
An Abstract Model and Efficient Routing for Logical
Entangling Gates on Zoned Neutral Atom Architectures

Yannick Stade∗, Ludwig Schmid∗, Lukas Burgholzer∗, and Robert Wille∗†
∗Chair for Design Automation, Technical University of Munich, Munich, Germany

†Software Competence Center Hagenberg GmbH, Hagenberg, Austria
{yannick.stade, ludwig.s.schmid, lukas.burgholzer, robert.wille}@tum.de

www.cda.cit.tum.de/research/quantum

Abstract—Recent experimental achievements have
demonstrated the potential of neutral atom architec-
tures for fault-tolerant quantum computing. These
architectures feature the dynamic rearrangement of
atoms during computation—enabling nearly arbitrary
two-dimensional rearrangements. Additionally, they
employ a zoned layout with dedicated regions for
entangling, storage, and readout. This architecture
requires design automation software that efficiently
compiles quantum circuits to this hardware and takes
care that atoms are in the right place at the right
time. In this paper, we initiate this line of work by
providing, (1) an abstract model of the novel archi-
tecture and, (2) an efficient solution to the routing
problem of entangling gates. By this, we aim to maximize
the parallelism of entangling gates and minimize the
overhead caused by the routing of atoms between
zones. In addition to that, we keep the realm of fault-
tolerant quantum computing in mind and consider
logical qubit arrays, each of which encodes one logical
qubit. We implemented the proposed idea as a tool
called NALAC and demonstrated its effectiveness and
efficiency by showing that it can significantly reduce the
routing overhead of logical entangling gates compared
to the naive approach. As part of the Munich Quantum
Toolkit (MQT), NALAC is publicly available as open-
source at https://github.com/cda-tum/mqt-qmap.

Index Terms—quantum computing, compilation,
quantum circuit routing, neutral atoms, quantum error
correction, fault tolerance

I. Introduction
Over the past decade, significant efforts have been

devoted to developing first, intermediate-scale quantum
computing demonstrators and mitigating physical er-
rors [1]—advancing both hardware and software devel-
opment. Despite ongoing reductions in hardware errors,
achieving the requisite error rates, on the order of 10−10 [2],
necessary for executing large-scale meaningful algorithms
such as integer factorization will likely require the im-
plementation of sophisticated Quantum Error Correc-
tion (QEC) protocols [1]. This transition to Fault-Tolerant
Quantum Computing (FTQC) necessitates advanced ex-
perimental setups that meet the novel requirements and
constraints imposed by FTQC, alongside appropriate
software support, to maximize the utilization of available
hardware capabilities.

Experimental progress has demonstrated elementary
FTQC operations on various hardware platforms, including
superconducting chips [3]–[6], trapped ions [7]–[10], and
neutral atoms [11]. However, these experiments often
involve small, hand-constructed examples. In order to scale
up to sizes relevant for practical use, sophisticated design
automation methods and software are essential [12].

Neutral atoms have emerged as a promising platform for
universal quantum computing [11], [13]–[16], offering long
coherence times, arbitrary connectivity through dynamic
atom rearrangement, and highly parallel gate execution
between sets of atoms. Recent experimental breakthroughs
were achieved using a novel zoned architecture, where
different functionalities (storage, entangling, measurement)
are performed in designated spatially separated zones, with
shuttling facilitating the transfer of atoms between those
zones [11]. Despite the rapid development of neutral atom-
specific compilation software [17] and routing of atom
movements [18]–[22], the absence of an appropriate abstract
model and the lack of dedicated routing solutions for logical
qubit arrays hinders the efficient utilization of this novel
architecture and its capabilities.

In this work, we pioneer this line of work two-fold by
1) presenting an abstract model of the zoned archi-

tecture introduced in [11], including its capabilities,
constraints, as well as the resulting problem of routing
logical entangling gates, and

2) proposing an efficient approach to tackle this routing
problem by reducing routing overhead and increasing
gate parallelism.

To this end, we utilize graph theoretical techniques to
derive a highly efficient solution for the routing problem.
The core of the proposed approach is a specific coloring of
the interaction graph representing the entangling gates in
the quantum circuit. Thereby, compared to a naive solution,
we schedule multiple entangling gates in parallel and ensure
that multiple sets of entangling gates are applied without
intermediate time-expensive shuttling of atoms between
zones. We implemented the approach in the tool NALAC
(Neutral Atom Logical Array Compiler) and benchmarked it
on different quantum circuits, demonstrating its efficiency
and effectiveness.

The model of the neutral atom architecture and the
proposed compiler NALAC pave the road for further com-
piler development on similar architectures and introduce
the first software tool providing an automated solution to
the routing problem of transversal logical gates on zoned
neutral atom architectures. The tool NALAC is integrated
into the Munich Quantum Toolkit (MQT, [23]) that com-
prises simulators [24], validation tools [25], and tools to
automatically select optimization passes [26] among many
others. The full code of the proposed approach is publicly
available at https://github.com/cda-tum/mqt-qmap.

