion.

II. BACKGROUND

This section briefly discusses technology constraints of
beyond-CMOS technologies, a general circuit model, and
some related work on technology mapping.

A. Beyond-CMOS Technologies with Unconventional Costs
In conventional technology-independent logic synthesis,

AIGs are often used as circuit representations. For NAND-
based CMOS technologies, the AIG size (or depth) measured
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Fig. 1: Elementary FCN devices.
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Fig. 2: QCA gates and wire segments.

in the number of AND gates in the network (or on the
critical path) serves as a good estimation of the post-mapping
area (or delay). However, in many emerging technologies,
additional design constraints are imposed requiring special
cells to be inserted to fulfill them; which increases the dis-
crepancy between technology-independent and post-mapping
layout cost metrics. There exists a plethora of beyond-CMOS
technologies with such additional design constraints, and here
we describe two such families. Due to this paper’s brevity, the
technologies cannot be discussed in-depth. Instead, a general
overview with a focus on cost functions is provided. We then
identify a set of generic design constraints shared by many
of these emerging technologies.

Field-coupled Nanocomputing (FCN): FCN is an umbrella
term for a variety of nanotechnologies that have similar high-
level models [6], and it contains Quantum-dot Cellular Au-
tomata (QCA) [7], [8], Nanomagnet Logic (NML) [9], [10],
and Silicon Dangling Bonds (SiDBs) [3], [4]. Although their
physical implementations differ, their concepts are nearly
identical. In all cases, the information is represented by
the polarization/magnetization of elementary nanometer-scale
building blocks called cells. When placed in close proxim-
ity, cells influence each other’s polarization/magnetization
through Coulomb interaction. Thus, they transmit informa-
tion through electric/magnetic field coupling without a cur-
rent flow [6], greatly reducing power dissipation and requir-
ing less cooling than MOSFETs [12], [15]. Reversible FCN
can operate below the Landauer limit [16], [17], a theoretical
energy dissipation bound of non-reversible computation.

Fig. 1 shows elementary cells of aforementioned FCN
technologies in the two binary states 0 (left) and 1 (right).
The topological arrangements of cells form wire segments
and gates that conduct Boolean operations, as shown in Fig. 2
for the QCA implementation [18]. During physical design,
gates and wire segments are arranged in uniform standard
tiles [19], [20], which can be viewed as building blocks that
abstract physical effects to the logic design layer. Placement
and routing of standard tiles attempt to create a layout from
these building blocks that is functionally equivalent to a given
logic network. Each tile has the same unit cost in both the

area and the delay regardless of whether it is a logic gate, a
buffer, an inverter, or a splitter. FCN circuits are functionally
sensitive to delays; signal paths of different lengths (in terms
of the number of tiles) desynchronize, causing incorrect
calculations [21].

Photonic Crystals: To realize complete optical logic cir-
cuits with information transmission at the speed of light, re-
search has focused on photonic crystals, that is, optical nanos-
tructures with periodically changing refractive indices [1].
This property allows or prohibits electromagnetic radiation to
propagate through a photonic crystal based on its wavelength.
Within the crystal lattice, waveguides [22] can be fabricated
that restrict incoming light to propagating along certain chan-
nels; effectively creating wires for photons. At intersections,
light originating from two different waveguides interferes
to cancel out or amplify, based on its phase shift. This
property has been used to envision optical Boolean gates [2].
However, interacting waveguides of different lengths can
cause signals to desynchronize, thereby distorting or breaking
gate functionality.

Unconventional design constraints and their costs: We
consider the following unconventional costs that are shared
by the aforementioned emerging technologies (and more) but
not considered in conventional CMOS logic synthesis flows.

1. Path-balancing buffers: Due to the sensitivity to delay
differences in signal paths, the path-balancing constraint is
imposed, requiring that all paths from primary inputs to
the fanins of the same gate have the same length. When
shortening longer paths is not possible, buffer cells must be
inserted into shorter paths to equalize the delay.

