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Quantum circuit synthesis describes the process of converting arbitrary unitary operations into a gate
sequence of a fixed universal gate set, usually defined by the operations native to a given hardware
platform. Most current synthesis algorithms are designed to synthesize towards a set of single-qubit
rotations and an additional entangling two-qubit gate, such as CX, CZ, or the Mølmer–Sørensen gate.
However, with the emergence of neutral atom-based hardware and their native support for gates with
more than two qubits, synthesis approaches tailored to these new gate sets become necessary. In this
work, we present an approach to synthesize (multi-) controlled phase gates using ZX-calculus. By
representing quantum circuits as graph-like ZX-diagrams, one can utilize the distinct graph structure
of diagonal gates to identify multi-controlled phase gates inherently present in some quantum circuits
even if none were explicitly defined in the original circuit. We evaluate the approach on a wide
range of benchmark circuits and compare them to the standard Qiskit synthesis regarding its circuit
execution time for neutral atom-based hardware with native support of multi-controlled gates. Our
results show possible advantages for current state-of-the-art hardware and represent the first exact
synthesis algorithm supporting arbitrary-sized multi-controlled phase gates.

1 Introduction

Compiling and optimizing quantum algorithms towards hardware-specific constraints is indispensable
to efficiently use currently available noisy quantum hardware with limited gate fidelities and coherence
times. An important step of the compilation process is quantum circuit synthesis, converting arbitrary
unitary operations to gate sequences natively supported by the hardware. State-of-the-art synthesis algo-
rithms, such as [25,47], are often focused on a superconducting hardware setting and synthesize towards
singular two-qubit gates, e.g., CX, and single-qubit gates. Such synthesis algorithms are less preferable
for other hardware architectures, for instance, when gates acting on three or more qubits can be executed
natively without decomposition, resulting in a reduced execution cost.
In this work, we propose an approach to synthesize quantum circuits towards single qubit gates and
arbitrary-sized multi-controlled phase gates CnP(ϕ). To this end, we make use of the representation of a
quantum circuit as a graph-like ZX-diagram where we can use powerful rewrite rules of the ZX-calculus
to simplify diagrammatic structures [15]. This approach has shown to be a useful tool for tasks like
hardware-agnostic circuit optimization or equivalence checking [23, 39, 49]. We show that CnP(ϕ) have
a distinct representation in graph-like ZX-diagrams as a combination of so-called phase gadgets, which
occur naturally in the diagrams when using a simplification strategy proposed in [23]. By modifying an
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existing extraction algorithm from [4] to translate graph-like diagrams back to quantum circuits, we can
specifically optimize towards extracting phase gadget combinations corresponding to CnP(ϕ) gates.
The benefit and potential of the resulting approach are shown by synthesizing gate functionality for the
recently emerging neutral atoms platforms [17, 20, 32, 41–44]. Besides dynamic connectivity with atom
rearrangements [7, 8, 46] and favorable properties regarding scalability and large-scale control [6, 8, 19,
35,38], this technology offers native support for multi-controlled gates such as CnP, and CZn [12,14,16,
21, 22, 34]. We integrate our extraction scheme into a full gate synthesis and optimization process and
compare total execution times on hardware against Qiskit synthesis routines, considering current state-
of-the-art parameters. Our results show promising advantages in the form of reduced execution times on
different benchmark circuits.
The paper is structured as follows: In the first part, we give a basic introduction to ZX-calculus, including
graph-like ZX-diagram simplification, and show how multi-controlled phase gates can be identified and
extracted from the diagrams. In the second part, we focus on the application of the proposed approach to
neutral-atom-specific gate synthesis and discuss its effect on the execution time.

