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Abstract—Leveraging quantum computers for optimization
problems holds promise across various application domains.
Nevertheless, utilizing respective quantum computing solvers
requires describing the optimization problem according to the
Quadratic Unconstrained Binary Optimization (QUBO) formalism
and selecting a proper solver for the application of interest
with a reasonable setting. Both demand significant proficiency in
quantum computing, QUBO formulation, and quantum solvers,
a background that usually cannot be assumed by end users who
are domain experts rather than quantum computing specialists.
While tools aid in QUBO formulations, support for selecting the
best-solving approach remains absent. This becomes even more
challenging because selecting the best solver for a problem heavily
depends on the problem itself.

In this work, we are accepting this challenge and propose a
predictive selection approach, which aids end users in this task.
To this end, the solver selection task is first formulated as a
classification task that is suitable to be solved by supervised
machine learning. Based on that, we then propose strategies
for adjusting solver parameters based on problem size and
characteristics.

Experimental evaluations, considering more than 500 different
QUBO problems, confirm the benefits of the proposed solution.
In fact, we show that in more than 70% of the cases, the best
solver is selected, and in about 90% of the problems, a solver in
the top two, i.e., the best or its closest suboptimum, is selected.

This exploration proves the potential of machine learning
in quantum solver selection and lays the foundations for its
automation, broadening access to quantum optimization for a
wider range of users.

The pre-trained classifier is integrated into the MQT Quantum
Auto Optimizer (MQT QAO) framework, publicly available
on GitHub (https://github.com/cda-tum/mqt-qao) as part of the
Munich Quantum Toolkit (MQT).

Index Terms—Machine Learning, Predictive Models, QUBO,
Quantum Optimization, Quantum Annealer, Quantum Approxi-
mate Optimization Algorithm, Variational Quantum Eigensolver,
Grover Adaptive Search

I. INTRODUCTION

Quantum computing holds promise for solving optimiza-
tion problems across various application fields, including fi-
nance [1], resource allocation [2], and scheduling [3]. How-
ever, harnessing quantum optimization—i.e., solving optimiza-
tion problems leveraging quantum computers—demands ex-
pertise in quantum computing, especially when formulating
optimization problems in a format suitable for quantum com-
puters such as QUBO and selecting the most promising solver
to determine the result.

This poses a challenge for researchers and industries not di-
rectly involved in quantum computation, hindering their initial
exploration of quantum solutions for real-world applications.

While some frameworks for supporting the translation of
optimization problems into a quantum-compliant format exist,
such as that proposed in [4]–[9], the literature lacks tools to
assist in leveraging quantum solvers, including both selecting
the most promising solver and its respective parameters.
Unfortunately, executing and evaluating all quantum solvers
and their parameters configurations can be expensive both in
terms of time and money, especially considering the limitations
of nowaday quantum computers, making this naive approach
unfeasible. For these reasons, automating solver selection and
its parameter configuration can significantly streamline the
process, enabling users to achieve good results with minimal
effort and expanding access to quantum optimization for a
broader range of users.

This work proposes approaching the challenge of selecting
solvers as a classification task, considering the most popular
quantum solvers—i.e., Quantum Annealer, Quantum Approx-
imate Optimization Algorithm, Variational Quantum Eigen-
solver, and Grover Adaptive Search—and supervised machine
learning models. In addition to quantum solvers, the model
also considers the classical Simulated Annealing, the classical
counterpart of Quantum Annealing. By including a classical
solver, we demonstrate the versatility of the approach and that
the model could be further expanded by adding more classical
and quantum solvers. In this way, the classifier can identify
the optimal quantum solver and distinguish problems that
could gain advantages from quantum exploration compared
to classical methods [10]. Moreover, in this article, some
techniques for adjusting solver parameters based on problem
size and characteristics are proposed.

The considered dataset has been obtained by solving more
than 500 different QUBO problems. The obtained results are
promising since the solvers’ setting guarantees, on average,
promising results, and the best solver is identified in more
than 70% of the cases. Moreover, a solver in the top two, i.e.,
the best or its closest suboptimum, is selected in about 90%
of the considered problems.

This exploration proves the potential of supervised machine
learning in selecting the best solver for a problem, significantly
enhancing the accessibility of quantum optimization across a
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wider range of users. The predictor streamlines the solver
selection process, hiding its complexity into a black box
solution. Consequently, end users can effortlessly evaluate the
quantum solution’s effectiveness for their application with-
out deep quantum solver expertise. Moreover, this approach
mitigates the resource-intensive task of executing multiple
solvers in terms of time and cost, providing a more efficient
pathway to identify potential quantum advantages. The pre-
trained classifier is integrated into the MQT Quantum Auto
Optimizer (MQT QAO) framework, publicly available on
GitHub (https://github.com/cda-tum/mqt-qao) as part of the
Munich Quantum Toolkit (MQT, [11]).

The rest of the article is organized as follows. Section II
briefly reviews quantum optimization, focusing on the work-
flow needed for solving an optimization problem with quan-
tum computers and quantum solvers. Section III outlines the
motivation behind this work and discusses the general idea.
The proposed supervised learning approach for solver selection
and the considered solver setting are presented in Section IV,
focusing on the methodology adopted for the classification
model development. The obtained results are provided in
Section V, while the effectiveness of the proposed approach is
examined in Section VI. Finally, in Section VII, conclusions
are drawn, and future perspectives are illustrated.