2. Fanout-branching splitters: Because the design of logic
gates in these technologies does not naturally support driving
multiple fanout signals, additional splitter cells need to be in-
serted at the output of multi-fanout gates to fulfill the fanout-
branching constraint. Moreover, splitters are also counted in
the path lengths of path balancing, thus, the fanout-branching
and path-balancing constraints are strongly interwoven.

3. Planarizing crossings: The physical design of these
technologies often requires special crossing cells to realize
wire crossings in a 2-dimensional layout. The placement of
logic gates may be altered to minimize such cases, but it
is usually not possible to completely planarize the input
network. Similarly to splitters, crossings also contribute to
the path lengths and have to be considered together with
path balancing. In some technologies, crossing cells are hard
to fabricate or lead to less robust circuits due to their weaker
signal strengths. In these cases, it is important to minimize
the number of crossings, and unavoidable crossing cells lead
to higher costs.

4. Non-cost-free inverters: Unlike traditional logic synthe-
sis, where inverters (complemented edges) in AIGs do not
contribute towards their size, inversion is not free in these
technologies. It is not always possible to embed an inversion
as a free negated input to a gate. Mitigating the effects of such
inverters has been studied in [23]. However, these dedicated
inverters not only increase the circuit size but also need to
be considered together with the path-balancing constraint.

Through this consideration, it becomes apparent that cost
metrics of conventional logic synthesis algorithms are not
suited for the beyond-CMOS due to their negligence of the
important aspects enumerated above.



B. Circuit Model
As we propose a new technology mapping algorithm

supporting beyond-CMOS cost metrics, we locate this work
at the intersection of logic synthesis (concerned with logic
networks) and physical design (concerned with circuit lay-
outs). The proposed algorithm’s output is a mixed logic
network consisting of logic gates that are supported by a
given technology library, which we represent as k-input
look-up tables (k-LUTs), and special cells including path-
balancing buffers, fanout-branching splitters, and planarizing
crossings. To insert crossings in a meaningful way ensuring
the network’s planarity, our mapping algorithm entails a
coarse-grained placement with relative node positions. I.e.,
all cells in the mapped network are sorted into path-balanced
ranks and are ordered within each rank.

Thereby, our algorithm outputs a partially placed, mapped
network that 1) is functionally equivalent to the input net-
work; 2) consists only of cells supported by the given tech-
nology library; and 3) satisfies all four constraints described
in the previous section (path balancing, fanout branching,
planarization, and dedicated inverters). Additionally, our al-
gorithm aims to minimize the size and depth of this network
model, which considers both logic gates and special cells.
The area cost of each cell type can be parameterized to reflect
the target technology as precisely as possible.

By considering such a circuit model, our size and depth
evaluation is closer to the actual area and delay of the
resulting layout after physical design. As design constraints
are already satisfied and cells are ranked and ordered, the
remaining placement and routing tasks become trivial for
some technologies, but others may still need the network to
be placed and routed according to the target layout topology,
e. g., QCA layouts with non-linear clocking schemes [24],
[25].

C. Conventional Technology Mapping
In typical logic synthesis flows, technology-aware opti-

mizations are performed in the technology mapping stage,
which happens after heavily optimizing a technology-
independent representation with methods such as rewrit-
ing [26]. Technology mapping transforms a technology-
independent logic representation into a technology-dependent
one, where mapped circuits are obtained by substituting small
sections with standard cells that represent the elements of the
target technology. Numerous mapping algorithms have been
proposed over the years [27], [28], but most such approaches
are specific to CMOS-based synthesis flows and produce sub-
par results when used for emerging technologies as such
methods were not targetting aforementioned unconventional
costs.

III. PROPOSED METHODOLOGY

In this section, we describe the proposed novel technology
mapping approach for beyond-CMOS technologies. While
we use FCN as the exemplar technology because it has all
four unconventional design constraints of Section II and it
is a promising competitor in the beyond-CMOS domain due
to recent fabrication breakthroughs [3], the proposed idea
is generally applicable to other emerging technologies that
require path-balancing, branching, and (optionally) planariza-
tion.

