
Utilizing Resource Estimation for the
Development of Quantum Computing Applications

Nils Quetschlich∗ Mathias Soeken† Prakash Murali‡ Robert Wille∗§
∗Chair for Design Automation, Technical University of Munich, Germany

†Microsoft Quantum, Switzerland
‡University of Cambridge, United Kingdom

§Software Competence Center Hagenberg GmbH (SCCH), Austria
nils.quetschlich@tum.de mathias.soeken@microsoft.com pm830@cam.ac.uk robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum https://quantum.microsoft.com

Abstract—Quantum computing has made considerable
progress in recent years in both software and hardware. But to
unlock the power of quantum computers in solving problems
that cannot be efficiently solved classically, quantum computing
at scale is necessary. Unfortunately, quantum simulators suffer
from their exponential complexity and, at the same time,
the currently available quantum computing hardware is still
rather limited (even if roadmaps make intriguing promises).
Hence, in order to evaluate quantum computing applications,
end-users are still frequently restricted to toy-size problem
instances (which additionally often do not take error correction
into account). This substantially hinders the development and
assessment of real-world quantum computing applications. In
this work, we demonstrate how to utilize Resource Estimation
to improve this situation. We show how the current workflow
(relying on simulation and/or execution) can be complemented
with an estimation step, allowing that end-users (1) actually
can consider real-world problem instances already today (also
considering error correction schemes and correspondingly
required hardware resources), (2) can start exploring possible
optimizations of those instances across the entire design space,
and (3) can incorporate hypotheses of hardware development
trends to derive more informed and, thus, better design space
parameters. Overall, this enables end-users already today to
check out the promises of possible future quantum computing
applications, even if the corresponding hardware to execute
them is not available yet.

I. INTRODUCTION

In recent years, quantum computing has witnessed remark-
able advancements in both software and hardware. As a result,
an expanding range of quantum devices with progressively
enhanced qubit quality has become available, leading to in-
creased interest in academia and industry for tackling diverse
problems across multiple application domains. This trend is
indicative of the growing potential of quantum computing to
offer transformative solutions to complex problems that are
beyond the capabilities of classical computing [1].

The utilization of quantum computers to solve complex
problems involves a multi-stage process: The first step involves
selecting or developing a quantum algorithm that offers a
quantum advantage, i.e., can solve the problem better com-
pared to the best-known classical algorithm (e.g., in terms
of algorithmic complexity, execution time, or solution qual-
ity). The second step entails the encoding of the problem

in terms of a quantum program that can be compiled into
machine instructions for a quantum computer. This process
factors in various constraints on quantum gate sets and qubit
connectivities that arise from different quantum computing
technologies being explored, such as superconducting [2],
ion traps [3], neutral atoms [4], or Majorana qubits [5].
The third step involves executing the compiled program on
the quantum computer (or a corresponding simulator), and
the final step covers the interpretation of the measurement
results from the quantum computer as the solution to the
original problem. Developing such solutions is an active area
of research in domains such as finance [6], chemistry [7],
machine learning [8], and optimization [9].

Unfortunately, this process fails as soon as practically
relevant applications are considered. This is because the ap-
plication of the described workflow currently relies on the
use of quantum simulators and near-term quantum computers.
The former deploy classical computers to simulate quantum
algorithms—a computationally complex task which is limited
to a few dozen qubits. The latter supports a larger number of
qubits, but their scalability is limited as well. Importantly, the
noise rates in these near-term quantum computers currently are
still too high to support high-fidelity executions of practically
relevant applications.

Consequently, a comprehensive evaluation of the potential
of quantum computing for a considered problem necessitates
the consideration of quantum error correction to scale to larger
problem instances closer to real-world problem sizes. This
induces an overhead in the required resources (such as, e.g.,
the number of qubits) which effectively exceeds the limits of
current devices by far. All of that could lead to a situation
in which certain quantum algorithms might not provide any
practical quantum advantage once the presumed characteristics
of the fault-tolerant quantum computer and the efficacy of error
correction protocols are factored in [10]. Because of this, it is
often still not clear what applications are suitable to be solved
using quantum computing—constituting a major bottleneck in
the progress of quantum computing application development.