II. SOLVING OPTIMIZATION PROBLEMS
WITH QUANTUM COMPUTERS

This section reviews quantum optimization, concentrating
on the quantum-compliant problem formulation and quantum
solvers. Moreover, the main steps required for solving generic
optimization problems with quantum computers are summa-
rized.

To this end, two different paradigms of quantum computing
exploited to solve optimization problems are considered:

• quantum annealing, implemented through a
special-purpose quantum computer called quantum
annealer [12]–[16];

• quantum circuit model [17], defining proper algorithms
involving both classical and quantum or only quantum
computers general-purpose.

However, independently from the exploited paradigm, the
problem must be written into a compliant formulation involv-
ing only binary variables.

A. QUBO Model
The usual formulation for solving an optimization problem

leveraging quantum computers is the Quadratic Unconstrained
Binary Optimization (QUBO) model [18], [19]. This formula-
tion describes the problem involving only binary variables.
The quadratic term refers to the highest power applied to
these binary variables, and unconstrained indicates that the
constraints cannot be considered conventionally, but only via
introduction of quadratic penalties to the objective function.
Therefore, the corresponding objective function can be written
as

f(x) = c+
∑
i

xi · ai +
∑
i<j

bij · xixj , (1)

where xi ∈ [0, 1] is a binary variable, xixj is a coupler of two
variables, ai is a single-variable weight, bij is a strength that
controls the influence of variables i and j, and c is an offset,
which can be neglected during the optimization since it shifts
the entire objective function without altering the extremal
points.

B. Quantum Solvers

Different quantum solvers have been proposed for optimiza-
tion problems provided according to the QUBO model. The
most popular are briefly discussed in the following.

1) Quantum Annealer (QA, [12], [15], [16]) is a
special-purpose quantum computer designed to solve opti-
mization problems with the quantum annealing algorithm by
harnessing quantum superposition and tunneling to explore the
solution space of a given optimization problem.
It implements the quantum counterpart of a Simulated Anneal-
ing (SA, [20]) algorithm, which solves optimization problems
by encoding them in the energy of a system whose thermal
evolution for reaching the ground state is emulated to obtain
the optimal solution. Analogously, in QA, the quantum system
begins in a superposition of states and evolves following
the principles of the quantum adiabatic theorem towards its
lowest energy state, i.e., the problem’s optimal solution. The
system evolution, shown in Figure 1, is managed by a schedule
parameter known as the annealing time or annealing schedule,
which determines the rate at which the system transitions from
the initial to the final state. Properly setting this parameter is
crucial to ensure adiabaticity, which entails maintaining the
system’s ground state throughout the evolution process and
achieving high-quality solutions.
Quantum annealers comprise a set of qubits interconnected via
tunable couplers, forming a network known as the annealing
graph. The connectivity of this graph is constrained by the
qubit technology. A minor embedding [21] step is employed
to address this limitation and allows the mapping of a fully-
connected problem onto a partially-connected device. It maps
each QUBO variable to a set of strictly correlated physical
qubits, overcoming the connectivity constraint. This implies
that the number of qubits required for solving an optimization
problem could be significantly higher than the binary variables
involved.
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Fig. 1: Evolution of the Quantum Annealer system and com-
parison against Simulated Annealing exploration mechanism.

2) Quantum Approximate Optimization Algorithm (QAOA,
[22], [23]) is a hybrid quantum-classical technique for solving
optimization problems. It is a variational algorithm, i.e., an
iterative procedure applied to some parameters of the quantum
circuit, such as the rotation amounts of single-qubit gates.
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These parameters are optimized classically such that the final
quantum state encodes the optimal solution of the problem.
The variational circuit provides an overall unitary evolution
composed of a layer depending on problem Hamiltonian and
a mixed state Hamiltonian, as shown in Figure 2. This is
chosen to mimic quantum adiabatic evolution behavior through
Trotterization, a technique for approximating the continued
evolution with discretized steps. This is done by decom-
posing the evolution operator into a series of simpler time-
independent operators by using the Trotter-Suzuki method
[24]. An initialization state must be obtained with a state
preparation circuit to guarantee a proper evolution. Therefore,
the key parameters of the algorithm are the number of steps
for Trotter discretization, called repetitions (reps), the state
preparation circuit, the mixed state, and the classical optimizer.
This solver demands the execution of circuits with a number
of qubits equal to the number of QUBO variables.
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Fig. 2: Quantum Approximate Optimization Algorithm.

3) Variational Quantum Eigensolver (VQE, [25], [26]) is
a hybrid quantum-classical algorithm that aims to minimize
a scalar cost function mapped onto a Hamiltonian. It is a
variational algorithm in which the quantum circuit, as shown
in Figure 3, is composed of an ansatz whose parameters are
properly optimized by a classical solver such that the expec-
tation value of the system with respect to the Hamiltonian
of the problem is minimized. Therefore, the key parameters
of the algorithms are the ansatz and the classical optimizer.
This solver requires the execution of circuits with a number
of qubits equal to the number of QUBO variables.
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Fig. 3: Variational Quantum Eigensolver.

