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Abstract—Trapped-ion quantum computers hold significant
promise as platforms for high-quality qubits and reliable quan-
tum computation. The Quantum Charge Coupled Device (QCCD)
architecture shows potential in enabling scalable trapped-ion
quantum computers through its modular design. Within QCCD
devices, ions can be shuttled throughout the trap, which is divided
into different dedicated zones, e.g. a memory zone for storage
and a processing zone for actual computation. While the modular
approach shows promise, designing a large-scale QCCD device
remains challenging due to the numerous possibilities involved
in designing the precise architecture of the hardware. In this
work, we propose leveraging existing compilers to evaluate design
choices in the development of QCCD architectures. Rather than
compiling specifically for a single device, we use the compiler
to explore and evaluate the execution of representative quantum
circuits on various architectures. This allows for a fast assessment
of different design choices, considering individual requirements
and physical limitations. To validate the feasibility of this idea,
we conducted a study focusing on key design decisions, including
system size, junction density, processing zone positioning, and
the benefits of SWAP operations within the memory zone. Based
on these results, we are able to provide first recommendations
and insights for the design of future QCCD architectures.

Index Terms—quantum computing, trapped ions, shuttling

I. INTRODUCTION

Quantum computers are built to exploit quantum phenomena
such as superposition (where a quantum state can be com-
posed of multiple basis states) and entanglement (a type of
correlation that is not present in classical mechanics) to per-
form calculations beyond the capabilities of today’s classical
computers. Classical examples of such calculations include
algorithms like Shor’s algorithm for integer factorization [1],
Grover’s search for unstructured data search [2], and simula-
tions in quantum chemistry [3]. Accelerating the progress in
this field, companies such as IBM, Google, Microsoft, Rigetti,
AQT, Infineon Technologies, Quantinuum, IonQ, IQM, and
more are investing actively in this technology.

Quantum computers have been realized on several physical
platforms, such as superconducting quantum computers [4],
neutral atom quantum computers [5], [6], or optical quantum
computers [7]. Among those, trapped-ion quantum computers

are a strong contender to demonstrate quantum advantage in
the foreseeable future [8].

Despite their promise, the development of trapped-ion quan-
tum computers as scalable platforms still proves to be chal-
lenging. However, the modularity of the QCCD architecture
allows for a large degree of freedom in the design of such
devices. Moreover, state-of-the-art hardware implementations
change rapidly, which opens up even more possibilities. This
leads to a situation, where a lot of optimization in the design
of new architectures would be possible, but the hardware
community lacks tools to evaluate their design choices and
make use of this potential.

In this work, we propose to use existing software tools
to evaluate key design choices in state-of-the-art and future
QCCD architectures. More precisely, we discuss the use of
shuttling compilers as a way of simulating the execution of
quantum algorithms on shuttling-based QCCD devices. For
this matter, we conduct a study of four design choices that
cover critical aspects of the design process, ranging from
the actual design of the hardware to the evaluation of new
technical advancements. We present first results for all four
design choices and provide precise insights for grid-type
QCCD architectures.

The remainder of this paper is structured as follows:
Section II provides background on trapped-ion quantum com-
puters and QCCD architectures. Section III motivates the prob-
lem and outlines the general idea of the proposed approach.
Section IV discusses the specifics of the four considered design
choices. Section V summarizes the obtained results. Finally,
Section VI concludes the paper.

II. BACKGROUND

In this section, we provide an overview of trapped-ion
quantum computing and the challenges involved in de-
signing state-of-the-art and future devices. It introduces
the Quantum Charge Coupled Device (QCCD) architecture,
which promises to enable scalable trapped-ion quantum com-
puting. For a more detailed description, further references are
provided.
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Fig. 1: An illustration of a possible ion trap realization as a surface trap module, which can be connected to a linear and a
grid-type QCCD architecture. A correct combination of radio-frequency (RF) and quasi-static (DC) electric fields produced by
control electronics creates a potential that confines the ions.

A. Trapped-Ion Quantum Computing

Ions can be confined in an ion trap. The so called Paul
traps isolate and control the position of their ions with electric
fields. A combination of radio-frequency and quasi-static elec-
tric fields creates an electric potential that confines multiple
ions arranged in a chain-like configuration. Importantly for
quantum computing, the internal states of the ions can be
manipulated via electromagnetic interactions, either in the
optical or microwave domain. [9]–[11]

Example 1. For example, the so Paul trap is a commonly used
ion trap that can be also realized as a two-dimensional (2D)
surface trap. Figure 1a illustrates the resulting configuration
of control elements (radio-frequency, light-blue and quasi-
static, dark-blue). Individual ions are illustrated as orange
spheres. These ion chains have been coined ion registers,
because they may be used similarly to registers in classical
computers. We refer to this kind of a surface trap module as
a trap site.