Recently, a complementary approach to the execution on
simulators or quantum computing hardware emerged: Re-
source Estimation (RE) such as, e.g., proposed in [10], [11].

mailto:nils.quetschlich@tum.de
mailto:mathias.soeken@microsoft.com
mailto:pm830@cam.ac.uk
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/research/quantum
https://quantum.microsoft.com


H H

Mathmatical
Formulation

Algorithm
Selection

Encoding

q1

q2

q3

q4

RY

RY

RY

RY

RY

RY

RY

RY

Q1 Q2 Q3

Q4

Q5

H2 Energy

ExecutionExecution

(a) Problem. (b) Design Space. (c) Quantum Program. (d) Device Selection. (e) Result.

Fig. 1: Current workflow for the development of quantum computing applications.

Instead of actually executing a given quantum program, RE
gives an estimate of the resources necessary to execute it in a
fault-tolerant fashion. Although this approach does not return
the actual solution, it allows one to determine an early resource
estimate—a procedure that has been exploited in conventional
computing for decades, e.g., in classical HW/SW co-design
where cost estimates are used to guide which functionalities
are realized in hardware and which in software (see, e.g., [12],
[13]).

This paper illustrates how the current workflow to solve
problems using quantum simulators and noisy near-term quan-
tum computers can be complemented by substituting the
actual execution step with an estimation step—leading to the
following three improvements: Firstly, end-users are enabled
to consider real-world problem instances already today (also
considering error correction schemes to explore the hardware
requirements of a chosen set of design space parameters and
determine the required hardware resources). These estimates
can then be compared with the quantum hardware vendor’s
roadmaps to obtain a sense of the chosen approach’s feasibility.
Secondly, end-users can start exploring optimizations across
the entire design space of a quantum computing application
and, by that, develop and facilitate trade-offs between different
design space parameters. Thirdly, end-users can even incorpo-
rate various hypotheses of hardware development trends and
their potential improvements into the methodology.

On the basis of that, more informed and, thus, better
design space parameters are derived. Overall, the workflow
complementation eventually provides valuable insights for the
development of future quantum technologies and promising
applications for them due to its versatility and applicability
across different stages of quantum computing application
development. In other words, this enables end-users already
today to check out the promises of possible future quantum
computing applications, even if the corresponding hardware to
execute them is not available yet.

The remainder of this work is structured as follows: Sec-
tion II describes the current workflow to solve problems using
quantum computing. Section III outlines how resource estima-
tion can complement the flow in the absence of large-scale
quantum computers. Then, the complemented workflow is
applied in a representative case study in Section IV based on
a real-world problem instance from the domain of chemistry
to demonstrate its advantages and is discussed in Section V.
Section VI concludes this work.

II. MOTIVATION

In this section, the quantum solution workflow is reviewed
and illustrated with a running example.

A. Quantum Solution Workflows

The workflow to solve a problem using quantum computing
is illustrated in Fig. 1 (based on the workflow proposed in
[14]). Starting with the problem itself as sketched in Fig. 1a, it
must be translated into a form suitable for quantum computing
as indicated in Fig. 1b. This comprises (1) the mathematical
problem formulation, (2) the selection of a quantum algorithm
that is generally capable of solving the problem considered,
and (3) its encoding into a quantum program based on that—
requiring multiple design decisions that eventually form the
design space. Any combination of suitable design choices
leads to a quantum program as shown in Fig. 1c.

Example 1. A prominent example application in the domain
of chemistry is to calculate the ground state energy of a
molecule such as the H2 molecule illustrated in Fig. 1a. To
mathematically describe the problem, its Hamiltonian must
be derived. This is usually done with the help of already
existing software tools, such as PySCF [15]. Subsequently, the
resulting Hamiltonian must be mapped to a format suitable for
quantum computing, e.g., using the Jordan-Wigner mapping.
Next, the Variational Quantum Eigensolver (VQE, [7]) is
selected as the solving algorithm since it is one of the prime al-
gorithms for this kind of problem. For VQE, a respective ansatz
must be chosen for the encoding as a quantum program—in
this case, the TwoLocal ansatz1 with a linear entanglement
pattern is chosen, resulting in the quantum program being
sketched in Fig. 1c.