The remainder of this paper is structured as follows:
Section II provides background on FTQC and a brief
introduction to neutral atoms. In Section III, we introduce
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the model of the zoned architecture together with its
capabilities and constraints. Section IV discusses the
architecture-specific routing problem and illustrates the
proposed solution compared to a naive approach. Tech-
nical implementation details are provided in Section V.
Section VI evaluates the proposed approach on a set
of benchmark circuits, demonstrating reduced routing
overhead. Finally, Section VII concludes the paper.

II. Preliminaries
In order to keep the remainder of this work self-contained,

this section briefly describes the concept of logical quantum
computing, which is essential when employing Fault-
Tolerant Quantum Computing (FTQC). It then delves
into the physical background of quantum computing using
neutral atoms.
A. Fault-Tolerant Quantum Computing

The overarching principle of FTQC is the idea of
distributing the information of a single logical qubit qL

across multiple physical qubits q1, . . . , qn. The resulting
redundancy enables the detection of individual errors at
the physical level and appropriate corrections [27], [28].
We henceforth refer to a (logical) qubit array as the set of
physical qubits used to encode a single logical qubit. This
is illustrated by means of the popular Stean code as the
simplest example of the widely used color code [29].
Example 1 (Logical Qubit Arrays). The Stean code
requires n = 7 physical qubits q1, . . . , q7 to encode a single
logical qubit qL. Below, we illustrate the physical qubits
arranged, e. g., in a 2× 4 array. Throughout this paper, we
will generally use squares to represent logical qubits and
circles for physical qubits.

Logical Physical

The execution of operations on these encoded logical
qubits (indicated by superscripts, e. g., CZL) depends on
the specific QEC code and is generally highly complex—
often requiring procedures such as braiding or magic
state injection [30]. This study focuses on the special
case of transversal gates, where the logical operation is
executed by performing the same operation on each physical
qubit individually. This prevents the possible spreading of
errors, making transversal gates inherently fault-tolerant.
In particular, we focus on codes that provide transversal
entangling gates (such as CX, CZ, . . . ), encompassing
surface codes [30], color codes [29], and, in general, the
family of Calderbank-Shor-Stean (CSS) codes [27].
Example 2 (Transversal CZ gate). To implement a logical
CZL gate that is transversal for the respective code, a
physical CZ gate must be applied between all pairs of the
respective physical qubits within the two logical arrays:
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Importantly, transversal two-qubit gates alone are insuffi-
cient for achieving universal fault-tolerant computation [31].
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Figure 1. Zoned architecture considered within this work based on
the experimental setup from [11].

Nevertheless, due to their inherent fault tolerance, they
are a fundamental building block, essential for large-scale
fault-tolerant computing. Therefore, correct handling of
transversal gates constitutes the first important step toward
a full compilation stack for FTQC.
B. Neutral Atom Quantum Computing

Quantum computing based on neutral atoms [3], [13]–[17]
relies on qubits encoded into long-lived atomic states of
alkali or alkaline-earth(-like) atoms such as Rb, Sr, or Yb.
Atoms are confined within optical dipole traps generated
by optical lattices or optical tweezers and, subsequently,
laser-cooled to their motional ground state, facilitating
the efficient trapping of thousands of atoms [32]–[34].
Recent experiments demonstrate the continuous reloading
of atoms [35], [36] to compensate for potential losses.

Single-qubit gates are implemented by inducing state
transitions using either global or focused laser beams,
addressing the entire register or individual atoms [11], [16],
[37], [38], respectively. Entangling gates exploit high-lying
Rydberg states and their long-range dipole-dipole interac-
tions among proximal atoms via Rydberg blockade [14], [39],
[40]. Notably, parallel entanglement of numerous qubits
is achieved by globally illuminating the qubit register,
inducing two-qubit gates between pairs of qubits within
the interaction range of the Rydberg blockade [41], [42].
Measurements are realized using fluorescence imaging or
other non-destructive measurement techniques to read out
qubit states in the computational basis [43]–[45].
Example 3 (Native Gates). Figure 1 illustrates the
implementation of single- and two-qubit gates utilizing
Raman (blue, middle) and Rydberg (yellow, top) lasers,
respectively. Regarding the Rydberg beam, it is worth noting
that qubits nearby execute a CZ gate (top left), while isolated
qubits undergo an identity operation (top right).

Novel experimental techniques [11], [46] have demon-
strated the ability to shuttle atoms during computation,
i. e., to change the position of trapped atoms, allowing
almost arbitrary two-dimensional rearrangements (this
will be covered in more detail in Section III-C). This
is achieved by introducing two possible types of optical
traps between which atoms can switch: First, static Spatial
Light Modulator (SLM) traps afford placement in nearly
arbitrary yet fixed configurations; secondly, a dynamically
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Figure 2. One execution cycle up to the execution of the CZ gate as described in Example 4.

adjustable 2D optical lattice, employing two Acousto-Optic
Deflectors (AODs), arranged along the x- and y-axes,
enables the parallel rearrangement of multiple qubits.

Overall, neutral atom architectures offer great parallelism
for gate execution, which is favorable for transversal gates.
The laser beams can illuminate entire qubit registers,
inducing parallel operations on all illuminated qubits. Thus,
a transversal operation on a logical qubit can be applied
to all corresponding atoms in parallel.