We propose generating 1) a design database of optimal
subcircuits up to a certain number of inputs and 2) use it
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Fig. 3: Two realizations of a network computing o1 = a∧b∧
c ∧ d and o2 = ¬a ∧ ¬b ∧ ¬c ∧ ¬d. Inverters are denoted by
dashed edges and crossing cells are denoted by a × symbol.

during technology mapping to rewrite small logic blocks of
larger networks. Although this idea has been considered be-
fore [26], it was only ever able to capture abstract technology-
independent costs such as the size or depth of subcircuits.
Instead, we generate the database with an optimal physical
design algorithm tuned to the desired target technology, thus
incorporating all elements of potential final circuit costs.
Consequently, our technology mapper’s outputs inherently
respect (configurable) inverter, buffer, splitter, and crossing
costs,2 thus they represent the final circuit layout much more
closely and prevent overhead at the physical design stage.

To illustrate the need for technology-dependent optimiza-
tions in the logic synthesis stage, consider a circuit with input
variables a, b, c, d that computes o1 = a ∧ b ∧ c ∧ d and
o2 = ¬a∧¬b∧¬c∧¬d. Suppose that we are optimizing for
a simplified technology with AND2 and OR2 gates, which
has no inversion cost, but needs path-balancing and planariza-
tion with crossings. While there is a mapped configuration
with 8 cells (Fig. 3 (left)), a naive technology-independent
optimization might give a more compact representation with
only 6 gates which need 9 cells in total including 3 additional
crossing cells to meet the planarization constraint (Fig. 3
(right)).

A. Generation of Optimal Subcircuits
Conventional Boolean rewriting has successfully provided

the groundwork for utilizing databases of optimal subcircuits.
Usually, NPN canonization is utilized to significantly reduce
the database sizes [26]. Two single-output Boolean functions
belong to the same NPN class if one can be translated
into the other by (optionally) negating (N) the primary
inputs, permuting (P) the primary inputs, and negating (N)
the primary output. The representative of each class is
its lexicographically smallest member. Since inverters are
considered to be cost-free in AIGs and input permutations can
be neglected because no sense of fixed topology is employed,
NPN canonization is a strong tool for complexity reduction
and optimization.

However, in beyond-CMOS technologies, inverters matter,
and input permutations can only be altered using costly
crossings. Therefore, only considering NPN representatives
is insufficient as the costs of members belonging to the same
NPN class might substantially differ in the final layouts.

Therefore, we propose exploring a middle ground between
the exhaustive enumeration of all 22

n

Boolean functions in n
variables and their NPN representatives. Namely, we rely on a
class that we call NN that respects input/output permutations

2Although we focus on these four cost functions because they represent
important roadblocks to overcome in contemporary emerging technologies,
our general approach applies to arbitrary cost functions as long as there exists
a physical design algorithm for generating the optimal design database.



Algorithm 1: Proposed technology mapping algorithm.
Input: Input network N and database DB.
Output: A technology-mapped version of N .

1 Nlut ← N mapped to a 4-LUT network with ABC.
2 Assign levels to nodes in Nlut and fix the ordering of nodes.
3 Nbuf ← buffer inserted version of Nlut.
4 Nxing ← crossing minimized version of Nbuf.
5 L← number of logic levels in Nxing.
6 foreach level ℓ ∈ {1, . . . , L} do
7 DesiredOrder ← [ ].
8 foreach node n of level ℓ do
9 Reorder fanins of n to avoid self-crossings.

10 Update node function of n.
11 Append reordered fanins to DesiredOrder .

12 Construct buffer/splitter/crossing layers in Nxing to achieve the
signal order of DesiredOrder at the outputs of level ℓ− 1.

13 foreach node n of level ℓ do
14 (S, InvConfig)← find best network structure and I/O

inversion configuration for n from DB.
15 Replace n in Nxing with S after applying InvConfig .