Then, the resulting quantum program must be executed. To
this end, both quantum simulators (based on different data
structures [16] such as, e.g., decision diagrams [17]–[21],
tensor networks [22], [23], matrix-product states [24], [25],
or sparsity [26]) and near-term quantum computers (based
on various technologies such as, e.g., superconducting [2],
ion traps [3], neutral atoms [4], or Majorana qubits [5]) are
available and a representative must be selected as shown in
Fig. 1d. This representative must be capable of executing the
quantum program—both in terms of the number of required

1See https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal
.html for details.

https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal.html


#Qubits

Depth

101 102 103 104 105

Resource
Estimation

Simu-
lation

NISQ

Fig. 2: Current execution limits for quantum programs.

qubits and also on its qubits’ characteristics such as the gate
execution error rates or decoherence time.

Example 2. The quantum program derived in Example 1
requires four qubits. Therefore, the ibmq_perth device with 5
qubits is selected which has a limited connectivity as depicted
in Fig. 1d.

To eventually determine the desired solution to the initial
problem, the encoded quantum program can now be executed
on the chosen device. Afterwards, the result is extracted from
the measurement results.

Example 3. When executing the program resulting from Ex-
ample 1 on the device chosen from Example 2, the ground state
energy is approximated as insinuated in Fig. 1e. Determining
the minimum value of this graph returns the desired value of
the H2 molecule.

B. Current Limitations and General Idea

There are two options to execute quantum programs: Ei-
ther the currently available quantum simulators or near-term
quantum computers. However, both options are limited in their
capabilities as illustrated in Fig. 2 and do not provide means
for exploring practically relevant problems.

Quantum simulators provide ideal qubits but have a rather
small capacity—usually limited to a few dozen qubits—while,
on the other hand, the currently available so-called Noisy
Intermediate Scale Quantum (NISQ) computers [27] with up
to several hundreds of qubits do not provide a sufficient
qubit quality for a reliable execution (and, thus, effectively
restricting the quantum program depth). As a consequence,
the development of quantum computing applications at the
moment considers mostly toy-size problem instances whose
quantum computing solutions still fit the current simulators
and NISQ computers—not considering the scalability to larger
problem sizes closer to real-world scenarios.

Most quantum device vendors have published roadmaps to
significantly scale their device capabilities over the next years.
However, it would be disadvantageous to wait for the avail-
ability of sufficiently large quantum devices before considering
real-world problem sizes when developing quantum computing
applications—leading to a situation where, in the worst case,
powerful devices are available, but no suitable applications are
available to make use of them.

C. Resource Estimation
Resource Estimation (RE) is a promising approach to over-

come this bottleneck and to provide guidance on implementing
important quantum algorithm instances today for the hardware
of tomorrow. Instead of executing a given quantum program,
RE estimates the required resources (such as the number of
qubits and the runtime) based on assumed hardware char-
acteristics such as gate execution times, fidelity rates, and,
the underlying error correction scheme. This methodology
allows one to consider quantum programs orders of magnitude
larger than the current limits of both quantum simulators and
computers. Although this obviously does not result in an actual
execution and, hence, solution, it already gives insights into
the applicability and scalability of the chosen design space
parameters and assumed hardware characteristics.

RE is an emerging topic within the quantum computing
community and, recently, various methodologies have been
proposed. While some works (such as, e.g., [28]) focus on
rather manual generation of resource estimates, more and
more software tools are proposed to automate this procedure—
e.g., Microsoft’s Azure Quantum Resource Estimator [11],
[29], Google’s Qualtran [30], Zapata’s BenchQ [31], and MIT
Lincoln Lab’s pyLIQTR [32]. These software tools provide
simple means of estimating what resources are necessary to
reliably execute a given quantum program based on assumed
qubit hardware characteristics.

III. RESOURCE ESTIMATION-DRIVEN DEVELOPMENT

In this work, we describe how resource estimation com-
plements the quantum solution workflow to allow the de-
velopment of quantum computing applications for practically
relevant problems already today, even when fault-tolerant
quantum hardware is not available yet.

A. Resource Estimation for Scalability Exploration
Fig. 3 illustrates how we integrate resource estimation

into the workflow by substituting the Execution step (indi-
cated in Fig. 1d/Fig. 1e) by an Estimation step (indicated in
Fig. 3d/Fig. 3e). More precisely, instead of returning the solu-
tion of the considered application instance, the complemented
workflow returns an estimate of the required resources such
as how many physical qubits would be needed for execution
together with the estimated runtime.