However, scaling up the number of ions N in a single trap
decreases the gate speed approximately as Rgate ∼ 1√

N
. This

makes the scaling of single chains challenging for practical
quantum algorithms that require more qubits.

B. Quantum Charge Coupled Device Architecture

The Quantum Charge Coupled Device (QCCD) architecture
was introduced in [12] to tackle this challenge. Single linear
trap modules can be connected to form a larger trap, which
holds one ion chain at each site. Such architectures can exploit
another advantage of ion traps: shuttling. Moving the ions
within these modular architectures allows all-to-all connec-
tivity of all qubits. To exploit this even further, the QCCD
architecture proposes to use different parts of its system for
different purposes. For example, a zone (constructed from one
or multiple individual sites) can be dedicated as a processing
zone that is specifically designed to perform efficient quantum
gates. Another zone can be used as a memory zone, which is
protected from potential sources of decoherence. Additional
zones may include regions for measuring qubits (measurement
zone) or loading new ions into the system (loading zone).

Example 2. Consider the linear QCCD architecture illus-
trated in Figure 1b. We refer to this kind of a system as a linear
trap. The device is designed as multiple trap sites connected
in a straight line. One individual site is marked in Figure 1b.
Within these linear devices, ion chains can be shuttled to a
neighboring site.

Linear traps lack the ability to move ions past each other.
Resolving a blockage would require slow interactions like
chain reordering and reconfiguration. To circumvent this,
QCCD architectures can be extended with junctions, that
connect linear regions to form two-dimensional systems.

Example 3. Figure 1c illustrates a QCCD architecture in a
grid-type configuration of linear traps and “X”-junctions.

Junctions can be built to connect linear regions in various
ways. Different types of junctions (i.e., termed “T”-, “Y”-
or “X”-junctions, where the capital letter is referring to their
shape), can completely change the layout of devices.

III. MOTIVATION

Quantum computers using the QCCD architecture have
already been demonstrated in [11], [13], and recently as a
first two-dimensional architecture in [14]. However, designing
these devices is challenging, and there is a need for enhanced
tool support to evaluate design choices for future devices.

A. General Design Process

Central to the functionality of QCCD architectures is the
ability to shuttle ions between various functional zones ef-
fectively. Design choices can heavily affect these shuttling
capabilities, e.g. the choice of an architecture significantly
influences how ion chains can be moved around and, hence,
how fast a given quantum circuit can be executed. Since
trap sites and junctions in trapped-ion quantum computers
can be freely connected, there is a significant degree of
freedom involved in the development of QCCD architectures.
Junctions can be designed to fit connections in every direction,
which allows the design of new devices in various shapes.
Additionally, control electronics and optics have to be scaled
to fit demands and integrated into the device. Moreover,
continual technological advancements and new hardware im-
plementations are reshaping the methods by which ions are



controlled and manipulated, further enhancing the flexibility
and capability, but also increasing the complexity of these
quantum computing systems. Unfortunately, there exist little
to no means to simulate the effect of these design choices and,
hence, their impact on the overall performance of new devices.

B. Existing Compiler Frameworks

While the community lacks support for the evaluation of
actual ion trap hardware, there already exist multiple compiler
frameworks developed for various QCCD architectures. These
compiler tools provide a large playing ground to experiment
with and allow developers to predict system behavior and per-
formance across various hypothetical architectures without the
need of actual physical hardware. In [15] general architectures
can be constructed by connecting trap sites and junctions to
form a graph structure. For small, near-term devices, [16]–[18]
provide compilation support and even running full quantum
circuits on large machines is supported by [19], [20].

C. General Idea

In this work, we propose an innovative application of these
compiler frameworks to not only compile a quantum circuit but
also to simulate the execution across different architectures.
This allows us to assess various metrics, aiding in the design
of more efficient quantum devices and expanding the utility of
existing tool support. To guide the design process, we define
and discuss key design choices of QCCD architectures. These
choices revolve around optimizing the system’s physical layout
and shuttling mechanics to minimize the execution time of
quantum circuits. Using representative quantum circuits, we
systematically evaluate these design choices. The outcomes
from these evaluations will not only provide new insights
but also generate first practical recommendations for grid-type
QCCD architectures.

IV. EXPLORATION OF KEY DESIGN CHOICES

Determining the optimal architecture of a shuttling-based
quantum computing device is crucial for efficient qubit pro-
cessing and storage. This section explores four design choices
in the general context of QCCD devices, that are aimed toward
helping in the decision making process of hardware experts.
Respective evaluations are presented in the subsequent section.