16 Add buffers to Nxing to balance the outputs at level ℓ+ 1.

17 return Nxing

but not primary inversions. The number of NN classes is
greater by a factor of n! compared to NPN. For example,
while the number of 4-input NPN classes is 222, our 4-input
database has 222 · 4! = 5328 entries, which is still much
smaller than the number of 4-input functions (22

4

= 65536).
For each canonized (lexicographically smallest) NN rep-

resentative, we generate an optimal (with respect to the
imposed cost functions) subcircuit layout in the target tech-
nology. To this end, we modified an open-source physical
design algorithm [29], [30] to compute the optimal FCN
circuit layouts under different primary input permutations.
Since that algorithm is based on SMT solving, we enforce
the input permutation π : x1 ≻ x2 ≻ · · · ≻ xn by adding an
additional constraint. Let pxt be the Boolean variable that,
when set to 1, represents that node x is placed on layout tile
t. To enforce that if a primary input is placed on some tile,
any other primary input that follows in the permutation order
must not be placed on a prior tile in the layout, the constraint
is defined as:

∧
t∈T,x∈π(pxt =⇒

∧
t′≻t,x≻x′ ¬px′t′). The

inclined reader is referred to [29] for an in-depth explanation
of existing constraints for valid node placement, wire routing,
crossing insertion, path balancing, etc. Finally, incremental
SMT solver calls that iteratively increase the available layout
area for the physical design process ensure optimality of the
eventually found result. Symmetry breaking allows effective
search space pruning, and highly specialized cardinality
constraint engines in the utilized Z3 solver [31] enable critical
runtime reductions that keep the approach scalable up to
≈ 100 layout tiles, which is sufficient to realize all 4-input
NN representatives.

B. Rewriting Using the Exact Database
This step decomposes the input network into small logic

blocks and substitutes them using the appropriate optimum
structures described in the previous section, while also
synthesizing interconnections between logic blocks (Algo-
rithm 1).

Decomposing into small logic blocks: Typical technology-
mapping algorithms consider small cuts rooted at different
nodes in the network and replace them with optimized
versions, and when doing so, conventional algorithms give
only minor importance to other fanouts of the cut leaves.
However, to consider branching and planarization constraints

of emerging technologies, when replacing a cut, it is impor-
tant to know the relative positions of the other fanouts of
the cut leaves concerning the part that is being replaced to
preserve already instantiated (partial-)planarization. To this
end, we 1) fix the decomposition into small logic blocks by
mapping the network to 4-LUTs using if -K 4 command
of the logic synthesis tool ABC [32] (Line 1), and 2) fix the
relative positions of those logic blocks by assigning ranks to
LUTs and imposing an ordering of the LUTs in each rank
(Line 2).

Initial path-balancing and crossing optimization: Before
rewriting LUTs, the algorithm decides the locations of wires
between non-consecutive LUT logic levels. For example, if
there is a LUT a in level 1 which is a fanin of a LUT d in
level 3 and if level 2 has two LUTs b and c in that order, for
proper planarization, the algorithm decides whether the wire
from a to d goes through the space left of b, between b and
c, or right of c. The initial path-balancing thus inserts buffers
to denote such path propagation locations for each wire that
connects non-consecutive LUT layers (Line 3). During LUT
rewriting, these buffers are extended to buffer chains to meet
the path-balancing constraint.

To minimize crossings, the initial buffers are inserted in
a locally optimal way, keeping a fixed ordering of LUTs.
I.e, for a LUT a in level ℓ, if a buffer needs to be inserted
in level ℓ + 1, it is placed at the location that minimizes
the number of level-ℓ-to-level-ℓ + 1 connections that cross
the path from the LUT to the buffer. After buffer insertion,
crossing optimization is performed for each level (Line 4)
by swapping adjacent node pairs in each level as long as it
leads to fewer crossings.