2 Related work

So far, algorithms supporting the synthesis of gates acting on more than two qubits are mostly centered
around the generation of Toffoli gates. Ref. [18] introduces a synthesis algorithm for classical logic re-
versible functions using multi-control Toffoli gates and there exist algorithms for synthesizing towards
universal Toffoli gate sets [3], even with optimal numbers of Toffoli gates [33]. The synthesis of multi-
controlled phase gates is less studied. Ref. [57] proposes an optimal synthesis algorithm, but restricted to
diagonal unitaries as an input. For universal circuits, a recent framework for neutral atom systems [37] is
able to synthesize circuits with CCZ gates. However, the synthesis process is based on non-exact numer-
ical optimization procedures and does not consider more than three-qubit gates or arbitrary rotations.

3 Preliminaries

In this section we introduce the ZX-calculus fundamentals and describe how graph-like diagrams can be
simplified and extracted to quantum circuits, which represents the basis of our synthesis approach. We
only give a brief overview of ZX-calculus, for a more detailed introduction we refer to [13, 15, 56].

3.1 ZX-calculus

ZX-calculus is a diagrammatic language for reasoning about linear maps in quantum computing where
nodes (spiders) and edges (wires) form an undirected graph called ZX-diagram. There are two types
of spiders: The green Z-spiders and the red X-spiders. Spiders can be parametrized with an angle
α ∈ [0,2π) and correspond to two-dimensional matrices in Hilbert space:

α
...

... α
...

...
:= |0⟩⊗m⟨0|⊗n

+eiα |1⟩⊗m⟨1|⊗n
:= |+⟩⊗m⟨+|⊗n

+eiα |−⟩⊗m⟨−|⊗nm n m n :=
(

1 0
0 1

)
:= 1√

2

(
1 1
1 −1

)

Spiders can have any number of ingoing and outgoing wires and we can compose two diagrams either
horizontally by joining the outputs of one diagram with the inputs of the other (denoted by ◦), or vertically
by placing them side by side (denoted by ⊗). This corresponds to the known dot and tensor product in
Hilbert space. For convenience, we distinguish between two types of wires: Normal wires, representing
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Figure 1: Translation of a two-qubit Grover search into a graph like ZX-diagram. Gates are replaced by
their ZX-calculus counterpart and the diagram is made graph-like by repeated application of ( f ) and (h).

the identity, and Hadamard wires, representing the Hadamard matrix. Wires entering the diagram from
the left are called input wires, with the adjacent spiders defined as inputs I, and wires exiting to the right
are called output wires, with adjacent spiders defined as outputs O. We refer to the set of spiders v ∈ I∪O
as boundary spiders and the complementary set of spiders v ∈ V \ (I ∪O) as the interior spiders. The
complements of the inputs and the outputs are defined as I = V \ I and O = V \O respectively. We can
write any quantum circuit as ZX-diagram by replacing gates with equivalent diagrams and use rules from
ZX-calculus to modify them without changing the linear map. For instance, the following rules hold:

=
...

α

β...
...

...
...

... α +β
... α

. . .

. . .

. . .

. . .

= α

( f ) (h)

The fusion rule ( f ) allows to merge spiders of the same color together if they are connected by at least
one normal wire and (h) allows to change the colors of spiders by flipping normal and Hadamard wires.
All rules hold in both directions and are also valid with interchanged colors, so we can also split up
spiders with ( f ). There exists a complete graphical rule set for transforming ZX-diagrams [53].

3.1.1 Graph-like diagrams

In this work, we consider the class of graph-like ZX-diagrams as introduced in [15], which allow us to
represent any quantum computation as a graph of parametrized green Z-spiders and Hadamard wires.
In those diagrams we represent Hadamard wires between spiders as dashed blue line instead of the
yellow box for easier visualization. One can transform any ZX-diagram into an equivalent graph-like
ZX-diagram by repeatedly applying standard ZX-rules [15] (c.f. Figure 1). This formalism provides
a link between quantum computing and graph theory since the entire computation is captured by the
underlying graph spanned by Hadamard wires, combined with phases of Z-spiders. Moreover, graph-
like diagrams can be directly interpreted as measurement patterns in the model of measurement-based
quantum computing (MBQC) [4, 10].