III. Abstract Model
of Zoned Neutral Atom Architectures

So far, previous work has considered a monolithic
architecture where all operations are performed in the
same region [46]. In the recent experimental milestone [11],
different operations are conducted in spatially separated
zones. Quantum circuits are executed by alternatingly
shuttling atoms between zones and illuminating them
with the corresponding laser beams. In order to scale to
large quantum circuits, the compilation process cannot
be performed manually anymore, and design automation
software is needed. However, this is still lacking as no
abstract model for zoned architecture that captures its
capabilities and constraints exists. To this end, we first
review the zoned architecture based on the experimental
setup from [11] and the execution steps. Based on that,
we then formalize the resulting shuttling constraints and
requirements for executing logical, transversal gates—
eventually resulting in the required model.
A. Zoned Structure

In general, zoned architectures spatially separate cer-
tain operations, allowing favorable hardware setups and
optimization. As depicted in Figure 1, the architecture
considered in this work consists of three separate zones,
each specifically designed for a particular purpose:

a) Entangling zone: This zone is dedicated to the
execution of entangling operations, i. e., CZ gates
in the case of [11]. Using a global Rydberg beam
applied to the whole zone, the atoms are excited to
the Rydberg state. This applies parallel CZ entangling
gates between all qubit pairs within the range of the
Rydberg blockade of each other. Qubits not supposed
to interact are placed sufficiently far from each other so
that the Rydberg interaction can be neglected. A single
qubit without another qubit nearby is still excited to
the Rydberg state, but without an interaction partner,

it returns to its original state, effectively performing
an identity operation. However, the Rydberg decay
might possibly introduce an error similar to an actual
CZ gate.

b) Storage zone: This zone allows for densely packaging
qubits and application of single-qubit gates while
maintaining high coherence times. In this zone, the
qubits are shielded from beams that could potentially
disturb the quantum state (Rydberg or measurement).
A large number of static SLM traps provide the neces-
sary storing opportunities. Single-qubit rotations are
realized using global and/or individually addressable
laser beams.

c) Readout zone: In this zone, the state of a set of
qubits can be read out without disturbing the quantum
state of other qubits. In particular, this enables mid-
circuit measurements, which are essential for full-stack
FTQC. Applying a readout beam measures all qubits
within the readout zone simultaneously.

B. Quantum Circuit Execution Steps
While zoned architectures can yield improved hardware

characteristics by shielding stored and operated qubits from
each other, shuttling is required to move the respective
qubits into the desired zones. Initially, the qubits are
located in the storage zone, providing, e. g., the best coher-
ence times. Given a sequence of transversal gates, single-
qubit operations can be executed immediately without
additional shuttling. However, as described above, CZ gates
can only be performed in the entangling zone. Therefore,
the task at hand is to shuttle qubits from the storage to
the entangling zone, perform the CZ gate, and shuttle
them back to the storage zone. In particular, for logical
qubits, this requires the movement of all physical qubits
corresponding to the logical qubit. One shuttle operation
that moves (multiple) qubits from one SLM trap to another
consists of the following steps:

1) Loading: Qubits are loaded from static SLM traps
into adjustable AOD traps.

2) Moving: The loaded qubits can be moved in the
inter-atomic space without disturbing other atoms.

3) Storing: Finally, the qubits are transferred from AOD
traps back to SLM traps.

If not required, the last step can also be skipped, and qubits
can remain in adjustable AOD traps. After the required
qubits are shuttled to the entangling zone and arranged
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Figure 3. Illustration of the four constraints on shuttling operations.

such that pairs of atoms that are supposed to interact are
located in proximity, the CZ gate is applied by switching
on the Rydberg beam.

Example 4 (One Execution Cylce). Figure 2 sketches the
steps necessary to perform two parallel CZ gates between
the qubit-pairs (1, 3) and (2, 4):
t = 1 Qubit arrays 1 and 2 are transferred from the storage

to the entangling zone in parallel. This includes
loading, moving, and storing (the necessity of storing
is discussed in Section III-C).

t = 2 The next set of qubit arrays corresponding to qubits
3 and 4 are moved to the entangling zone in parallel.

t = 3 The global Rydberg beam (yellow) performs entangling
CZ gates between all qubit pairs of the arrays (1, 3)
and (2, 4), respectively. Afterward, the previous steps
can be applied in reverse order to move the atoms
back to the storage zone.

Similarly, that process can also transport qubits between
the storage and readout zones. By consistently applying
steps (1)–(3), it becomes possible to execute arbitrary
sequences of transversal gates through array shuttling
between zones and activation of laser beams.