4) Grover Adaptive Search (GAS, [27]–[31]) is a hybrid
quantum-classical algorithm that leverages a successive ap-
proximation approach to minimize a cost function. In par-
ticular, the algorithm works by repeatedly sampling negative
values of the objective function and then incrementally shifting
it upward by the same amount until no further negative values
are observed. Therefore, the last negative sample represents
the minimum of the objective function. Negative samples
are obtained through the Grover Search routine as shown
in Figure 4, where the cost function is encoded onto the
quantum state using a quantum dictionary, which allows the
expression of a key (function domain) and value (function
image) relation. Consequently, the exploited quantum circuit
requires a number of qubits equal to nkeys+nvalues, where nkeys
is the number of binary variables and nvalues is the number
of bits necessary for representing the image of the function.
Selecting the appropriate nvalues poses an initial challenge in
utilizing this algorithm since it necessitates knowledge of the
function’s operational range.
Since the optimal number of Grover rotations r depends on
the number of negative samples over the entire solution space
that cannot be predetermined, techniques have been proposed
in [28], [31], [32] for choosing it in each algorithm step.
Another critical aspect of the algorithm involves determining
whether negative values remain. Although obtaining a pos-
itive sample via Grover search is an event that occurs when
non-negative function values are available, this cannot serve as
a direct terminating condition, as it may also occur when the
number of Grover rotations is improperly set. Consequently,
the standard approach is to count the number of consecutive
measured positive samples and stop the algorithm when this
number overcomes a certain threshold th to be properly
chosen.
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C. From Optimization Problems to Quantum Solutions

Using the basis and methods revised above, the workflow
shown in Figure 5 emerged, enabling end users to solve opti-
mization problems leveraging quantum computers or quantum
annealers. More precisely the steps needed for harnessing
quantum solvers are discussed in the following.

1) Problem specification: The initial step of the optimiza-
tion process involves defining the problem specifications,
which include the variables, objective functions (criteria for
optimization), and any constraints required for a valid solution.
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Fig. 5: Quantum optimization flow.
These variables can take on binary, discrete, or continuous val-
ues, delineating their characteristics such as unipolar/bipolar
nature or defined value ranges. The objective function rep-
resents a parametric description of a figure of merit, with
its optimal value either being the minimum or maximum,
necessitating the specification of the optimization direction.

2) Encoding the Problem: Afterwards, the problem has to
be described in a solver-compliant form, particularly employ-
ing the QUBO model. As mentioned, this model exclusively
supports binary variables, requiring proper encoding mecha-
nisms for expressing continuous and discrete ones. In the case
of multi-objective optimization, the aggregation approach can
be employed to merge objective functions into a higher scalar
function, which reflects a preference criterion, composing the
cost function. Moreover, constraints can be managed only as
weighted penalty functions incorporated within the primary
objective function. Finally, any eventual higher-order polyno-
mials need to be reduced to second-order terms.

3) Solver Selection: Following the problem specification
stage, the next step involves selecting a solver, such as QA,
QAOA, VQE, or GAS. Each of these optimizers has a peculiar
exploration mechanism. Therefore, different performance is
expected when considering a solver instead of another. Sub-
sequently, careful attention must be paid to selecting suitable
settings for the chosen solver. For example, in the case of GAS,
a proper number of qubits for the value and the threshold has
to be selected.

4) Solve: The resulting QUBO formulation is then submit-
ted to the solver with an appropriate parameter configuration
(Solving the Problem). Due to their stochastic nature, solvers
are typically executed multiple times, and the best result is
considered. Access to quantum devices is possible via cloud
services, through an account. Otherwise, quantum solvers such
as QAOA, VQE, and GAS can also be executed by exploiting
classical simulators, as those presented in [33]–[38].
Finally, the acquired solution must be decoded to retrieve
the original problem variables; then, its quality must be
assessed (Solution analysis). This entails evaluating the initial
cost functions using the obtained configuration and verifying
constraint satisfaction.

D. Existing Tools

These steps are rather complex and can easily overwhelm
users who are experts in their respective domains (such as
finance [1], resource allocation [2], and scheduling [3]) rather
than in quantum computing. Therefore, this procedure may
benefit from design automation to enhance the accessibility of
quantum solutions.

In recent years, several libraries and some tools have
emerged to streamline the QUBO formulation. The main
libraries include pyqubo [39], [40], qubovert [41], dimod [42],
Qiskit-optimization [43], Fixstarts Amplify [44] and open-
QAOA Entropica [45]. They significantly facilitate complex
aspects of the QUBO formulation process. Nonetheless, their
primary limitation lies in their lack of support for fully
automating these steps, thereby restricting their accessibility
to users with at least a minimum level of expertise in the field.
Moreover, in response to user demands for comprehensive
automation, three automation frameworks have surfaced in the
last two years: AutoQUBO [4]–[6], QUBO.jl [7], and MQT
QAO [8]. Their focus primarily lies in assisting with the
problem encoding stage and interface with solvers. Finally,
tools and methods exist that guide end-users through the
corresponding compilation process [46].