Example 4. Consider again the problem from Example 1
and its respective quantum program derived in Example 2.
Although this program represents a small problem instance
that is easily executable on current NISQ computers, VQE
generally does not scale well with respect to the size of the
problem considered compared to other approaches, e.g., based
on Quantum Phase Estimation (QPE) [34]. Hence, larger
problem instances such as the one depicted in Fig. 3a would
lead to different design space parameter choices (sketched in
Fig. 3b)—e.g., QPE-based algorithms—and, thus, result in a
different quantum program as shown in Fig. 3c. However,
those approaches assume a (close-to) error-free execution—
requiring error correction schemes to overcome the erroneous



H2

PPh2R

Ru
THFRPh2P

OCH3RPh2P
XVIII

Mathmatical
Formulation

Algorithm
Selection

Encoding

q1

q2

q3

q4

...
qn

|0⟩⊗m

H

H

H

H

H

U20 U21

. . .

. . .

. . .

. . .

. . .

. . .

. . . U2n−1

QFT † #Qubits
Runtime

Error Rates
Gate Execution Time

Error Budget
...

Assumed Hardware Characteristics

Practicality
Assessment ✓

Estimation

Optimize design space parameters

(a) Problem (taken from [33]). (b) Design Space. (c) Quantum Program. (d) Resource Estimation. (e) Result.

Fig. 3: Resource estimation-driven development of quantum computing applications.
hardware and, thus, control the errors during computation
in a way to stay within a provided error budget. Using RE,
the number of required physical qubits and the corresponding
runtime can be determined as depicted in Fig. 3d based on
assumptions on the hardware characteristics of the qubits.
This ultimately leads to an assessment of whether a practical
quantum advantage is likely for the provided problem as
indicated in Fig. 3e.

Following this approach gives an estimate of the required
resources for not-yet-executable problem sizes. The resulting
estimates of, e.g., required physical qubits and the runtime,
might give an indication of the time horizon needed to solve
those problem instances using actual quantum computers by
comparing the required estimated resources with the roadmaps
of device vendors. This does not give an actual problem
result, but a reference whether the considered problem is worth
considering in the foreseeable future—an information highly
relevant for various stakeholders from application developers
in industry up to decision makers in funding agencies and
politics to, e.g., define their national quantum strategy.

B. Resource Estimation for Design Space Exploration

Often, problems can be solved using different quantum
computing approaches. For example, there exist various algo-
rithms for simulating quantum chemistry, based on Trotteriza-
tion [35], qubitization [36], or tensor hypercontraction [37],
to name a few. On top of that, there are usually various
possibilities to implement the quantum algorithm as a quantum
program—and these choices have a significant influence on
the required resources. Therefore, a workflow that supports
end-users in exploiting these design choices would certainly
be helpful.

Using RE, the workflow described above can even be further
complemented to provide this support for the design space
exploration for a given problem by introducing a feedback loop
as depicted in Fig. 3 from Fig. 3d to Fig. 3b. This loop allows
end-users to determine the most promising set of design space
parameters in a guided fashion. Finding such a set helps to
assess the practicality of the execution of an algorithm instance
on a future computer as sketched in Fig. 3e.

Example 5. Although the asymptotic computational complex-
ity of quantum algorithms for simulating quantum chemistry
can be compared, implementing them as quantum programs
for a specific instance may introduce overhead that could alter
the ranking of the algorithms and favor one over the other.
Moreover, while a particular algorithm may be favorable
for one set of instances, other algorithms may be preferable
for other sets. When considering various implementations for
building blocks used in the quantum program, such as quantum
arithmetic or table lookup, the search space expands even
further.

This approach requires an effort to generate the initial
quantum program that solves the problem considered based
on the selected design space parameters before evaluating its
scalability. However, this is not always necessary and often
it is sufficient to know how the selected quantum algorithm
scales in terms of logical counts such as the required number
of qubits and the number of gates with the problem size. Using
these numbers is already sufficient to run a resource estimate—
simplifying the design exploration process even further.

Following this approach provides powerful means to explore
and evaluate the design space how best to solve the considered
problem already today without having to wait for the avail-
ability of sufficiently large quantum devices. This early start
of developing sophisticated quantum computing applications
for real-world problem instances accelerates the race to catch
up with classical solutions that have been developed and
optimized for decades—a process that will take years, and,
therefore, should be started as early as possible.