3.1.2 Diagram simplification

We can rewrite graph-like diagrams into equivalent simplified versions (i.e., decreasing the number of
spiders or wires), by using graph-theoretic rewrite rules as shown in [15]:

Local complementation Given an undirected graph G, local complementation on a vertex v (written
G ⋆ v) consists of flipping the edges between the neighbors of v. That is, after local complementation,
every pair of neighbors of v is connected iff it was not connected before. In graph-like ZX-diagrams, we
can use a rewrite rule based on local complementation (lc) to eliminate spiders with a phase of ±π

2 :
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=
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(lc)

Pivoting A Pivot G∧ uv consists of three local complementations (G ⋆ u ⋆ v ⋆ u) applied on a pair of
neighboring vertices u,v. We can use a similar rewrite rule (p) in graph-like ZX-diagrams to eliminate
pairs of spiders with phase 0 or π:

=
γn

γ1kπjπ

β1

βn
αn

α1 . . .

. . .

. . .

. . .. . .

. . .

...
... γ ′n
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β ′
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β ′
n

α ′
n

α ′
1

. . .

. . .

. . .

. . .. . .

. . .

...
...

...

...
β ′

i = βi +( j+ k+1)π
α ′

i = αi + kπ

γ ′i = γi + jπ

(p)

By repeatedly applying those rules one can eliminate all interior spiders with phase ±π

2 and every pair
of interior spiders with phase 0 or π [15].

Phase gadgets One can further simplify ZX-diagrams with a slightly modified version of the pivot rule
if we allow one spider of a pair to have a non-Clifford phase σ [23]. The non-Clifford spider does not
get removed but is transformed into a so called phase gadget:

=
γn

γ1
σjπ

β1

βn

αn

α1
...

...
γ ′n

γ ′1

β ′
1

β ′
n
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α ′
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(−1) jσ
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β ′
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γ ′i = γi + jπ

. . .. . .. . .. . .

. . .. . .

. . .

. . .
. . .

. . .
. . .. . .

In graph-like ZX-diagrams a phase gadget consists of a “top” spider exclusively connected to a phaseless
“root” spider connected to other spiders. Simplifying graph-like diagrams with all three rules, we obtain
a diagram where spiders either have a non-Clifford phase, are part of a phase gadget or a boundary.

3.1.3 Gflow in graph-like diagrams

Gflow is a graph-theoretic property for measurement patterns defined on labeled open graphs (G, I,O,λ ),
where G = (V,E) is an undirected graph with vertices V and edges E, I ⊆V , O ⊆V are the set of inputs
resp. outputs, and λ is a labeling function assigning each vertex a measurement plane of the Bloch sphere
in {XY,XZ,Y Z} [11]. A labeled open graph has gflow if there exists a map g : O → P(I) and a partial
order ≺ over V , s.t. for all v ∈ O:

• If w ∈ g(v) and v ̸= w, then v ≺ w.

• If w ∈ Odd(g(v)) and v ̸= w, then v ≺ w.

• If λ (v) = XY , then v /∈ g(v) and v ∈ Odd(g(v)).

• If λ (v) = XZ, then v ∈ g(v) and v ∈ Odd(g(v)).
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• If λ (v) = Y Z, then v ∈ g(v) and v /∈ Odd(g(v)).
In graph-like diagrams, we interpret the underlying graph as a labeled open graph with phase gadgets
corresponding to Y Z measurements1 and other spiders corresponding to XY measurements [4]. Since the
initial graph-like diagrams obtained from quantum circuits (as in Figure 1) have gflow [15] and all above
rules preserve gflow [4], the simplified diagrams have gflow as well.