Nevertheless, to our knowledge, no tool is currently avail-
able in the literature to aid in the solver selection stage despite
its not negligible complexity, especially for non-expert users,
since it requires deep knowledge of quantum solvers, which
may inhibit their interest in experimenting with quantum
solutions. Addressing this gap remains an ongoing challenge
that we aim to address in this manuscript.

III. TOWARDS AUTOMATION OF
QUANTUM SOLVERS SELECTION

This section discussed the problem selection challenges,
including both the choice of the optimization solver and the
setting of its parameters, for end-users and the unmet needs
that this work aims to address.
A. Considered Challenge

Estimating a priori what might be the best solver for the
problem of interest or whether a classical or quantum approach
might be better is a non-trivial task.
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Fig. 6: These figures show cumulative distributions obtained by solving different QUBO problems with QA, QAOA, VQE,
GAS, and SA. To understand the meaning of these plots, one rule has to be considered: the probability of obtaining the
optimal value (or a value close to it) with a specific solver is higher when its corresponding cumulative distribution is more
concentrated on the left of the plot, where the lowest values of the objective function are located. It is possible to notice that
the best solver, in terms of solution quality, varies across each problem examined. This observation highlights the dependence
of solver effectiveness on the problem itself. To underline this argument, we have evaluated applications from various domains,
leading to completely different results in terms of optimal solver for each particular case.

This problem is similar to the No Free Lunch Theorem [47],
which declares that every optimization technique performs
as well as every other one on average, and a single best
optimization algorithm does not exist. Consequently, different
optimization problems correspond to different optimal solvers,
complicating a priori selection of the most suitable solver for
a specific problem.

Example: The problem is illustrated by the cumulative plots
reported in Figure 6, considering five different optimization
problems as examples. Cumulative plots are a common repre-
sentation of heuristic solver results, showing the distribution
of solver outcomes across multiple runs. To correctly interpret
the plot, a simple rule has to be considered: the probability
of obtaining the optimal value (or a value close to it) with
a specific solver is higher when its corresponding cumulative
distribution is more concentrated on the left of the plot, where
the lowest values of the objective function are located. These
examples show that each solver is the best for one problem,
and a single best optimization approach does not exist.

However, executing and evaluating all quantum solvers can
be expensive in terms of time and money, particularly given the
current limitations. Nowadays, running quantum circuit model
solvers on simulators is necessary to get results not affected
by errors introduced by hardware noise and non-ideality phe-
nomena, such as qubit relaxation and decoherence. Moreover,
accessing real quantum computers often entails subscription
fees that cannot be neglected. These problems could inhibit the
exploration of quantum solutions for real-world optimization
scenarios.

Furthermore, properly configuring quantum solver param-
eters demands significant expertise in quantum computing,
which is unusual among conventional optimization users. Also,
in this case, assessing all possible parameters combinations
to find the optimal configuration is prohibitively costly and
impractical, especially given the current constraints on access
to quantum resources and quantum simulators.

Moreover, adjusting scaling factors such as annealing time
in QA or determining parameters like the number of qubits for
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value representation in GAS could also be challenging even
for users well-versed in quantum computing. Indeed, in the
former case, it necessitates leveraging prior experience, while
estimating the operational range of the function is required in
the latter.

For all these reasons, the solver selection step can greatly
benefit from automation for both choosing the best solver
and setting its parameters according to the specific problem
to solve.
B. General Idea

This work aims to offer tools for assisting non-expert users
in selecting quantum solvers and configuring their parameters
for any QUBO-representable optimization problem, hiding the
complexities inherent in these tasks from the users.

For solver selection, we propose to leverage supervised ma-
chine learning. In order to develop this solution, the following
steps are necessary:

1) Determining an evaluation metric for defining the best
solver.

2) Extracting and identifying meaningful information from
the QUBO formulation to serve as features characteriz-
ing the underlying optimization problem in the classifi-
cation task.

3) Creating the dataset, which consists of:
a) selecting a diverse set of benchmarks;
b) defining a strategy for handling parity cases;
c) analyzing the dataset’s significance.

4) Applying data preprocessing techniques.
5) Evaluating performance with various classification mod-

els and selecting the most effective.
6) Finally, obtaining the trained models and exploiting

them to predict the best solver for new problems run-
time.

For configuring solver parameters, we propose leveraging
experimental results from the literature to identify scaling
trends and state-of-the-art techniques for extracting QUBO
information from its formulation. For instance, to determine
the number of repetitions in QAOA, we suggest using infor-
mation/insights gained by plots available in the literature, like

those in [48], [49], that depict the empirical scaling of this
parameter in experimental results. This information can then
be used to estimate a reasonable value based on the problem
size. These parameters scaling can be further improved by
executing additional tests.

IV. A SUPERVISED LEARNING APPROACH
FOR SOLVER SELECTION

Running all possible quantum solvers with even different
parameters easily exceeds what is practically feasible due
to the required effort to implement them and the associated
costs for their execution. Therefore, in this work, we propose
a methodology for predicting the best solvers among the
available ones without explicitly executing all of them. In this
article, we consider QA, QAOA, VQE, and GAS as quantum
solvers and SA as a classical counterpart. In order to reach
the target, the selection of the solver problem is interpreted as
a classification task, addressable by exploiting supervised ma-
chine learning techniques. Furthermore, simple strategies for
effectively configuring and scaling the parameters of quantum
solvers are proposed.