C. Shuttling Constraints
However, an AOD cannot load and move the qubits

arbitrarily; the shuttling of qubits must follow certain
constraints [46]. As discussed in Section II-B, atoms can
be confined in static SLM traps or dynamically adjustable
AODs. Each AOD generates a series of laser beams (rows
and columns) along the x- or y-axis at precise coordinates,
capable of individual activation and deactivation. The
intersections of these orthogonal beams form a grid that
defines trap coordinates within the 2D plane, allowing for
the manipulation of trap positions by modulating beam
coordinates and consequently moving the trapped atoms.
This method facilitates the trapping and simultaneous
movement of a larger quantity of atoms, provided they
adhere to the following four constraints, which later will
be illustrated in Example 5:

a) Row-Column Non-Crossing Constraint: AOD
rows (columns) must maintain a minimum separation
during movements and must not intersect with each

other. In particular, the order among rows (columns)
must be preserved during movements.

b) Row-Column Preservation Constraint: If atoms
are in the same row (column), they remain in the same
row (column) throughout a movement.

c) Avoiding Ghost-Spots Constraint: Each intersec-
tion of AOD rows and columns generates a potential
trap, resulting in a grid of traps. Some of those traps
might be unintended, so-called ghost spots and can
unintentionally trap or disturb other atoms.

d) Array Alignment Constraint: To perform a
transversal logical CZ gate between two arrays, they
must overlap to bring the respective qubit pairs
together. With both arrays loaded in the same AOD,
this would violate Constraint (a). Therefore, one of
the two arrays has to be placed back in SLM traps,
which are not subject to the AOD constraints.

Example 5 (Shuttling Constraints). Figure 3a depicts the
case where the lower right array is supposed to move to
the upper left corner. In order to make this possible, the
middle atom array cannot remain at its position and has to
be moved to the upper left as well to avoid AOD crossing.
Alternatively, the middle array could be (temporarily) stored
in SLM traps.

Figure 3b illustrates the case where the middle array is
supposed to stay at its position while the other two should
move right. Before moving the other two arrays, the middle
array must be stored in SLM traps.

Loading the lower right array shown in Figure 3c cannot
be done directly without simultaneously loading the other
two arrays. An additional offset movement is required to
move the ghost spots into the inter-atomic space to load the
array in a second step.

Figure 3d illustrates that at least one of the two arrays
of a logical entangling gate has to be placed in SLM traps
for the arrays to overlap. Otherwise, the AOD crossing
constraint will be violated.

With the zoned structure and the constraints in place,
the zoned neutral atom architecture model is complete.
Now, the model can be used to formulate the routing
problem on this architecture. For the special case of
FTQC, we describe in the next section how the physical
architecture can be abstracted into a logical model.
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D. Towards Fault-Tolerant Quantum Computing
We want to pave the way to FTQC, supporting larger

atom arrays that encode a logical qubit. The logical arrays
must be shuttled between the zones to execute the different
operations and establish the necessary connectivity for
entangling gates. For the considered sequence of transversal
gates, it suffices to compute the movements on the logical
level, i. e., for the logical qubits representing an array of
physical qubits. This is possible since all physical qubits
of one logical array can be shuttled simultaneously.

Using a configuration that specifies the array size for
the code, the physical architecture can be abstracted to a
logical architecture. The physical architecture is parqueted
with non-overlapping arrays of qubits, and only the left
upper qubit of each array is taken as a reference for
the logical qubit. After all movements necessary for the
circuit execution have been computed, the logical qubits
are replaced by their corresponding array of physical qubits.
This process is illustrated in Figure 4.

IV. Routing of Logical Entangling Gates
for Zoned Architectures

Shuttling qubits into proximity for entangling gates
while simultaneously minimizing overhead through loading,
storing, and shuttling constitutes a significant focus of
ongoing research in neutral atom compilation. Different
approaches have been proposed for different, non-zoned ar-
chitectures [18]–[22], [47]. Other zone-based solutions [48]–
[51] are targeted towards trapped ion hardware which has
fundamentally different shuttling constraints [52], [53]. For
neutral atoms, however, we first define the considered prob-
lem, present the straightforward, naive solution, and then
introduce the proposed solution to the routing problem.
A. Considered Problem

The model proposed in the previous section can now
be used to formulate the problem of routing of logical,
transversal entangling gates that compilers have to solve for
zoned neutral atom architectures to generate a sequence
of execution steps. More precisely, given a sequence of
entangling (2-qubit), transveral gates, the goal is to move
the qubit arrays to the required zone for the subsequent
operation with minimal routing time overhead—that is,
the additional time required for the qubit movement—
while adhering to the constraints outlined in Section III-C.
According to Section III-D, it suffices to solve the routing
problem on the logical level; hence, whenever we refer to
qubits below, we mean logical qubits.

B. Naive Solution
A simple solution to generate an executable sequence

of instructions avoiding AOD crossings is to execute one
entangling operation at a time and shuttle the qubits to
the entangling zone one by one. Idling qubits are kept in
the storage zone to shield them from the interaction with
the Rydberg beam. For each entangling operation on a pair
of qubits, the naive solution moves them to the entangling
zone, executes the entangling operation, and moves them
back to the storage zone. In order to satisfy the AOD
constraints, one of the qubits is moved first and stored in
an SLM trap before the other one is loaded. The latter is
moved close to the first to be in the interaction radius.

This naive solution serializes the execution of the en-
tangling operations. Consequently, it does not exploit the
potential parallelism of the neutral atom architecture.

C. Proposed Solution
Motivated by the shortcomings of the naive solution,

this work introduces an alternative approach that tries to
maximize the number of parallel entangling operations.
This section outlines the general idea of the proposed
solution while the details of its realization follow in
Section V. We improve the naive solution by addressing
two primary objectives:

1) Parallel gate execution: Execute as many indepen-
dent entangling operations as possible per Rydberg
beam to achieve high gate parallelism.