3.1.4 Circuit extraction

Extracting quantum circuits back from graph-like ZX-diagrams where the circuit has only as many qubits
as there are outputs/inputs, is so far only possible in polynomial time if the underlying graph has some
kind of flow [4, 48]. Here, we give a brief overview of the extraction algorithm for graph-like ZX-
diagrams with gflow as described in [4]. The algorithm extracts a quantum circuit from a ZX-diagram by
taking suitable parts of the diagram and creating their equivalent representation as a quantum gate within
the circuit at the corresponding position. These parts are then removed from the diagram, extracting one
gate at a time, until only the inputs and outputs of the diagram remain. During the process, a set of
green Z-spiders called the frontier separates the extracted part of the diagram from the unextracted part.
Phases of frontier spiders can be directly extracted as Rz gates, and Hadamard wires between frontier
spiders as CZ gates. Furthermore, Hadamard wires where a frontier spider w is exclusively connected to
a non-frontier spider v can be extracted as Hadamard gates with v replacing w in the frontier:

3π

2

π

2

π

4

3π

4

π

8
3π

2

π

2

3π

4

H Rz(
π

8 )

Rz(
π

4 )=

If every spider in the frontier has at least two non-frontier neighbors we can add wires of a frontier spider
to the wires of another one by placing a CX gate on the extracted circuit. If all neighbors are measured in
the XY plane, gflow ensures that there exists a combination of additions so that there remains a frontier
spider with only a single neighbor. We can obtain such a combination by applying Gaussian elimination
on the biadjacency matrix between the frontier vertices and their neighbors. Otherwise, if there are YZ-
measured neighbors, we can transform them into XY measurements by applying a pivot on the neighbor
and a connected frontier spider:
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By repeating these procedures, we can transform the entire diagram into a quantum circuit.

4 Extracting controlled phase gates from graph-like ZX-diagrams

The process of transforming quantum circuits to graph-like ZX-diagrams, simplifying them, and re-
extracting circuits can already be seen as an implicit synthesis algorithm to the gate set {Rz,H,CZ,CX}.

1The root spider is labeled as Y Z measurement, while the top spider corresponds to a measurement effect which is omitted
from the underlying graph.
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Given the requirements of neutral atom platforms, it may be desirable to incorporate two- and multi-
controlled phase gates of arbitrary rotations into this gate set. We first show how such gates are repre-
sented in graph-like ZX-diagrams, then how we incorporate this finding into the extraction algorithm.

4.1 Graph-like representation of controlled phase gates

The (multi-) controlled phase gate is a diagonal gate, meaning all non-zero entries of its corresponding
matrix in the Z-basis are on its diagonal. Such gates can be represented as a semi-Boolean function
f : {0,1}n → C which assigns a complex number to each basis state. Ref. [26] shows, that any semi-
Boolean function f (b) = ab with ab ∈ C and b ∈ Bn can be expressed in ZX-calculus as follows:

αc

c

. . .

. . .

. . .
c ∈ Bn with

ci = if ci = 1, and

ci = if ci = 0
αc =

−1
2n−1 ∑b∈Bn f (b)χ(b,c) (1)

The part in the dashed box is repeated for every Boolean vector c in Bn and the grey box decomposes into
n subdiagrams either connecting the corresponding lower and upper wire with a normal wire if the i-th
element of the Boolean vector is 1, or disconnecting them if it is 0. Further, the phase αc can be obtained
by the formula on the right, where χ(b,c) = (−1)b·c corresponds to a parity function with · being the
inner product: If b and c overlap in an odd number of elements it returns -1, else 1. This rule yields a
combination of phase gadgets, and when applying the color change rule on the middle red spider, we
obtain the same graph structures as introduced in the previous section. To model an n-controlled phase
gate CnP(ϕ) as a semi-Boolean function, we take α as an all-zero vector of length 2n except for its last
entry being ϕ . Following Equation (1), one can transform the function to a ZX-diagram which has 2n−1
phase gadgets split up into

(k
n

)
phase gadgets for k ∈ {1, . . .n}. For instance, the two and three-qubit-

controlled phase gates have the following representation:

α

α

−α

. . . . . .= 2α (2)

α

α

α

−α

. . . . . .=
4α

−α−αα

(3)

For arbitrary-sized multi-controlled phase gates, this generalizes to the following theorem:
Theorem 1 (Multi-controlled phase gates). Let