A fundamental aspect to consider is the size of a shuttling-
based device. Specifically, determining the most suitable size
of the ion trap to effectively process and store a given number
of qubits required by different quantum algorithms. Obviously,
the goal of current research is to scale quantum systems and
build large-scale devices. For a given amount of ions, more
space to move freely reduces the complexity of the shuttling
operations and, thus, decreases execution time and potential
decoherence. On the other hand, constructing larger devices
introduces significant engineering challenges, increased costs,
and the need for a larger and more complex control system.
That is, larger architectures should only be considered if it
indeed is helpful and actually improves the execution of the
considered quantum circuits. This leads us to the first crucial
design question:

Design Choice 1: What is a good size of the trap, given a
fixed number of qubits that must be processed and stored?

Example 4. Consider the illustration of a QCCD grid-like
device in Figure 2a. Both the memory zone and processing
zone are indicated. The figure also depicts a closer look at a
linear region in between two junctions, that holds up to two
individual ion chains. Ranging from 3×3 to 5×5, architectures
with an increasing size of the memory zone grid are shown in
the top-left box of Figure 2b.

As a second design choice, we look into the effect of
junctions on the shuttling efficiency. Integrating more and
more junctions into the architecture is a logical next step in
the design of large-scale devices. More junctions increase the
connectivity of the individual linear regions in the memory
zone and, thus, prevent bottlenecks and may allow smoother,
more efficient ion transportation. On the other hand, junctions
inherently slow operational speeds, since, as of right now,
ions can not be moved through junctions at the same speed
as through linear regions. Additionally, they also increase the
complexity of new devices and lead to additional engineering
challenges. This presents a critical trade-off: is the potential
increase in shuttling efficiency worth the added complexity and
reduced operational speed? Summarized as our second design
question, this reads:
Design Choice 2: How does the number of junctions in
a QCCD architecture — many versus few — affect overall
performance?

Example 5. The two architectures in Figure 2b illustrate a
3×3 (left) and a 6×6 (right) grid-like QCCD device. To match
the capacity of the larger grid, the linear regions between the
junctions of the 3× 3 grid can hold more ion chains than the
smaller linear regions within the 6 × 6 grid. In contrast to
that, the right grid employs more junctions than the one on
the left.

Another crucial role in the design process plays the po-
sitioning of the processing zones within these architectures
and the effect on the system’s performance. Architectures vary
widely—some incorporate multiple smaller processing zones
dispersed throughout the trap, while others utilize a single
processing zone linked directly to the memory zone. In either
case, it is not yet clear how much the positions of these zones
impact the shuttling efficiency of the devices. This constitutes
the third design choice:
Design Choice 3: How should the processing zone be posi-
tioned in relation to the memory zone to maximize shuttling
efficiency and minimize circuit execution times?

Example 6. Similar to the example of design choice 2, the
lower-left box in Figure 2b conceptualizes two different device
realizations: one device with a grid-like memory zone which
is separated from a processing zone on its outer edge, and one
grid-like device that incorporates the processing zone into the
the memory zone.
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(a) Illustration of a grid-type QCCD architecture
with a memory and processing zone
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(b) Design Choices: (1) System size; (2) Number of junctions; (3) Position
of the processing zone; (4) Physical swapping

Fig. 2: Illustration of the considered design choices

As mentioned earlier, new research continues to introduce
and improve methods for improved shuttling and manipulation
of ions. Even though some of these improvements are still
in early development and may not even be feasible in the
near-term future, we can already evaluate the impact they
might have. As an example, consider the physical swap of
two ions [21] or even the swapping of two individual ion
chains, for which only the rotation of one chain has been
studied yet [22]. Physical swapping can be a direct solution to
resolve blockages in the memory zone and potentially reduce
the complexity of the shuttling operation, but might introduce
new risks of errors, especially in densely populated traps.
On the other hand, utilizing compiler algorithms to re-route
ions around blockages might increase the overall coherence
time of the qubits by minimizing disturbances and allows the
memory zone to be optimized for shuttling only. With the
help of a suitable compiler, we can compare the effectiveness
of physically swapping ions or ion chains with the results of a
compiler managing blocking ions by moving them out of the
way. This constitutes a fourth design choice:
Design Choice 4: How much improvement is achieved by
physically swapping ions or ion chains in the memory zone
compared to algorithmic relocation of blocking ions through
shuttling operations?