2) Parallel AOD shuttling: Load, store, or move as
many qubits in parallel to minimize routing time
overhead while fulfilling all AOD constraints from
Section III-C.

We accomplish this by splitting the execution of the
entangling gates into multiple runs. A run starts with
shuttling a set of qubits into the entangling zone and ends
with shuttling them back to the storage zone. Recall that
having one qubit of each interacting pair in the SLM trap
is necessary but also sufficient to comply with the array
alignment constraint (Constraint (d)). This fact can be
exploited to execute multiple entangling operations in one
run without additional load or store operations. Therefore,
a run is divided into steps, such that one step executes a set
of independent entangling gates, where independent means
that no two entangling gates share any qubits. The qubits
held in the AOD move between the steps to their next
interaction partner or resting position. This way, a two-
fold increase in parallelism is achieved: First, by executing
multiple entangling operations in parallel within one step,
and second, by shuttling additional qubits in parallel into
the entangling zone required for the steps in one run.

Naive approach Proposed approach

Logical qubit in AOD Logical qubit in SLM AOD movementGlobal Rydberg beam

ENTANG-
LING

STORAGE

Figure 5. Comparison of sequential entangling operations (left) with
proposed parallel execution and efficient logical qubit movement
(right).
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Example 6 (Naive vs. Proposed Solution). Figure 5
(left) illustrates the naive solution, which executes only
one entangling operation at a time. In contrast, Figure 5
(right) illustrates the proposed solution, which executes two
entangling operations in parallel. The proposed solution
has also placed further qubits into SLM traps in the
entangling zone to execute more entangling operations
without additional load or store operations. For the next
step, the qubits move one position to the right to execute
two more entangling operations. Afterward, all qubits will
be moved back to the storage zone.

Independent operations must be identified to realize this
parallel execution of entangling gates. To this end, an
interaction graph with qubits as nodes and edges between
qubits that should interact is used and provides the core of
the proposed approach. Based on this graph, we compute
a maximal independent set that decides which qubits are
placed in SLM and AOD traps. In order to obtain a
feasible run regarding the AOD constraints, the edges of the
interaction graph are colored such that the color determines
the step in which the entangling operation represented by
the edge is executed. Generally, the proposed approach
proceeds as illustrated in Figure 6. The following section
will explain each step in detail.

V. Implementation Details
This section provides technical details of the proposed

approach. We detail the construction of the interaction
graph and how we obtain a schedule for the entangling
operations from it by coloring its edges. Finally, we derive
the exact positions of the qubits for each step.
A. Interaction Graph

The interaction graph is an undirected graph, where
the nodes represent qubits that are involved in an entan-
gling operation, and an edge connects two nodes if the
corresponding qubits share one entangling operation that
is executable at this moment. An entangling operation
is executable if all operations in front are either already
executed or commute with the entangling operation.
Example 7 (Interaction Graph). On the left, Figure 7
shows part of a quantum circuit acting on eight (logical)
qubits. All hidden gates to the left have already been executed,
and all currently executable gates are highlighted in orange.
Note that two of the three CZ gates to the right of the layer

of single-qubit gates are executable because no single-qubit
gate acts on their qubits. On the right, the figure shows the
resulting circuit’s interaction graph.
B. Independent Set

For every entangling gate, i. e., edge, that we execute,
one of the adjacent qubits needs to be in an SLM trap
and the other in an AOD trap. While trying to maximize
the number of entangling gates, this leads to a max-cut
problem. In general, a cut of a graph is a partition of the
nodes into two sets. Accordingly, a max-cut is a cut that
maximizes the number of edges between the two sets.

In our case, one set of nodes in the resulting cut are the
qubits held in SLM traps, and the other set are qubits in
AOD traps. The problem of finding a max-cut is NP-hard,
and we use a maximal independent set instead to find a
sufficiently good solution.

An independent set of nodes in a graph is a set of nodes
that are not adjacent to each other. An independent set
is maximal if it cannot be extended by adding another
node without violating the independence property. The
independent set then constitutes one set of the cut, and the
remaining nodes the other set. Such a maximal independent
set can be calculated by iterating over the nodes in the
interaction graph and adding one node at a time to the set
if it is not adjacent to any of the already selected nodes.
To maximize the number of edges in the resulting cut,
we order the nodes by their degree in descending order
before iterating over them. All nodes ending up in the
independent set correspond to the qubits kept in the AOD.

Executable gates

Single-qubit gate layer

Interaction graph

Figure 7. Part of a quantum circuit with its currently executable
gates highlighted in orange and its corresponding interaction graph
on the right.
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Figure 8. The interaction graph from Example 7 with the nodes of the
independent set colored in blue. All edges covered by this independent
set are highlighted in orange.