(S
k

)
denote the set of all k-combinations of a set S and

PG(α,N) denote a phase gadget with phase α connected to neighbors N which are empty Z-spiders. A
n-qubit controlled phase gate CnP(ϕ) is equivalent to a graph-like ZX-diagram with outputs O, |O|= n
having a phase of α and phase gadgets2

n

∏
k=2

∏
s∈(O

k)

PG((−1)k+1
α,s), α =

ϕ

2n−1

Proof. A graphical proof is given by the ZX representation of the diagonal gate and the corresponding
proof in [26], a combinatorial proof can be found in [2]. We give an alternative combinatorial proof
in Appendix B.

2Note, that the product notation here corresponds to the composition ◦ of ZX-diagrams.
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4.2 Adaption of the extraction algorithm

We adapt the algorithm described in 3.1.4 by including an additional CnP gate extraction step between
CZ and Rz extraction. For that, we carry out a pattern match on the phase gadgets which are exclusively
connected to the outputs, i.e., the frontier. If we find a graph structure as described in Theorem 1 for n
frontier spiders, we take the phase of the gadget which is connected to all n spiders as the desired phase α

if n is odd, or −α if n is even, and adjust the phases of all other gadgets using the following two rewrites:

β

α

...
α

α

...=

... ... Rz(β −α)

(4)
=

β

α

α

...

±α

α

α

...

β ∓α

(5)

With Equation (4), we extract the unwanted part of an output phase as Rz gate, and with Equation (5), we
split up phase gadgets into a part with the desired phase and another gadget so that the sum of the phases
yields the original one. Both rewrites are sound in ZX-calculus: The first corresponds to an application
of the fusion rule as mentioned in Section 3 and the second is a reversed version of the gadget fusion rule
as shown in [23, Section D]. With adjusted phases, we extract the entire graph structure by removing it
from the diagram and placing a CnP(ϕ) gate with ϕ = α ·2n−1 on the circuit.
We can extend this procedure by also allowing the extraction of graph structures where some phase
gadgets required for a CnP extraction are missing in the diagram. Consider the following example,
where we are initially missing two 2-ary phase gadgets with −π

4 to complete a C2P(π) structure:

π
π

4

π

4

π

4 =

− π

4
π

4

π

4

π

4

π

4

− π

4
π

4

=

− π

4
π

4 − π

4
π

4
π

4
π

4

(6)

By adding pairs of phase gadgets with opposite phases corresponding to the identity, we complete the
required graph structure to extract the gate. Some inserted gadgets then remain in the diagram and are
extracted later. If we always take the gadget with the most neighbors, complete the diagram to match a
CnP gate, and extract it, every phase gadget will get extracted as part of a CnP gate at some point and we
can entirely omit Y Z spider eliminations via pivoting.

4.2.1 Preservation of gflow

For a complete translation of graph-like diagrams into quantum circuits, it is essential that all operations
preserve gflow on the diagram. The rewrites of Equations 3-7 essentially reduce to deletions and inser-
tions of phase gadgets, i.e., Y Z measurements, connected to only outputs. Since the original extraction
algorithm preserves gflow and it has been shown in [4, Lemma 3.4.] that the deletion of arbitrary Y Z
measurements preserves gflow, the same remains to be shown for the insertion case:

Lemma 1 (Insertion of Y Z measurements on outputs). Let (g,≺) be a gflow for (G, I,O,λ ) and let W ⊆
O. Then (G′, I,O,λ ′), where G′ = (V ′,E ′) with V ′ =V ∪{x}, λ ′(x) = Y Z and E ′ = E ∪{(x,w)|w ∈W}
has a gflow.