C. Resource Estimation for Hardware Characteristics Explo-
ration

Finally, not only does the design space for how to encode
an application into a quantum program offer a large degree
of freedom, the assumed hardware characteristics used as
input for the RE does as well. So far, this freedom has
been utilized by current RE tools by providing pre-defined
configurations (such as the Azure Quantum Resource Estima-
tor [11] provides multiple configurations for both gate-based



TABLE I: Resource estimates.

Distance Factories Phys. qubits Runtime

G µs, 10−3 31 12 5.62M 156 years
G µs, 10−4 15 12 1.31M 75 years
G ns, 10−3 31 14 6.04M 38 days
G ns, 10−4 15 15 1.47M 18 days
M ns, 10−4 17 13 4.20M 16 days
M ns, 10−6 9 14 1.30M 8 days

and Majorana qubits) of assumed hardware characteristics. Ad-
ditionally, these characteristics can be modified by end-users—
and, hence, opens up the possibility of evaluating how further
progress in hardware development might affect the resource
estimates.

Example 6. Similarly to how classical computers have
evolved dramatically from early small-scale to current systems,
quantum computing hardware is also expected to improve
over time in terms of the number of qubits available, their
error rates, decoherence times, and others. By employing RE,
various hypotheses, such as an increase in gate execution
speed or a decrease in gate execution error, can be examined
and assessed.

Evaluating different hypotheses on how the quantum hard-
ware may develop significantly aids to create a deeper under-
standing of the scalability of the application considered and its
design space parameters. Therefore, this evaluation should also
be incorporated in the workflow of how quantum computing
solutions are derived—leading to more informed and, thus,
better design space parameters.

IV. CASE STUDY

In this section, we demonstrate various RE scenarios in
order to showcase the benefits of the workflow described
above for a practical quantum chemistry application.2 We
evaluate the resources to calculate the ground state energy of
a Hamiltonian to chemical accuracy of 1 mHartree using the
qubitization quantum simulation algorithm [36] on top of a
double-factorized representation of the Hamiltonian [33]. The
Hamiltonian describes the 64 electron and 56 orbital active
space of one of the stable intermediates in the ruthenium-
catalyzed carbon fixation cycle [38] shown in Fig. 3a.

A. Scalability Exploration

As a first experiment, we estimate the resources for six
examples of qubit parameters which represent various regimes
of interest [11, Table II] as shown in Table I. The label contains
the operation times regime (either µs or ns), and the limiting
error rate of its Clifford operations, and is prefixed by whether
the physical instruction sets are either gate-based (G) or have
Majorana (M) instruction sets. To ensure a chemical accuracy
of 1 mHartree, we provide an error budget of 1% to the
resource estimator.

Next, we focus on the data point ‘M ns, 10−6’ as a base
estimate and evaluate space/time trade-offs by allowing a

2The source code for this experiment can be found at https://github.com/c
da-tum/mqt-problemsolver.

TABLE II: Influence of T factories.

Factories Distance Fraction Phys. qubits Runtime

14 9 17.97% 1.30M 8 days
13 9 16.91% 1.28M 9 days
12 9 15.81% 1.26M 10 days
11 9 14.69% 1.25M 11 days
10 9 13.53% 1.23M 12 days
9 9 12.35% 1.21M 13 days
8 9 11.13% 1.20M 15 days
7 9 9.87% 1.18M 17 days
6 9 8.58% 1.16M 19 days
5 9 7.26% 1.15M 23 days
4 9 5.89% 1.13M 29 days
3 9 4.49% 1.11M 39 days
2 9 3.04% 1.10M 58 days
1 9 1.54% 1.08M 116 days

longer runtime of the algorithm. In the base estimate, 17.97%
of the total number of physical qubits is used to run 14 T
factories in parallel that will produce the required 270 billion
T states over the runtime of the algorithm. By slowing down
the execution of the algorithm using logical idle operations, we
require fewer T factories to run in parallel to produce the same
number of required T states. We analyze how the runtime and
the number of overall physical qubits is affected by limiting
the number of T factories to F = 1, . . . , 14. The results are
shown in Table II.

Assuming that one month is still a reasonable runtime, we
find that with 4 factories we are below that threshold but are
able to save about 170,000 physical qubits compared to the
base estimate.

Although the current quantum computing application de-
velopment usually relies on available quantum simulators and
NISQ computers, the proposed methodologies allow end-users
to get at least a resource estimate—and, by that, an assess-
ment of its practicality—for their problem instances closer to
real-world scenarios.