The edges covered by the independent set, i. e., those that
are adjacent to one node in the independent set, are the
ones that can be executed in one run.
Example 8 (Independent Set). Consider again the inter-
action graph discussed in Example 7. Here, the node with
the highest degree is the middle one and is selected first.
The two nodes with degree three are not selected since they
are adjacent to the previously selected one. Finally, the
algorithm selects the two nodes with degree two that are not
adjacent to the selected node. The resulting independent set
is shown in Figure 8, where the selected nodes are colored
in blue. Those are the ones that will be held in the AOD,
whereas the green ones will be placed in SLM traps.
C. Color Edges

To determine the order in which the entangling oper-
ations are executed, we color the covered edges of the
interaction graph. A color is a non-negative integer that is
assigned to an edge and corresponds to the time step in
which the entangling operation is executed. Consequently,
the number of required colors corresponds to the number of
time steps needed to execute all entangling operations. Two
adjacent edges, i. e., edges that share a node, cannot have
the same color. However, another constraint is necessary
for a valid coloring to prevent AOD crossings.
Example 9 (Order Preservation of AOD Qubits). Con-
sider four qubits where each pair of (q1, q2), (q2, q3), (q3, q4),
and (q4, q1) should undergo a CZ operation. The upper time
sequence in the figure below is impossible because the two
AOD qubits would need to cross each other, conflicting with
the AOD Constraint (a) from Section III-C. As shown in
the lower time sequence, the AOD qubits must maintain
their order to prevent crossings, which makes three steps
necessary to execute those four CZ operations.
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In terms of the coloring of the interaction graph’s edges,
this can be achieved by adding the following condition:
(C) On all paths of length two between two blue nodes, the

inequality relation between the assigned colors must
point towards the same (blue) end node.

Example 10 (Coloring Constraint). The two execution
sequences above correspond to the two possible colorings
below. The left coloring violates Condition (C) whereas the
right one satisfies it.

>

<

<

>

>

Step 8

1 4 5
… …

Figure 9. The coloring requires eight iterations, and the result is
shown in the bottom row. The top row shows selected intermediate
steps. The “<”-signs denote the extra constraints on the coloring to
be valid.
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To satisfy this additional constraint while keeping the
total number of colors (i. e., time steps) low, we employ
a variation of the DSatur algorithm [54] that maintains
its polynomial time complexity. The DSatur algorithm is
a greedy algorithm that iteratively selects the edge with
the most different adjacent colors and selects the least
admissible color for it. The least admissible color is the
smallest color that is different from all adjacent colors of
the edge and larger than any color of an adjacent edge that
does not share the same node in the independent set. This
ensures that the Condition (C) is satisfied. We modify the
DSatur algorithm accordingly as defined in Algorithm 1.
The following Example 11 illustrates its application.

Algorithm 1: Modified DSatur Algorithm
Input: Interaction graph G = (V,E) (undirected)

Independent Set I ⊆ V
Output: Valid coloring c : E ⇀ N of the edges

1 for e ∈ E do
2 e.color← undef.
3 for v ∈ I sorted by degree in descending order do
4 S ← set of edges adjacent to v
5 for e ∈ S lexicographically ordered by the number

of different adjacent colors (desc.) and degree
(desc.) do

6 e.color← least admissible color
. must be different from all adjacent colors

and larger than any color of an adjacent
edge not adjacent to v

7 S ← S \ {e}

8 return c : e 7→ e.color

Example 11 (Coloring Edges). Algorithm 1 starts with
the node of the independent set with the highest degree
and colors all its adjacent edges. Since, at this stage, no
other edges are colored, they are colored with 1, 2, 3, and
4, respectively (see steps t = 1 and 4 in Figure 9). The
two remaining nodes in the independent set have the same
degree; we assume that it is the left one’s turn next. For
the edge colored in Step 5, the algorithm selects Color 2,
the least color larger than the adjacent 1. The algorithm
continues coloring the remaining edges, which results in the
coloring shown in the bottom row in Figure 9.
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Figure 10. Visualization of all time steps corresponding to the run stemming from the interaction graph in Example 7.

Figure 11. The grey arrows depict a directed graph that represents
a partial order on the set of SLM qubits. The order of the qubits in
which they are placed in the entangling zone, from left to right, is
given by a topological ordering of the graph.

With the coloring at hand, we can now calculate the exact
positions of each qubit in every step and their movements
in between.

D. Positioning the Qubits
Recall that the independent set determines which qubits

are held in AOD traps, and the coloring determines the
steps at which an entangling gate is executed. We still
need to determine the exact positions of the qubits in
the entangling zone for each step to facilitate the correct
entangling operation at the right time. In the following, we
will refer to qubits held in the AOD as AOD qubits and
to those kept in SLM traps as SLM qubits.

The AOD qubits will move from left to right during one
run. Hence, the SLM qubit adjacent to one AOD qubit
must be placed in ascending order with respect to the color
assigned to the edge from the AOD to the SLM qubit. This
defines a total order on the SLM qubits in the neighborhood
of one AOD qubit. Combining the total orders induced by
all AOD qubits gives a partial order on the set of all SLM
qubits.1 We compute a total order on the SLM qubits by
topologically sorting the directed graph induced by the
partial order. Thereby, the computed total order satisfies
the partial order in the sense that the relation is a superset
of the partial order.

Example 12 (Topological Order). The colors around q7
in Figure 11 induce an order on the SLM qubits. The order
is depicted with grey arrows. The orderings induced by q1
and q3 are already subsumed by the existing order (also see

1It is not self-evident that the directed graph induced by combining
all total orders around an SLM qubit is acyclic, which is a requirement
for the partial order to be well-defined. This limitation must already
be taken care of during coloring: The inner for-loop actually orders
the edges first by the partial order induced by the already colored
edges and then by the number of different adjacent colors and their
degree. Then, the function leastAdmissibleColor ensures that the
new color does not introduce any cycles.