From the users’ perspective, the provided tool, integrated
into the MQT Quantum Auto Optimizer framework that im-
plements the problem translation, enables the achievement of
good results without trying out all possible quantum solvers,
even with different parameters, and any knowledge about
quantum computing. Indeed, it can be seen as a black-box
tool (the box in Figure 7) that automatically makes those
decisions—in real-time and without any associated costs of
actually executing any circuit and hiding the required steps
from the users. The tool can then substitute the former Solver
Selection step with the two tasks, as shown in Figure 5.
However, realizing this black box requires significant effort
on the developer’s side. What this exactly means is explained
in the following and shown in Figure 7.

A. Prediction of the Best Solver

As anticipated in Section III-B, several steps are required
for developing a solver predictor. They are discussed in the
following.



1) Evaluation Metric: First of all, establishing an evalua-
tion metric, i.e., a singular score determining the best solver for
each problem, is essential for developing the solver predictor.
In general, an optimization problem solver is evaluated based
on the quality of the obtained solution and the time required
to achieve convergence. However, comparing convergence
times among solvers in this context is non-trivial. Indeed, the
currently available quantum circuit model devices do not allow
reliable execution of quantum solvers, making for an adequate
evaluation of their exploration quality mandatory execution
on quantum simulators. Since simulators’ complexity, and,
consequently, execution time, grows exponentially with the
number of involved qubits, a fair comparison with QA and
SA is not permitted. For this reason, this study focuses
only on the quality of the achieved solution, with execution
time considerations left for future exploration when quantum
computers’ reliability improves within the quantum circuit
model.

Given the stochastic nature of solvers, evaluating their out-
comes requires multiple executions to assess solution quality
comprehensively. In this work, we considered one hundred
runs of each algorithm for every solver. We believed this num-
ber sufficient to gather meaningful statistical insights while
avoiding excessive computational demands that could make
the tests impractical without sophisticated high-performance
computing platforms.

In order to consolidate various metrics related to the dis-
tribution of the overall results—i.e., the minimum value, the
average and the variance of the obtained results, the percentage
of optimal/suboptimal solutions, etc.—into a single figure of
merit, we propose a scoring system composed of weighted
indicators to minimize:

Fs = −αps+β(Eopt−Eref)+γ(Eavg−Eref)+δEvar−ηpv , (2)

where ps represents the percentage of outcomes equal to the
optimum, Eopt denotes the best-achieved value, Eref stands
for the reference optimal value for the problem, Eavg signifies
the average value obtained, Evar indicates the variance of the
obtained values, and pv is the percentage of solutions satisfying
the constraints. α, β, γ, δ, and η represent tunable weights.
This study considers all metrics equally important, with each
weight assigned to the same value.

Once the figure of merit for solver performance evaluation
is defined, a policy for handling cases of parity scores among
the solvers must be established. One approach is to develop
a multi-label, multi-class classifier, enabling the assignment
of multiple labels to dataset items. Alternatively, a priority
map among the solvers can be defined based on their char-
acteristics. For simplicity in the current implementation, the
latter approach is adopted. The preference criterium is based
on the number of qubits involved in the solver and a preference
for quantum solutions over the classical one. Specifically, the
priority order is as follows:

1) QAOA, involving a number of qubits equal to the
number of QUBO variables;

2) VQE, also involving a number of qubits equal to the
number of QUBO variables;

3) GAS, involving a number of qubits equal to the number
of QUBO variables plus the number of bits for the
function operative range representation;

4) QA, involving multiple qubits for each binary variable
due to minor embedding;

5) SA, which is the unique classical alternative considered.
In establishing the priority order, we have considered QAOA
before VQE, even if they required the same number of qubits,
based on empirical observations. Indeed, we have noticed that,
on average, QAOA reaches convergence faster than VQE.

2) Identification of the Problems Features: Afterwards,
it is necessary to define QUBO information with minimal
computational effort for their inclusion as features in the
prediction model. Considering the characteristics of the QUBO
solver, we proposed to employ the following features:

• number of variables in the QUBO problem;
• number of non-zeros first-order QUBO terms (ai);
• number of non-zeros second-order QUBO coefficients

(bij);
• average of non-zeros first-order QUBO terms (ai);
• variance of non-zeros first-order coefficients (ai);
• average of non-zeros second-order QUBO coefficients

(bij);
• variance of non-zeros second-order QUBO terms (bij);
• average of all coefficients (ai and bij);
• variance of all coefficients (ai and bij).

One of the main challenges in this step lies in identifying
problem characteristics that may affect solver performance
and estimating them with limited computational resources.
Specifically, we focused on the count of non-zero coefficients
of the second order, as they influence the number of two-qubit
relationships that need to be expressed on quantum computers.
The total number of variables, as well as the counts of first
and second-order elements, collectively determine the QUBO
density, which affects the shape of the associated cost function.
Moreover, the average and variance of the problem coefficients
impact the fluctuations’ width in the QUBO function, thus also
influencing the effectiveness of various exploration strategies,
as suggested in [10].