Proof. We provide the detailed proof in Appendix A.
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4.2.2 Time complexity

The time complexity of the proposed approach in terms of elementary graph operations depends on
whether we allow additional insertions of phase gadgets or not. Let k denote the number of spiders in a
diagram and n the number of outputs:

• If we do not allow additional insertions of phase gadgets, we have approximately the same runtime
as the original algorithm, namely O(n2k2 + k3) which is summed from the runtime for Gaussian
elimination O(n2k), pivoting Y Z measurements O(k2) and k steps in total [4]. Additionally, for our
approach, we have to split at most k phase gadgets at each step, which adds another O(nk) term to
the elementary graph operations. Yet, this term gets absorbed by the complexity of the Gaussian
elimination.

• If we allow phase gadget insertions to complete the graph structures corresponding to a CnP gate,
the complexity essentially becomes O(2n+1k). This is because, in the worst case, we would com-
plete structures where there is only a single phase gadget connected to all n outputs, and we need
to add 2 · 2n − n− 2 additional gadgets. We want to emphasize that this worst-case complexity is
unlikely to occur in practice. Yet, for larger circuits, it may be useful to limit the size of extractable
CnP gates to a constant.

5 Neutral Atom Circuit Synthesis

In the following, we want to apply the proposed extraction scheme to circuit synthesis for neutral atom
(NA)-based hardware due to their native support of CnP gates. Therefore, we briefly introduce the hard-
ware capabilities [44], embed our proposed scheme into a complete synthesis procedure, and evaluate
the effect of the CnP extraction regarding the circuit execution time in comparison to Qiskits internal
synthesis algorithm.

5.1 Neutral Atom Background

For NA-based quantum computers, qubit registers are realized by placing single atoms in optical dipole
traps created by laser beams, referred to as optical lattices or optical tweezers. While arbitrary atom
arrangements are possible, we assume a rectangular grid as illustrated in Figure 2. The qubit states
can be encoded in long-lived internal atomic states such as hyperfine or nuclear spin states. Commonly
employed atomic species include alkali or alkaline-earth(-like) atoms such as Rb and Sr, which provide
suitable internal states with long coherence times. Gates are realized with specific laser pulses on the
atoms using uniform global beams, with the possibility of addressing a whole register or individual
qubits [17,27]. Multi-qubit gates are based on the long-range interaction between close-by atoms excited
to high-lying Rydberg states [16, 21, 28, 32, 34, 41, 42]. There exist different protocols to realize both
single- and multi-qubit gates, and the preferred implementation depends on many parameters such as
the chosen atom species, the respective qubit encoding, and the experimental setup. In this work, we
focus on individually addressable CnP(ϕ) gates between neighboring atoms as a generalization of the
often implemented CZ gate, which can be realized by tuning the accumulated phase during the Rydberg
interaction to an arbitrary angle ϕ instead of π [28]. This might even result in improved gate times
and fidelity due to the shorter time of the atom spent in the Rydberg state [16]. Regarding single-qubit
gates, we assume a scheme between fast, individually addressable AC Stark shift beams, realizing local
Rz rotations and slow, globally addressing microwave pulses performing a rotation about an axis in the
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(a) (b) (c)

(d)

Figure 2: Illustration of the neutral atom gate capabilities and the process of synthesizing and scheduling
quantum circuits to the hardware. (a) Native (multi-) controlled phase gates (CnP(ϕ)), here shown for
three qubits. (b) Global single-qubit rotations in the XY-plane. (c) Individually addressable Z-rotations
(Rz(γ)). (d) Synthesis to alternating single- and multi-qubit layers: First, the synthesis of multi-qubit
gates to CnP gates. Second, the synthesis and scheduling of single-qubit gates into global XY-rotations
and individually addressable Z-rotations according to the transversal decomposition of [36].

XY-plane for all qubits simultaneously. In particular, we assume the following gate definitions, where
single-qubit gates are equivalent to the ones from [36] with GR as global XY-rotations applied to all
n qubits, and Ŷ being the Pauli-Y matrix:

CnP(ϕ)≡ diag(1, . . . ,1, eiϕ), Rz(γ
±)≡ diag(e−iγ±/2,e−iγ±/2), GR(θmax)≡ exp

(
−i

θ

2

n

∑
i=1

Ŷi

)
(7)

In this setting, sets of arbitrary but simultaneous single-qubit gates on different qubits can be converted
into two global illuminations interleaved with single-qubit Z-rotations. On unused qubits, the two com-
plementary global rotations cancel out, effectively applying an identity operation. To convert single-qubit
gates to this setting, we consider the transversal decomposition scheme introduced in [36] which is op-
timal in terms of global pulse time. An illustration of the gate capabilities and how to synthesize the
respective single- and multi-qubit gates is shown in Figure 2.