Footnote 1). Following the topological order of the SLM
qubits, we place the qubits in the entangling zone from left
to right. Consequently, we place from left to right the qubits
q5, q6, q2, and q4. This way, q7 can first interact with q5
in time step t = 0 and afterward with the other SLM qubits
by moving one position right between the steps.

The order of the adjustable qubits in the AOD must be
the same as the one used for the coloring, whereby the
AOD qubit with the highest degree is placed rightmost.
By keeping an equal and sufficient distance between the
SLM qubits to avoid any undesired interaction, we could,
in principle, calculate the exact positions of all qubits in
the entangling zone for each step. However, there are time
steps in which some AOD qubits shall not interact with any
SLM qubit. In this case, we need to ensure with so-called
resting positions that these AOD qubits are outside any
other qubit’s interaction radius.
Example 13 (Resting Positions). According to the coloring
in Figure 9, the qubit q1 does not interact with any other
qubit during time step t = 1. However, the order of the
AOD qubits used for the coloring implies that q1 is located
in between q7 and q3. In time step t = 1 those interact with
q5 and q6, respectively. To avoid any interaction, we need
to create a resting position for q1 between q5 and q6. Those
resting positions can be reused later for other qubits.

713 713

Resting position

These resting positions shift all subsequential SLM qubits
by one position to the right. After this, the positions of
the SLM qubits will be known. Relative to those, the AOD
qubits’ positions in each time step are calculated according
to the coloring.
Example 14 (Complete Run). As seen in previous ex-
amples, in particular, Example 7, q7 interacts with four
qubits. Those are not part of the independent set and, hence,
are placed in SLM traps. From one time step to the next,
the AOD qubits are moved from left to right to match the
position of their interacting partner. In time step t = 1, q1
stays at the resting position between qubit q5 and q6. This
resting position will be reused for qubit q3 in the next step.
All resulting steps of this run are shown in Figure 10.

E. Finalizing the Solution
We are now able to perform one run of multiple en-

tangling operations without additional load and store
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Figure 12. Comparison of the execution time of the circuit of the naive approach and NALAC.

operations. The only step missing is moving the affected
qubits from the storage zone to the entangling zone and
moving them back after the run.

To move the qubits to the entangling zone and store them
in the previously computed order, we opt for a procedure
that tries to maximize the number of qubits that can be
loaded in parallel. Unlike the naive solution, the proposed
solution does not place the qubits from the start. Instead, it
follows a demand-driven approach: When a qubit is loaded
into an AOD, its position can either be defined due to a
previous run or be undefined. In the latter case, we find
a free spot in the storage zone to maximize the number
of qubits that can be loaded in parallel. Qubits can be
loaded in parallel if they are in the same row and in the
correct order, i. e., the order in which they are needed in
the entangling zone. Hence, the proposed solution finds
the next free spot in the storage zone for a qubit with an
undefined position satisfying both conditions.2 To keep the
space consumed horizontally outside of the SLM traps in
the storage zone small, we first load qubits into the AOD
with a large misplacement, meaning they are located far
left and must travel far right or vice versa. After a run has
finished, the used qubits are moved back to the storage
zone. For this, we look for a minimal number of rows in
the storage that fit all qubits, and the free spots in those
rows are filled with qubits from the entangling zone.

Finally, as described in Section III-D, the solution for the
logical qubit is translated to a solution for arrays of atoms,
each representing a logical qubit. Therefore, every qubit in
the logical solution is replaced by its respective array of
atoms, where the logical qubit determines the upper left
atom in the array.

VI. Evaluation
In order to evaluate the effectiveness of the proposed solu-

tion compared to the naive approach, both techniques have
been implemented on top of the tool MQT QMAP publicly
available at https://github.com/cda-tum/mqt-qmap. The
resulting tool is called NALAC, short for Neutral Atom
Logical Array Compiler.

As a basis for our experiments, we used the architecture
as illustrated in Figure 13. To compute the different routing
overheads produced by both approaches, we used the
following parameters based on the specifications of the
neutral atom architecture in [11]:

Load/Store Duration [µs] 20

Shuttling Speed [ µm
µs ] 0.55

CZ Gate Duration [µs] 0.2

2We only execute circuits with as many qubits as the storage zone
can fit. Hence, there will always be a free spot.
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Figure 13. Layout of the zoned
architecture used for the experi-
ments.

As input circuits, we use
preprocessed versions of cir-
cuits taken from the MQT
Bench library [55] grouped
into circuit families, such as
qaoa, vqe, qft, etc. The pre-
processing consists of trans-
lating the original circuits
to the gate set supported
by the neutral atom architecture, i. e., local as well as
global rotations, and CZ gates, using Qiskit [56] and a
custom Python script. All experiments were conducted on
a machine with an Apple M3 chip and 16 GB of RAM.