Substituting LUTs from the database entries: In the final
step, the path-balanced network is reconstructed in a level-
by-level fashion (Lines 6-16). Reconstructing level ℓ + 1
consists of three main steps: 1) for each LUT in ℓ + 1,
their fanins are reordered to avoid crossings between pairs of
their fanins, and the node functions are altered accordingly
(Lines 9-10); 2) zero or more layers, each consisting of
buffers/splitters/crossings, are inserted between level ℓ and
ℓ+ 1 to obtain the fanins of level ℓ+ 1 in the correct order
(Line 12); and 3) the LUTs in level ℓ+1 are replaced with the
respective optimal structures from the database (Lines 14-15).
The database includes entries for all 4-input NN classes but
does not include all input/output inverted versions to avoid
pre-computing the entire domain of 4-input functions. Hence,
the algorithm considers all possible input/output inversions
for LUT node functions and finds a match in the database.
Then, the LUT is replaced with the found entry, after
applying appropriate input/output inversions.

Run-time and space complexity: The run-time and space
complexity of our algorithm is dominated by the crossing
insertion between two consecutive levels in Line 12. If the
number of gates in layer ℓ is nℓ and mℓ = max(nℓ, nℓ−1),
then the worst-case for this step would need O(mℓ)-many
new layers each consisting of O(mℓ) crossings/buffers (con-
sider the case where outputs of level ℓ− 1 are connected to
the inputs of level ℓ in the opposite order). Thus the total
run-time and space needed for this step is O(

∑L
ℓ=1 m

2
ℓ),

which is O(n2) in the worst-case where n is the size of
the network. As the database of optimum substructures is
computed for constant-sized functions, each database entry
has constant size, and with proper indexing, the lookup is



TABLE I: Results of the proposed technology mapping approach on the ISCAS [33] and EPFL [34] benchmark suites.

Benchmark Circuit State of the Art [35] Proposed Approach

Name PI PO Gates Depth Total
Nodes Buffers Crossings CP Total

Nodes Buffers Crossings CP Runtime
in sec.

Buffers
impr. %

Crossings
impr. %

CP
impr. %

IS
C

A
S8

5
[3

3]

c17 5 2 6 3 99 69 16 26 63 31 6 13 0.04 55.1 62.5 50.0
c432 36 7 208 26 35 776 31 131 4201 701 14 910 12 170 1973 299 0.06 60.9 53.0 57.3
c499 41 32 398 19 94 621 88 261 5456 1402 11 842 8754 1948 227 0.06 90.1 64.3 83.8
c880 60 26 325 25 70 108 61 040 8438 1062 28 920 23 055 4593 457 0.07 62.2 45.6 57.0
c1355 41 32 502 25 117 056 109 738 6198 1722 11 565 8521 1936 219 0.06 92.2 68.8 87.3
c1908 33 25 341 27 77 950 71 177 5995 1201 17 201 14 026 2187 364 0.06 80.3 63.5 69.7
c2670 157 64 716 20 323 824 281 067 41 267 2464 88 295 72 777 13 613 774 0.11 74.1 67.0 68.6
c3540 50 22 1024 41 587 468 531 807 53 498 3280 97 627 65 925 28 312 977 0.11 87.6 47.1 70.2
c5315 178 123 1776 37 1 864 282 1 710 369 150 222 5869 301 880 246 660 50 522 1504 0.27 85.6 66.4 74.4
c6288 32 32 2337 120 988 542 939 626 42 447 8901 97 313 73 052 15 542 1280 0.15 92.2 63.4 85.6
c7552 207 108 1469 26 1 481 318 1 351 266 126 753 5169 411 383 333 298 73 019 1797 0.36 75.3 42.4 65.2