All this information can be easily extrapolated from the final
QUBO formulation with computational complexity growing at
most quadratically with the number of problem variables.

3) Creation of the Dataset: After the definition of eval-
uation metrics, priority map and features, it is necessary
to generate a proper dataset for training and evaluating the
classification models. More than 500 different QUBO problems
have been considered. In particular, we consider:

• the well-known benchmark of conventional optimization
(those without non-linear elements) reported in [50] and
written as QUBO;

• problems generated of different sizes, densities and range
of coefficients from the QUBO formulations reported
in [18];



• problems generated of different sizes, densities and range
of coefficients from the QUBO formulations reported
in [51];

• portfolio optimization problem, written as QUBO;
• linear regression problem on the Iris dataset written as

QUBO.
These benchmarks have been carefully selected to encom-

pass a wide range of optimization problems that users may
encounter, providing a comprehensive overview of potential
scenarios of interest.

4) Preprocessing Techniques: The resulting dataset exhibits
class imbalance, meaning that the proportion of samples
belonging to each class changes. In particular, QAOA emerges
as the best solver for little less than half of the entire dataset,
followed by QA and VQE, each representing approximately
20%, while GAS and SA are optimal for around 10% of the
analyzed problems. Unfortunately, an unbalanced classification
task is more complex than a balanced one [52].
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Fig. 8: ϕK correlation matrix defined in [53]. It expresses also
non-linear relations among the features.

Some pre-processing techniques can be applied to improve
model stability and reduce the dataset’s redundancy and
dimensionality, mitigating the task complexity. First of all,
features have been scaled to a common range to avoid model
domination by the larger scale features and to remove model
bias. Moreover, in this work, we evaluate the potential of
the Principal Component Analysis (PCA, [54]) and Linear
Discriminant Analysis (LDA, [55]) techniques. PCA, an unsu-
pervised learning method, identifies the principal components,
representing orthogonal directions of maximum variance, to
capture the dataset’s greatest variability. On the other hand,
LDA, a supervised learning technique, computes the optimal
data projection onto a lower-dimensional subspace, maximiz-
ing class separability. Both techniques aim to extract features
while retaining crucial information in the data.

In this study, we explore datasets that have been dimen-
sionally reduced using PCA with 2, 3, 4 (retaining 99% of
data variability), and 9 components, alongside LDA with 2,
3, and 4 elements. Examination of the ϕK correlation matrix
presented in Figure 8 suggests that PCA and LDA could have
a positive impact on model performance since the dataset
presents redundancy and relations among features.

5) Supervised Learning Models: For the predictor develop-
ment, a five-fold cross-validation technique has been exploited,
considering the following supervised machine-learning clas-
sifiers of the scikit-learn library [56], properly tuning their
degrees of freedom:

• Ada Boost [57];
• Decision Tree [58];
• Gradient Boosting [59];
• k-nearest neighbors (KNN, [60]);
• Logistic Regression [61];
• Naive Bayes [61];
• Neural Network [62];
• Random Forest [63];
• Support Vector Machine (SVM, [64]);
• eXtreme Gradient Boosting (XGBoost [65]).

To address the dataset’s imbalance, the creation of the folds
has exploited a stratification technique for maintaining the
proportion among elements belonging to each class.

The k cross-validation approach is crucial for optimizing
model performance and ensuring robustness and reliability
in estimating the quality of solver prediction with unseen
problems. Additionally, it enhances efficiency in comparing
the generalization capabilities of different models.

B. Solvers Parameter Setting
In this section, simple strategies for effectively configuring

and scaling the parameters of quantum solvers are proposed.
These options are those considered for the predictive model
dataset generation and, consequently, for each new problem
for configuring the selected solver. Specifically, for the dataset
creation, the Advantage system4.1 D-Wave device has been
chosen for QA, while the Qiskit implementation of QAOA,
VQE, and GAS solvers, launched on the QASM simulator, has
been employed for their respective configurations. Finally, the
D-Wave implementation of the SA solver has been employed.

1) Quantum Annealer: Defining the annealing time scaling
with the QUBO problem size is crucial for QA. This relation
can be deduced from state-of-the-art plots representing the
time-to-solution (TTS) metric relative to the problem size.
In [66], it is proved that the annealing time necessary is
expected to grow as

TTTS = 10b
√
N , (3)

where N is the number of variables, while b is a coefficient.
From plots in the literature [66] and our experience, b equals
0.7 is a reasonable value.

2) Quantum Approximate Optimization Algorithm: The pa-
rameter most critical to scale with the problem size in QAOA
is the number of repetitions, as discussed in Section II-B.
Also in this case, the scaling function for this parameter has
been derived from literature plots, particularly those found
in [48], [49]. Our analysis reveals that the number of rep-
etitions required for achieving satisfactory results increases
proportionally to

√
N , where N represents the number of

problem variables. The relation adopted for dataset creation
is given by:

reps =
⌈
2
√
N
⌉
.