B. Design Space Exploration

Next, we make hypothetical assumptions on what impact
optimizations to space (number of qubits) and time (number
of operations) on the logical abstraction layer may have—
potentially caused by different design space parameters. For
this purpose, we first extract the logical pre-layout counts from
the previous RE results. These are independent of the qubit pa-
rameters and space and time constraints, and are: 1,318 qubits,
67,474,931,068 Toffoli gates, 96 T gates, 11,987,084 rotation
gates in depth of 11,986,482, as well as 63,472,407,520 single-
qubit measurements. In addition to the baseline (using the
data point ‘M ns, 10−6’) we consider three scenarios: 1) 1

2 /2:
use half the number of qubits, but all gate and depth counts
are double, 2) 2/ 12 : use twice the number of qubits, but all
gate counts and depths are halved, 3) 3

4 / 34 : save 25% both in
qubit counts, gate counts, and depth. The respective resulting
estimates are shown in Table III.

As we can see, hypothetical savings do not fully propagate
to the physical estimates, which emphasizes the importance
of full-stack physical resource estimates. For the 1

2 /2, the
physical qubits did not decrease by 50%, even though the

https://github.com/cda-tum/mqt-problemsolver
https://github.com/cda-tum/mqt-problemsolver


TABLE III: Influence of different design space parameters.

Scenario Distance Factories Phys. qubits Runtime

baseline 9 14 1.30M 8 days
1
2

/2 9 14 773.06k 17 days
2/ 1

2
9 14 2.34M 4 days

3
4

/ 3
4

7 18 804.11k 5 days

runtime increased by more than twice. On the other hand,
for the 2/ 12 , the number of physical qubits did not increase
by 2, even though the logical number of qubits is twice as
high as the baseline. Finally, in the optimistic scenario, both
space and time savings are possible. Since the savings allow
for decreasing the code distance from 9 to 7, final savings of
more than 25% to physical qubits and runtime are possible.

Even without the availability of sufficiently large quantum
devices, different design space parameters can already be
explored and their influences can be quantified and assessed.
Consequently, this allows end-users to keep improving their
quantum computing applications such that optimized solutions
are at hand once the corresponding quantum computing de-
vices become available.

C. Hardware Characteristics Exploration

In the final experiment, we want to model how a potential
change in error rates would affect the resulting resource
estimates. To this end, we start with the data point ‘G ns,
10−3’ for a base estimate. Here, the assumptions for the
qubit parameters are t

(0)
meas = 100 ns measurement time, and

t
(0)
gate = 50 ns gate operation times, as well p

(0)
T = 10−3

measurement and gate error rates [11]. We assume these
parameters at some time point t in the future, and model an
improvement of t

(t)
meas = 0.9t · t(0)meas, t

(t)
gate = 0.9t · t(0)gate,

and p
(t)
T = 0.1t · p(0)T after t equally spaced time steps.

These constants were arbitrarily chosen for the sake of the
example and the resulting estimates are shown in Table IV.
The experiments can be repeated using more accurate numbers
from observing the rate of past improvements.

Using RE, the influence of such (rather simple) assumptions
on the progress in quantum computing hardware can easily
be determined for a given quantum program that realizes any
application. This provides end-users with powerful means to
explore the design space for their problems—leading to more
informed and, therefore, more scalable solutions.

V. DISCUSSION

Although RE does not provide a solution to the problem
considered, it can be used in a complementary fashion to the
workflow of developing quantum computing applications. RE
is a powerful tool for exploring the scalability to real-world
problem sizes under assumed hardware characteristics and
error correction schemes—and, optionally, even considering
hypotheses of how the hardware might improve. By that, the
most promising design space parameters can be determined
although sufficiently large hardware is not yet available. How-
ever, the approach is based on various assumptions, such as the
assumed hardware characteristics and the methodology used

TABLE IV: Influence of different hardware characteristics.

t Distance Factories Phys. qubits Runtime

0 31 14 6.04M 38 days
1 15 15 1.47M 17 days
2 11 13 733.28k 11 days
3 7 14 295.96k 6 days
4 7 10 278.52k 6 days

to actually derive the resource estimates. Due to the currently
missing hardware on the required scale, it is impossible to
validate those assumptions in an experimental evaluation to
prove the methodology.