E
PF

L
[3

4]

adder 256 129 1020 255 794 313 708 447 83 316 4083 2 181 853 2 146 359 31 625 9350 1.65 −203.0 62.0 −129.0
arbiter 256 129 11 839 87 61 392 432 56 342 578 5 025 982 36 160 7 432 960 6 661 959 731 089 11 646 6.10 88.2 85.5 67.8
bar 135 128 3336 12 4 050 823 3 680 537 363 230 10 782 1 023 446 448 804 562 234 2369 0.63 87.8 −54.8 78.0
cavlc 10 11 693 16 286 509 259 800 25 100 2333 86 999 54 839 29 403 760 0.09 78.9 −17.1 67.4
ctrl 7 26 174 10 28 188 25 097 2667 654 4480 2689 1273 128 0.05 89.3 52.3 80.4
dec 8 256 304 3 161 857 154 666 6871 1143 25 321 3859 19 894 215 0.06 97.5 −189.5 81.2
i2c 147 142 1342 20 1 129 553 1 030 768 95 968 4568 294 762 238 114 52 198 1163 0.30 76.9 45.6 74.5
int2float 11 7 260 16 48 219 42 793 4875 833 12 161 8175 3124 293 0.06 80.9 35.9 64.8
max 512 130 2865 287 5 378 865 4 720 729 651 642 10 130 6 182 860 5 879 043 294 321 11 589 8.53 −24.5 54.8 −14.4
priority 128 8 978 250 668 097 607 825 57 916 3477 290 810 273 901 13 407 2487 0.25 54.9 76.9 28.5
router 60 30 257 54 54 074 45 627 7955 814 20 033 18 439 648 348 0.06 59.6 91.9 57.2
sin 24 25 5416 225 8 237 614 7 711 879 514 234 16 990 1 145 537 934 129 192 740 6340 0.64 87.9 62.5 62.7
voter 1001 1 13 758 70 53 955 839 50 500 625 3 421 110 48 864 3 375 273 2 734 141 601 139 5442 7.60 94.6 82.4 88.9

div 128 128 57 247 4372 out of memory 104 918 980 101 310 752 3 409 196 249 354 56.49 — — —
hyp 256 128 214 335 24 801 out of memory 1 128 917 685 1 029 593 313 98 519 782 1 226 868 1172.27 — — —
log2 32 32 32 060 444 out of memory 24 816 049 20 493 947 4 215 965 47 005 10.22 — — —
mem ctrl 1204 1231 46 836 114 out of memory 371 071 747 341 555 500 29 369 279 108 019 577.26 — — —
multiplier 128 128 27 062 274 out of memory 33 370 845 28 610 811 4 668 200 28 842 16.83 — — —
sqrt 128 64 24 618 5058 out of memory 41 768 215 41 226 185 470 491 169 800 26.22 — — —
square 64 128 18 484 250 out of memory 17 588 918 14 252 309 3 266 047 14 747 7.36 — — —

Weighted average 84.5 74.5 65.2

also constant time; hence replacing the LUTs with optimum
structures increases the run-time by only a constant factor.

IV. EXPERIMENTAL EVALUATION

This section constitutes a quantitative evaluation of the
proposed technology mapping algorithm.

A. Experimental Setup
The proposed algorithm was implemented in C++ on top

of the open-source tools mockturtle [36] and fiction [30]
and evaluated using the ISCAS85 benchmarks [33] and
EPFL Benchmark Suite [34]. We generated a database of
optimal FCN layouts—relying on state-of-the-art technology
constraints [37]—implementing all 5328 canonical NN rep-
resentatives as Verilog modules. (Total uncompressed size is
12MB.) We then applied the proposed technology mapping
algorithm to all circuits in the aforementioned benchmark
suites. We measured the resulting gate-level costs concerning
the number of buffers (including splitters), number of cross-
ings, and critical path (CP) length, and compared them with
the results of the best available (to best of our knowledge)
large-scale FCN physical design algorithm that can handle
layouts with more than 100 million tiles [35]. The imple-
mentation of [35] is publicly available [30], which enabled
us to run all experiments with the same set of configurations.
All evaluations were run on a MacBook Pro M1 with 10 CPU
cores, 16 GPU cores, and 32GB of RAM.