Example 7. Similar to the illustration in Figure 2a, a linear
region between two junctions is exemplified in the lower-
right box of Figure 2b. Ion chains can be rotated in space
using the control electronics of the device. In future devices,
it may be also possible to move chains around one another
and consequently swap the positions of two chains, which is
indicated in the figure.

Thus far, all design choices discussed above have hardly
been evaluated using automatic methods—usually the designer
decided upon those mainly by “gut feeling” or expertise.
Using the idea proposed in Section III allows to evaluate what
choices lead to an improvement in the performance of QCCD

devices and, hence, are worth additional efforts in implement-
ing those. To illustrate that, all four design choices mentioned
above have been considered individually and evaluated on a set
of representative quantum circuits. Correspondingly obtained
results are summarized in the following section. Based on the
results, designer can decide whether these choices are worth
their trade-offs.

V. EVALUATION

To assess the impact of the discussed design choices, we
employ an existing quantum compiler to simulate various sce-
narios. These simulations help to evaluate how certain design
choices would affect the efficiency and performance of QCCD
architectures as well as the consequences of these trade-offs.
By this, we provide insight on whether corresponding physical
challenges in the design of new devices are worth the effort.

A. Detailed Setup

For all our evaluations, we utilized the shuttling compiler
described in [20], which is publicly available as part of
the open-source Munich Quantum Toolkit (MQT, [23]) at
https://github.com/cda-tum/mqt-ion-shuttler. This compiler is
specifically designed for grid-type QCCD architectures, which
feature a dedicated memory grid connected to a distinct
processing zone. The compiler orchestrates the movement of
ions from the memory zone to the processing zone—this is
crucial for our evaluation purposes, as the majority of ion
movements occur between these two zones. The configuration
with one dedicated processing zone puts the focus on efficient
ion movement and organization within the memory zone. The
compiler operates by moving all ions required for computation
on their shortest possible path to the processing zone. In
instances where blockages arise during shuttling, the compiler
uses a cycle-based algorithm to resolve these, i.e. the compiler
creates cycles along the paths of the ions and collectively
moves all ions on these cycles. This allows the ions to continue
on their shortest paths while also moving blocking ions out of
the way, without directly swapping positions of ion chains.

https://github.com/cda-tum/mqt-ion-shuttler
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Fig. 3: Evaluation of Key Design Choices

Each architecture follows the same pattern: a grid-type
memory zone described by m×n, where m defines the number
of linear regions vertically and n the number of linear regions
horizontally. The processing zone is a one-way connection to
the memory zone and is able to perform single-qubit and two-
qubit gates on up to two ion chains.

Since over time, ions collect phonons [24], which lead
to decoherence of the qubits’ quantum information, ions are
usually cooled to or close to the ground state. Especially
for large systems, it still remains challenging to integrate the
required optical control elements to achieve these conditions.
Accordingly, the compiler aims to minimize the execution
time of quantum circuits. As a consequence, we use circuit
execution time (measured as time steps) as the comparable
metric for all following evaluations.

B. Evaluation of the considered Design Choices
The discussed compiler was used to study the four design

choices reviewed in Section IV. For each design choice, we
evaluate a precise objective, lay out the used implementation
and discuss the obtained results (which are summarized
in Figure 3). The experiments start with random initial
positions of the ion chains within the system and each result
is averaged over five runs with different initial configurations.
The high-level circuits are provided by [25].

1) System Size for Grid-type Architectures:
Objective: Determine the optimal size of the ion trap given

a fixed number of ion chains. The size of the trap balances

the advantages of reduced traffic in larger traps and increased
accessibility of ion chains and compactness of smaller devices.

Implementation: For this experiment, we use the compiler
to generate shuttling schedules for grid-type architectures with
varying trap sizes. In the memory zone, all linear regions
within two junctions can hold up to two chains. The processing
zone is not part of the grid and placed outside of the memory
zone. It can be accessed via a one-way connection as illustrated
in Figure 2. The performance of each grid size is evaluated
by moving all ion chains of the system into and out of the
processing zone randomly, i.e. for a given amount of ion
chains, we try to find the grid size that processes all chains
in the least amount of time. This is equivalent to applying
a gate to each ion chain in the system. This simulates the
accessibility of all ions in the device, which provides a simple,
but general metric for the performance of a memory zone. In
the following, this particular circuit is referred to as “register
access”.

Results: The plot in the top part of Figure 3a displays
the execution time for different grid sizes measured in
time steps of the shuttling algorithm (lower is better).
The experiment was performed with ion chains ranging
from 10 to 140. For each run, the best performing grid
size was recorded and the results were converted to a bar
diagram shown in the bottom part. Notably, the 8 × 8 grid
achieved the shortest execution time in 9 out of 14 cases. This
is also shown as a bar diagram in the bottom part of Figure 3a.