VI. CONCLUSIONS

Many of the current design flows for developing quantum
computing applications focus on simulation and execution
on near-term devices, which prohibits the exploration of
large-scale quantum programs for quantum computing at scale.
This leads to the situation where quantum computing applica-
tions focus on toy-size problem instances without taking error
correction into account. In this paper, we describe how Re-
source Estimation can readily complement such design flows.
Instead of execution a given quantum program, its required
hardware resources are estimated. Since this procedure does
not rely on existing quantum simulators and computers, it
is not restricted to toy-size problem instances—resulting in
three improvements: (1) End-users are enabled to consider
real-world problem instances already today (also taking error
correction schemes into account and determining the required
hardware resources). These estimates can then be compared
with the quantum hardware vendor’s roadmaps to obtain a
sense of the chosen approach’s feasibility. (2) End-users can
start exploring optimizations across the entire design space of
a quantum computing application to determine the most effi-
cient parameters. (3) End-users can even incorporate various
hypotheses of hardware development trends to derive more
informed and, thus, better design space parameters. Overall,
the described workflow enables the development of quantum
computing applications for real-world problem instances al-
ready today without having to wait for the availability of
sufficiently large quantum devices.

ACKNOWLEDGMENTS

N.Q. and R.W. acknowledge funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (DA QC, grant agree-
ment No. 101001318 and MILLENION, grant agreement No.
101114305), the Munich Quantum Valley, which is supported
by the Bavarian state government with funds from the High-
tech Agenda Bayern Plus, and the BMWK on the basis of
a decision by the German Bundestag through project QuaST,
as well as the BMK, BMDW, the State of Upper Austria in
the frame of the COMET program, and the QuantumReady
project within Quantum Austria (managed by the FFG).



REFERENCES

[1] T. L. Scholten et al., “Assessing the benefits and risks of
quantum computers,” 2024. arXiv: 2401.16317.

[2] M. Kjaergaard et al., “Superconducting qubits: Current state
of play,” Annual Review of Condensed Matter Physics, 2020.

[3] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,
“Trapped-ion quantum computing: Progress and challenges,”
Applied Physics Reviews, 2019.

[4] L. Henriet et al., “Quantum computing with neutral atoms,”
Quantum, 2020.

[5] T. Karzig et al., “Scalable designs for quasiparticle-poisoning-
protected topological quantum computation with Majorana
zero modes,” Phys. Rev. B, 2017.

[6] N. Stamatopoulos et al., “Option pricing using quantum com-
puters,” Quantum, 2020.

[7] A. Peruzzo et al., “A variational eigenvalue solver on a
photonic quantum processor,” Nature Communications, 2014.

[8] C. Zoufal, A. Lucchi, and S. Woerner, “Quantum Generative
Adversarial Networks for learning and loading random distri-
butions,” npj Quantum Information, 2019.

[9] S. Harwood, C. Gambella, D. Trenev, A. Simonetto, D. Bernal
Neira, and D. Greenberg, “Formulating and Solving Routing
Problems on Quantum Computers,” IEEE Transactions on
Quantum Engineering, 2021.

[10] T. Hoefler, T. Haener, and M. Troyer, “Disentangling hype
from practicality: On realistically achieving quantum advan-
tage,” 2023. arXiv: 2307.00523.

[11] M. E. Beverland et al., “Assessing requirements to scale to
practical quantum advantage,” 2022. arXiv: 2211.07629.

[12] Y.-K. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast,
parallel, and accurate simulator for HLS,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
2020.

[13] L. Servadei et al., “Accurate Cost Estimation of Memory
Systems Utilizing Machine Learning and Solutions from Com-
puter Vision for Design Automation,” IEEE Transactions on
Computers (TC), 2020.

[14] N. Quetschlich, L. Burgholzer, and R. Wille, “Towards an
Automated Framework for Realizing Quantum Computing
Solutions,” in Int’l Symp. on Multi-Valued Logic, 2023.

[15] Q. Sun et al., “The python-based simulations of chemistry
framework (PySCF),” 2017. arXiv: 1701.08223.

[16] R. Wille, L. Burgholzer, S. Hillmich, T. Grurl, A. Ploier,
and T. Peham, “The Basis of Design Tools for Quantum
Computing: Arrays, Decision Diagrams, Tensor Networks, and
ZX-Calculus,” in Design Automation Conf., 2022.