5.2 Related Work

Recently, there has been a fast development of NA-specific compilation methods [5, 9, 30, 36, 37, 45,
51, 52, 54, 55] focusing almost exclusively on the mapping and scheduling tasks within the compila-
tion. The only exceptions are [36], proposing the single-qubit synthesis also used in this work, and the
Geyser framework [37] using numerical optimization to introduce additional CCZ gates. Nevertheless,
both neglect the capability of NAs to natively execute controlled gates with arbitrary phases and, further-
more, the ability to directly execute multi-controlled gates for more than one control qubit. Although
convenient, this neglects potentially shorter or simpler circuits using these specific capabilities of NAs.
Therefore, in the following, we evaluate five different synthesis schemes to compare the commonly used
naive synthesis algorithms with an NA-specific synthesis employing the ZX-approach of Section 4.2.
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5.3 Evaluation Setup

The total gate synthesis process consists of the two steps illustrated in Figure 2: First, the synthesis
of the multi-qubit gates into CnP gates and arbitrary single-qubit rotations, and second, the synthesis
and scheduling of single-qubit gates into the alternating global vs. local scheme, resulting in the fully
synthesized circuit containing only gates from the native gate set of Equation (7). For the first step, we
consider the following five schemes:

1. Qiskit-default: Circuits are converted into the Qiskit-supported native gate set of {U3,CZ} using
the internal transpile function and setting the optimization level to three. This approach uses
Qiskit internal schemes to decompose gates with more than two-qubit gates.

2. No-decomp: The Qiskit decomposition introduces a large overhead that can be bypassed for NAs.
For better comparison, we propose this scheme which synthesizes to {U3,CnZ} by replacing all
(multi-) controlled gates by their CnZ} equivalent and using the Qiskit-default approach for the
single qubit gates.

3. ZX-default: The circuit is converted into a graph-like ZX diagram, and the default extraction
algorithm of PyZX [24] is used to recreate a circuit.

4. ZX-no-insert: Similar to the default but the extraction scheme from Section 4.2 is used to synthe-
size CnP gates.

5. ZX-with-insert: In addition to ZX-no-insert, we allow the insertion of additional phase gadgets,
resulting in possibly more and larger phase gate extractions.

Since the ZX extraction sometimes produces redundant gates, we additionally apply a basic gate cancel-
lation algorithm afterwards. In the second step, the transverse decomposition according to [36] is used
to synthesize the single qubit gates. In this scheme, θmax ≡ maxi θi is defined as the maximum of the first
Euler angle θi of any single qubit rotation in this layer. According to the discussion in [36], the total gate
execution time scales linearly in this angle with the maximal duration at θmax = π .
As for many single-qubit gates the actual moment of execution is not unique, it can be added to different
layers. We thus use an additional greedy optimization step, not performed in [36], to check the possible
positions of the single-qubit gates and assign them such as to minimize the overall θmax. In particular, a
gate with Euler angle θ is preferably assigned to a layer with θmax > θ , allowing the gate to be executed
without increasing the gate time. As evaluation metrics, we compute both simple gate counts and the
total circuit execution time T by scheduling the gates according to the illustration in Figure 2. We sum
individual gate times, where we assume the gate execution time increases linearly with the rotation angle
as follows:

T =
d

∑
i=0

|maxγ(Rz(γ), i)|
π

100ns + ∑
GR(θmax)

|θmax|
π

100µs + ∑
C1P(ϕ)

|ϕ|
π

100ns + ∑
CnP(ϕ),n>1

|ϕ|
π

400ns (8)