B. Results
To enable a fair comparison, we applied both our proposed

algorithm and the state-of-the-art FCN algorithm [35] to all
benchmarks, without performing any prior logic optimiza-
tion.

The obtained results are shown in Table I. It lists the initial
properties of the benchmarks under Benchmark Circuit; the
columns under State of the Art indicate the statistics of the
FCN layouts generated by [35]; and those under Proposed

Approach show results obtained from our technology map-
ping algorithm when applied to the FCN domain. For both
algorithms, it lists the number of total nodes, the number of
buffers (including splitters) and crossings, and the critical
path (CP) length. The last three columns show relative
improvements in buffer, crossing, and CP costs. The final
row states a weighted average for the reductions in costs
across all benchmarks (excluding those for which the state
of the art could not generate a solution).

The proposed method consistently achieves over 50%
improvement in the CP length for all benchmarks except for
three. A similar level of improvement is also evident in the
numbers of crossings and buffers for most of the benchmarks
within a similar run-time. The average reductions for the
number of buffers, number of crossings, and CP length are
84.5%, 74.5%, and 65.2%, respectively, which is a major
improvement over the state of the art. Moreover, our method
is more scalable as it yields results for the seven EPFL
benchmarks on which the state of the art ran out of memory.

On the downside, a degradation of the CP length for bench-
mark ‘adder’, and a similar order of magnitude degradation
of the number of crossings for benchmark ‘dec’ can be
noticed, which appear to be outliers. However, it is to be
noted that the benchmark ‘adder’ exhibits an improvement
in the number of crossings, and the benchmark ‘dec’ shows
an improvement in the CP length. Generally, an increase in
the number of crossings results in an increase in the CP
length, but, as the results for these outliers suggest, this is
not always the case. The CP length is more related to the
maximum number of crossings a single wire has than to the
total number of crossings. That is, if there is a single wire
that crosses m other wires and no other pairs of wires cross,
the planarization needs at least m crossing layers and thus
increases the CP delay by m levels. On the other hand, even
if there are m crossings between two layers, if each wire
only crosses a handful of other wires, that structure can be
planarized with much fewer crossing layers, so the CP length



will be small. Thus, to minimize the CP length, a better
objective is to minimize the maximum number of crossings
for any wire, rather than minimizing the total number of
crossings.

Additionally, when our crossing optimization and pla-
narization steps are applied directly to the ‘adder’ AIG
without any LUT-mapping, it yields a much better CP length.
This implies that LUT mapping results in an increased
amount of crossings among the resulting LUT nodes, which,
in turn, increases the number of logic levels due to crossings
that occur in series. I.e., LUT mapping on ‘adder’ seems to
over-optimize for LUT depth, inadvertently making it harder
to planarize, because the LUT mapping stage is unaware
of the technology constraints. Thus, it seems promising to
conduct further research on technology-aware decomposition
techniques, which will help mitigate such outlier situations.

V. CONCLUSION

Many technological implementations in the beyond-CMOS
domain come with unconventional cost functions that are
not respected by classical logic synthesis and, hence, cause
significant overhead in the physical design stage.

In this paper, we proposed an algorithm for technology
mapping of beyond-CMOS circuitry that respects these un-
conventional cost functions via the application of a physical
design database of optimal circuit layouts that is employed
for logic rewriting, thus capturing cost factors that would
otherwise remain transparent to the logic synthesis. Via an
experimental evaluation, we showed that the proposed algo-
rithm delivers average improvements of 84.5%, 74.5%, and
65.2% for the number of buffers, the number of crossings,
and the critical path length, respectively, as compared to a
state-of-the-art physical design algorithm for FCN circuits.
Furthermore, results could be obtained for the seven largest
EPFL benchmark circuits on which the state of the art ran
out of memory, proving our approach to be more scalable.
Thereby, this work constitutes a major improvement for the
design automation of several emerging beyond-CMOS tech-
nology classes, which enables the cost-effective realization
and integration of large-scale circuits in this domain.
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