2) Impact of the Number of Junctions:
Objective: Examine the trade-off between employing many

versus few junctions in a QCCD grid architecture. This evalu-
ation seeks to determine how the number of junctions affects
execution speed and, with that, the accessibility of ion chains
in the memory zone.

Implementation: With the help of the compiler, we evaluated
quantum circuits on architectures with varying numbers of
junctions. We focused on two scenarios with two distinct
architectures each: a 8 × 8 (6 × 6) grid with two ion chain
positions between two junctions as the representative of a
densely packed architecture against a sparser architecture built
from a 4×4 (3×3) grid with 10 ion chain positions in between.
In both scenarios, the two architectures (8 × 8 versus 4 × 4
and 6× 6 versus 3× 3) can hold roughly the same amount of
ion chains. For each configuration, we tracked the execution
time of the “register access” circuit on 10 to 120 ion chains.

Results: The results, depicted in Figure 3b, illustrate
the execution times for all four architectures. The two
architectures with a higher number of junctions significantly
outperform the two sparser grids. The higher density of
junctions decreases the number of blockages that occur in the
shuttling operations and, thus, ion chains are able to more
frequently avoid traffic.

3) Positioning of the Processing Zone:
Objective: Compare the effects of positioning the processing

zone outside versus in the middle of the memory zone.
Implementation: The compiler was used to simulate two

distinct setups: one with the processing zone centrally located
within the memory zone, and one with the processing zone
positioned outside of the memory zone. To perform this
experiment, we extended the framework of the compiler to
support the positioning of the processing zone inside the
grid of the memory zone. To make room for the processing
zone, we removed the linear regions in the middle of the
grid. Integrating the processing zone symmetrically into the
memory zone is only possible for odd grid sizes, which is why
Figure Figure 3c only includes those. Instead of conducting
runs with varying numbers of ion chains in the system,
half of the available ion chain positions were filled for all
runs. Similar to the earlier experiments, we used the “register
access” circuit to investigate the accessibility of the ion chains.

Results: The only difference of the two runs is the
position of the processing zone in relation to the memory
zone. Figure 3c shows the results of the experiment: for all
evaluated grid sizes, the architecture with the processing zone
placed into the mid-part outperformed a processing zone at
the border of the device with respect to the execution time.

4) Physical Swapping of Ion Chains:
Objective: Evaluate the effectiveness of physical ion chain

swaps versus ion relocation in resolving blockages in the
memory zone.

Implementation: In the last experiment, we use the compiler
to compare two strategies: direct physical swaps of ion chains
and compiler algorithms that reroute ions to circumvent block-

ages. Since the compiler removes blockages only by shuttling
ion chains along cycles, we extended the framework to also
support physical swaps. The algorithm then works in the same
way as described above: the required ion chains are shuttled
on their shortest path to the processing zone until blockages
occur. Instead of creating the mentioned cycles, the considered
ion chains swap positions and continue on their path.

Results: We again increase the grid sizes and fill half of
the system’s chain positions. Figure 3d shows the resulting
execution times for two different circuits. We found differences
between physical swapping and non-swapping for the “register
access” circuit (top) and the GHZ state circuit (bottom), with
the physical swapping showing an advantage in both cases.

The cycle-based compiler also includes an additional com-
pilation step, that, after each gate execution, picks the best next
gate in relation to the distance of the ions from the processing
zone. In a second series of evaluations, we measured the
impact of this step on the circuit of the GHZ state. The
results are included in the plot in the bottom part. It shows
that the advantage of physical swapping decreases significantly
compared to the runs without the additional compilation step.
This suggests that, in this case, improving the efficiency of the
shuttling compiler can compensate the advantages of physical
swapping ion chains in grid-type architectures.

VI. CONCLUSION

QCCD architectures promise to enable scalable quantum
computing with trapped ions, yet the development of these
devices demands software tools to optimize the design of the
hardware. In this paper, we proposed the idea of extending
the application of existing compiler frameworks to not only
compile but also evaluate various QCCD architectures. We
discussed four crucial design choices to illustrate potential
use cases and conducted evaluations to discuss their impact.
While this study is only a first approach, it reveals early
trends in execution times for different grid architectures, which
are critical for optimizing performance. These initial results
already provide first recommendations and insights for future
QCCD architectures. This showcases the potential of using
existing compiler frameworks to evaluate different choices
in hardware design of QCCD architectures. Motivated by
this, future work includes studying a broader selection of
architectures and exploring the benefits of using multiple
memory and processing zones, as well as evaluating different
performance metrics, such as phonon acquisition.
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