Moreover, we have considered Hadamard state initialization
and −X mixed state, as in Figure 2. For classical optimization,
the Cobyla optimizer, providing on average good performance,
has been selected without imposing restrictions on the number
of classical iterations, allowing the algorithm to automatically
stop when the convergence is achieved.

3) Variational Quantum Eigensolver: Unlike the other
solver, VQE has no critical parameters to be set scaling with
the problem size. For dataset creation, an ansatz composed of
a Ry gate layer and an entangling layer, like that shown in
Figure 3, has been chosen. Similarly to QAOA, for classical
optimization, Cobyla, providing on average good performance,
has been exploited without a restriction on the number of
classical iterations, allowing the algorithm to terminate upon
convergence.

4) Grover Adaptive Search: The GAS parameter setting is
very complex, involving the determination of the algorithm’s
stop threshold, which scales with the problem size, and the
selection of the number of qubits for representing cost function
values, dependent on the specific problem.

Unfortunately, analyses for threshold scaling are lacking in
the literature. Therefore, we have empirically discovered that
a linear growth with the problem size provides reasonable
results quality, and it is the same scaling adopted in [31] with
the Qiskit framework. In particular, for dataset creation, the
following scaling function has been considered:

th = 2N , (4)
where N is the number of problem variables.

For what concerns cost function values encoding, we pro-
pose to leverage the estimation of the functions bound based
on the exploitation of posiform and negaform proposed in [67],
[68] after the application of a preprocessing step. Considering
that the image of the cost function is represented in fixed
point, for saving qubits, we choose first to round the problem
coefficients to a user-selected precision, then normalize all
QUBO matrix elements such that the smallest one (in terms of
absolute value) is equal to 1. In this way, the waste in terms
of the number of value qubits should be minimized.

5) Simulated Annealing: Similarly to QA, for SA, the
crucial parameter to scale with the problem size is the number
of iterations (or sweeps), which is strongly related to annealing
time. Also in this case, TTS can be exploited, and the same
type of scaling of QA (Equation 3) is expected from analysis
in [66]. Empirically, we found that b equals 0.5 is a reasonable
value.

V. RESULTS

The supervised learning models, presented in Section 5,
have been trained and evaluated with and without applying the
features reduction technique discussed in Section 4 exploiting
a five-fold cross-validation procedure on a dataset including
more than 500 different QUBO problems. The classifier and
feature reduction techniques quality are compared in Table I
in terms of:

• Accuracy, which is the percentage of correct predictions
found with the k cross-validation approach.

TABLE I: Performance comparison across various classifiers
and feature reduction methods, highlighting accuracy (Acc),
the percentage of top two predictions, and the average error in
the success probability (ps err). The best results are highlighted
in bold and green.