A. Comparison of the Naive Solution to NALAC
To demonstrate the advantage of NALAC in terms

of the two objectives discussed in Section IV-C, namely
1) improved parallel gate execution, and 2) improved
parallel AOD shuttling, we evaluated the time taken for
loading, shuttling, and storing when executing the resulting
circuits—short the routing time overhead. Figure 12 shows
the obtained loading (including storing) and shuttling times
separately for four different circuit families in various sizes.
As one can see, NALAC produces circuits with significantly
shorter loading and shuttling times compared to the naive
solution. Table I summarizes the results for those four
and additional circuit families with a fixed number of 20
logical qubits. The last column shows the average number
of entangling operations performed in parallel per Rydberg
beam for circuits compiled with NALAC. Note that the
corresponding number for the naive solution is always one.
The low numbers for the average parallel CZ gates for some

Table I
Naive Solution vs. NALAC

Circuit Num. Routing ∅ Parallel
(20 Qubits) CZ-Gates Overhead [ms] CZ-Gates

Naive NALAC (NALAC)
ae 380 130 32 1.1
dj 19 7 1 1.0
ghz 19 6 7 1.0
graphstate 20 7 1 3.3
portfoliovqe 570 195 31 1.0
qft 408 139 22 1.0
qftentangled 429 147 31 2.8
qnn 778 266 57 3.6
qpeexact 406 139 43 3.7
qpeinexact 407 139 43 3.7
realamprandom 570 195 27 1.2
su2random 570 195 27 1.2
twolocalrandom 570 195 27 1.2
wstate 38 13 7 1.0

https://github.com/cda-tum/mqt-qmap


circuits are not surprising, as the CZ gates in these circuits
are interleaved with one-qubit gates, which prevent the
parallel execution of many CZ gates. In general, it can be
said that the more parallelism the structure of a circuit
allows, the more NALAC can exploit its advantage over
the serial naive approach. In the ghz circuit, for example,
NALAC even has a non-significant larger routing overhead
because—due to the structure of the circuit—the execution
of the CZ gates is interrupted by one-qubit gates, which
forces the CZ gates to be executed serially. Overall, those
figures demonstrate that NALAC is superior to the naive
solution because it yields substantially less routing time
overhead and higher gate parallelism.

B. Comparison of Compilation Times
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Figure 14. Compilation time of
the naive approach and NALAC.

The improved execution
times of NALAC come at
a price: The proposed ap-
proach is more complex
than the naive one and re-
quires a longer compilation
time. To evaluate the cost of
the improvement, we com-
pared the compilation time
of both approaches. Fig-
ure 14 shows the compila-
tion time for the naive solu-
tion and NALAC for circuits
of the qftentangled family
with different numbers of qubits. As expected, the runtime
of NALAC is significantly higher than that of the naive
solution. However, the performance remains polynomial;
even for larger circuits, the runtime of NALAC is still within
the range of milliseconds, making it a suitable approach
even for larger numbers of qubits.

C. Influence of Array Size
The experiments above were all performed with a logical

array size of one, i. e., one atom represents one logical qubit.
As argued in Section III-D, NALAC also supports larger
atom arrays representing a logical qubit. To evaluate that,
also the impact of the array size on the routing overhead is
considered, shown in Figure 15b. As can be seen, the qubits
need to move further with larger array sizes, increasing the
shuttling times. However, the loading times remain roughly
the same since all qubits in one array can be loaded in
parallel. The only effect that can happen here is that fewer
logical qubits fit in one row, which requires more loading
steps and consequently slightly increases the loading time.
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Figure 15. Comparing different array sizes.
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Figure 16. Comparing different shapes of the storage zone.

D. Supporting Hardware Design
Finally, in a last series of experiments, we investigated

how the proposed approach can even be used to evaluate
different hardware designs. To this end, we exemplarily
considered another architecture, namely the one shown in
Figure 16a, which has a narrower storage zone than the
one from Figure 13 considered before. Figure 16b shows
the corresponding resulting routing time overhead—clearly
showcasing the impact of this design. In fact, the results
show that the narrow storage zone leads to both longer
loading and shuttling times. This can be explained by the
fact that (1) the qubits need to travel longer distances on
average to reach the entangling zone, and (2) fewer qubits
fit in one row in the storage zone. This demonstrates how
the proposed approach can help hardware designers to
analyze trade-offs between different hardware parameters
and settings.

VII. Conclusions
In this work, we considered the development of target-

specific quantum compilers specialized for zoned neu-
tral atom architectures. We first provided an abstract
model of zoned neutral atom architectures, which are
a promising candidate for fault-tolerant gate execution
and, therefore, general FTQC. Then, we proposed a novel
solution to the routing problem of entangling operations
to this architecture. This solution minimizes the time
required for loading, shuttling, and storing the qubits while
maximizing the gate parallelism of entangling gates. We
implemented the proposed solution in the tool NALAC
and compared it to a naive solution. Evaluations showed
that NALAC efficiently routes entangling operations
of even larger quantum circuits to the zoned neutral
atom architecture, applies to various array sizes, and
can even support designers evaluating different hardware
designs. NALAC is publicly available in open-source as
part of the Munich Quantum Toolkit (MQT, [23]) at
https://github.com/cda-tum/mqt-qmap. For full FTQC,
this tool needs to be extended with further features,
like magic state injection [30] and error correction cy-
cles [27], [28].
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