[17] A. Zulehner and R. Wille, “Advanced simulation of quantum
computations,” IEEE Trans. on CAD of Integrated Circuits and
Systems, 2019.

[18] X. Hong, X. Zhou, S. Li, Y. Feng, and M. Ying, “A tensor
network based decision diagram for representation of quantum
circuits,” ACM Trans. Des. Autom. Electron. Syst., 2022.

[19] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Improving
gate-level simulation of quantum circuits,” Quantum Informa-
tion Processing, 2003.

[20] T. Grurl, J. Fuß, and R. Wille, “Noise-aware Quantum Circuit
Simulation With Decision Diagrams,” IEEE Trans. on CAD of
Integrated Circuits and Systems, 2022.

[21] A. Zulehner, S. Hillmich, and R. Wille, “How to Efficiently
Handle Complex Values? Implementing Decision Diagrams
for Quantum Computation,” in Int’l Conf. on CAD, 2019.

[22] J. Biamonte and V. Bergholm, “Tensor networks in a nutshell,”
2017. arXiv: 1708.00006.

[23] I. L. Markov and Yaoyun. Shi, “Simulating quantum com-
putation by contracting tensor networks,” SIAM Journal on
Computing, 2008.

[24] R. Orús, “A practical introduction to tensor networks: Matrix
product states and projected entangled pair states,” Annals of
Physics, 2014.

[25] D. Perez-Garcia, F. Verstraete, M. Wolf, and J. Cirac, “Ma-
trix product state representations,” Quantum Information and
Computation, 2007.

[26] S. Jaques and T. Häner, “Leveraging state sparsity for more
efficient quantum simulations,” 2021. arXiv: 2105.01533.

[27] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, 2018.

[28] D. Litinski, “How to compute a 256-bit elliptic curve private
key with only 50 million Toffoli gates,” 2023. arXiv: 2306.
08585.

[29] W. van Dam, M. Mykhailova, and M. Soeken, “Using azure
quantum resource estimator for assessing performance of fault
tolerant quantum computation,” 2023. arXiv: 2311.05801.

[30] Qualtran — Qualtran documentation. [Online]. Available:
https : / / qualtran . readthedocs . io / en / latest/ (visited on
11/14/2023).

[31] Benchq, Zapata AI. [Online]. Available: https://github.com/
zapatacomputing/benchq (visited on 11/14/2023).

[32] pyLIQTR, USC Information Sciences Institute. [Online]. Avail-
able: https://github.com/isi-usc-edu/pyLIQTR.

[33] V. von Burg et al., “Quantum computing enhanced computa-
tional catalysis,” Phys. Rev. Res., 2021.

[34] H. Liu, G. H. Low, D. S. Steiger, T. Häner, M. Reiher, and
M. Troyer, “Prospects of quantum computing for molecular
sciences,” Materials Theory, 2022.

[35] E. Campbell, “Random compiler for fast hamiltonian simula-
tion,” Phys. Rev. Lett., 2019.

[36] G. H. Low and I. L. Chuang, “Hamiltonian Simulation by
Qubitization,” Quantum, 2019.

[37] J. Lee et al., “Even more efficient quantum computations of
chemistry through tensor hypercontraction,” PRX Quantum,
2021.

[38] S. Wesselbaum et al., “Hydrogenation of carbon dioxide
to methanol using a homogeneous ruthenium–triphos cata-
lyst: From mechanistic investigations to multiphase catalysis,”
Chem. Sci., 2015.

https://arxiv.org/abs/2401.16317
https://arxiv.org/abs/2307.00523
https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/1701.08223
https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/2105.01533
https://arxiv.org/abs/2306.08585
https://arxiv.org/abs/2306.08585
https://arxiv.org/abs/2311.05801
https://qualtran.readthedocs.io/en/latest/
https://github.com/zapatacomputing/benchq
https://github.com/zapatacomputing/benchq
https://github.com/isi-usc-edu/pyLIQTR

	Introduction
	Motivation
	Quantum Solution Workflows
	Current Limitations and General Idea
	Resource Estimation

	Resource Estimation-driven Development
	Resource Estimation for Scalability Exploration
	Resource Estimation for Design Space Exploration
	Resource Estimation for Hardware Characteristics Exploration

	Case Study
	Scalability Exploration
	Design Space Exploration
	Hardware Characteristics Exploration

	Discussion
	Conclusions