Models No preproc
PCA LDA

2 3 4 9 2 3 4

Ada Boost

Accuracy [%] 64.48 55.79 59.78 62.68 62.85 64.30 64.30 65.21

Top two [%] 86.23 81.70 82.07 85.14 85.33 84.96 84.78 84.96

ps err [%] 4.26 6.90 6.87 7.22 7.42 7.31 7.57 6.91

Decision Tree

Accuracy [%] 68.65 64.85 65.75 63.57 67.02 65.75 65.75 65.93

Top two [%] 87.50 84.60 85.87 84.78 85.14 85.33 85.33 85.69

ps err [%] 3.22 4.79 4.45 4.45 4.91 4.80 4.31 4.42

Gradient Boosting

Accuracy [%] 72.63 67.02 67.75 69.20 69.37 66.66 66.29 66.65

Top two [%] 89.86 86.41 87.50 86.96 86.59 85.87 86.05 86.78

ps err [%] 2.40 4.37 4.67 4.15 4.37 4.80 4.64 3.89

KNN

Accuracy [%] 57.79 56.52 56.88 57.42 57.42 59.24 59.24 59.96

Top two [%] 81.52 78.08 78.44 79.89 79.89 82.79 82.25 82.79

ps err [%] 7.37 7.07 7.18 7.33 7.33 6.86 6.97 6.92

Logistic Regression

Accuracy [%] 71.01 32.06 42.57 50.18 50.17 53.62 55.06 55.43

Top two [%] 88.59 55.25 70.29 78.26 77.72 78.26 80.80 81.70

ps err [%] 3.70 13.32 9.62 7.64 8.17 9.96 6.60 6.31

Naive Bayes

Accuracy [%] 53.09 56.52 59.41 61.58 60.49 60.68 60.32 60.68

Top two [%] 77.36 78.08 81.52 83.88 84.06 82.43 82.43 83.51

ps err [%] 7.49 7.07 7.02 6.70 7.37 8.66 8.05 7.89

Neural Network

Accuracy [%] 57.78 63.76 63.94 66.12 64.49 63.04 64.48 63.58

Top two [%] 81.16 85.51 87.14 85.87 86.23 87.50 87.32 86.59

ps err [%] 6.63 5.69 6.52 6.73 7.13 6.50 6.90 6.81

Random Forest

Accuracy [%] 73.18 66.30 68.46 69.92 68.83 69.56 68.29 68.65

Top two [%] 91.12 86.05 87.68 88.95 87.50 88.59 87.32 87.32

ps err [%] 2.16 4.06 3.80 3.17 3.87 3.70 3.80 3.94

SVM

Accuracy [%] 59.06 56.52 61.04 62.68 62.68 63.04 64.48 63.94

Top two [%] 83.70 78.08 84.24 85.69 85.69 86.96 87.14 86.59

ps err [%] 7.17 7.07 6.52 6.62 6.62 6.55 6.46 6.43

XGBoost

Accuracy [%] 69.56 66.30 67.02 68.46 66.84 66.12 67.19 67.02

Top two [%] 87.50 85.69 86.23 87.50 84.96 87.14 87.50 87.50

ps err [%] 3.01 4.12 4.57 3.66 4.61 4.47 4.24 4.05

• Top 2, which is the relative frequency of predicting one
of the top two solvers.

• Average ps error, which is the average distance between
the probability of achieving the optimal solution of the
best solver and of the predicted solver.

We choose to present the average error in success probability
rather than those in the overall score because it offers a more
explicit interpretation with respect to an abstract score. Fur-
thermore, its range of possible values is problem-independent,
unlike the score—dependent on function bounds—, thus sim-
plifying the process of averaging the results.

The effectiveness of the features reduction technique de-
pends on the type of model. For example, considering the
model SVM, Naive Bayes, or Neural Network, they are par-
ticularly useful, while in Random Forest, they do not provide
benefit.

Observing the table, it is clear that Random Forest out-
performs other supervised learning models in predicting the
expected optimal solver. It achieves the best performance with
an accuracy of 73.18% and about 90% rate of predictions
providing a solver in the top two. Additionally, the average loss



in terms of the probability of obtaining the optimal solution
is almost negligible, at just 2.16%. These results have been
obtained with the following hyperparameter setting:

• number of Decision Trees equal to 100;
• maximal depth equal to 50;
• minimal samples per leaf equal to 1;
• minimal samples per split equal to 2.
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Fig. 9: The average probability of achieving the expected
optimal value (ps) across the dataset’s problems is plotted
against the number of QUBO variables.

Finally, Figure 9 shows the average probability of achieving
the optimal solution of the problems considered in the dataset
creation across their sizes. These problems, as previously men-
tioned, exhibit considerable variations in density, dimension,
and variance of the involved coefficients, etc. It is possible
to notice the consistency in solution quality across different
problem sizes, proving the reasonableness of the proposed
parmeters scaling approach.

VI. DISCUSSION

The conducted exploration demonstrates the feasibility of
approaching solver selection as a classification task. How-
ever, a significant challenge lies in the necessity of a large
dataset, which is computationally and economically expensive
to obtain, to ensure a reliable prediction. While the dataset
dimensions in this manuscript suffice to establish proof of
concept, providing encouraging results, more training data are
needed to achieve completely satisfactory prediction results.
Expanding the dataset poses challenges related to the selection
of diverse problems to provide a comprehensive overview of
potential scenarios. Furthermore, the maximum size of the
problems that can be addressed is constrained by the limits
of current quantum computer simulators, especially for GAS
execution, requiring the use of complex High-Performance
Computing systems to be able to consider the most interesting
problems.

Moreover, while the chosen solvers’ settings for dataset
creation have demonstrated their reasonableness, relying ex-
clusively on empirical deductions is not the optimal approach.
Consequently, there is potential for significant enhancements
in the implementation of predictors.

VII. CONCLUSIONS

This work proposes to address the solver selection challenge
with a supervised machine learning approach, treating it as
a classification task. Moreover, the article suggests strategies
for adjusting solver parameters based on problem size and
characteristics. To this end, we first reviewed quantum opti-
mization, focusing on solvers and flow required for solving
an optimization problem with quantum computers. Then, we
delve into the motivation driving this exploration and the ob-
jectives of the research. Afterwards, the methodology followed
for developing the solver predictor is outlined step by step,
explaining and motivating design choices, and the solvers’
setting, based on state-of-the-art experience and considered
for dataset creation, has been introduced. The effectiveness
of the supervised learning approach is validated through ex-
perimentation with a dataset comprising 500 diverse QUBO
problems.

The pre-trained classifier is integrated into the MQT Quan-
tum Auto Optimizer (MQT QAO) framework, publicly avail-
able on GitHub (https://github.com/cda-tum/mqt-qao) as part
of the Munich Quantum Toolkit (MQT).

Even though the obtained results are promising, opportuni-
ties for enhancement and expansion remain. First, the proposed
parameters’ setting can be improved by involving machine
learning models. Moreover, the solver selection predictor can
be improved both enlarging the considered training dataset
and considering more quantum and classical solvers and their
variances. In addition, a multi-label approach for managing
the parity cases, instead of the priority mechanism, can be
considered, and reinforcement learning can be evaluated as an
alternative to supervised learning.

In conclusion, this research proves the potential of machine
learning in quantum solver selection, offering valuable tools
for non-experts in quantum computing. We hope that this ex-
ploration will be the starting point towards the development of
automated instruments for managing quantum solvers, thereby
enabling the creation of quantum solutions for real-world
problems by a broader spectrum of users.
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