Here d denotes circuit depth, meaning we assume full parallel execution of the Rz if possible by taking
the maximum angle of each layer. Multi-qubit gates are assumed to be executed in a sequential way. The
gate times are 0.1µs for the Rz [46] and the CP(ϕ = π) gate [31]. For all higher-weight controlled phase
gates C≥2P we assume 0.4µs for ϕ = π . The dominating factor for circuit execution time are the slow
global illuminations GR with 100µs [46]. Therefore, our main aim to use the scheme of Section 4.2 is to
lower the number of global GR gates and, in this way, reduce to overall execution time.
For a comprehensive and rigorous evaluation, we chose circuits from three different benchmark collec-
tions, with their descriptions available online: QASM-Bench(small) [29] and MQT-Bench [40] contain
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Table 1: Averaged reduction of execution time T relative to Qiskit-default. Negative percentages indicate
an increased execution time.

Circuits Qiskit No-decomp ZX-default ZX-no-insert ZX-with-insert

QASM-Bench [29] 1 35 0% 8% 2% 14% 26%
MQT-Bench [40] 2 11 0% 0% −44% −16% 26%
Feynman-Bench [1] 3 26 0% 63% −23% −16% 40%

1 https://github.com/pnnl/QASMBench 2 https://www.cda.cit.tum.de/mqtbench/ 3 https://github.com/meamy/feynman

various low-level benchmark circuits of different sizes and types with common quantum subroutines
and algorithms. Additionally, we also consider the Feynman-Bench [1] collection. Created for formal
methods, it contains different arithmetic circuits usually based on Toffoli gates.
The code used for the evaluations is available with an MIT license at Zenodo [50] allowing reproducibil-
ity and possible usage or integration into other compilation projects.

5.4 Results & Discussion

The five compilation schemes are evaluated on gate count and execution time T [ms] of the synthesized
circuits, together with the algorithm runtime r[s]. We first discuss time reduction averaged over all
circuits, summarized in Table 1, then, we highlight six examples shown in Table 2, which have been
selected to best illustrate different cases within the dataset. The full dataset with all raw data is available at
Zenodo [50]. On the QASM-Bench collection (1), the ZX-with-insert approach results in an average 26%
reduction of execution time compared to the Qiskit internal synthesis improving 23 of the 35 circuits.
Similar numbers result for the MQT-Bench (2) circuits with 26% reduction of execution time, improving
7 out of 11 circuits. For the Feynman benchmarks (3), results are mixed: While our scheme achieves
a 40% reduction compared to Qiskit, improving 24 of 26 circuits, the No-decomp scheme has an even
higher average reduction of execution time with 63%.
Considering the above part of Table 2 one can see how the synthesis approach described in this work is
capable of successfully synthesizing CnP gates. Since No-decomp just replaces multi-controlled gates by
their CnZ} equivalent, the corresponding column indicates the number of multi-controlled gates present
in the original circuit. In comparison, one can then see that while No-insert only resynthesizes a few of
the original gates, With-insert synthesizes more multi-qubit gates and is often able to create even higher-
dimensioned controlled gates. This higher-controlled gate synthesis appears very dominantly in dense
circuits such as qnn_10, corresponding to a quantum neural network circuit, but also in circuits that are
natively built on controlled phase gates such as HHL.
Due to the controlled gates, the proposed approach is capable of effectively reducing the number of slow
global GR gates in comparison to the regular ZX extraction scheme and Qiskit, which are not capable
of synthesizing multi-controlled gates. Generally, a lower number of GR gates also results in a shorter
circuit execution time with some exceptions, such as the hhl_n7, where the ZX synthesis has a longer
execution time than the No-decomp scheme, although the number of absolute GR pulses is lower. This
is likely due to an increased pulse time of the individual GR gates.
The ZX approaches do not perform well on circuits that already contain close to optimal multi-controlled
gates, for instance on circuits of the Feynman benchmark. Here, the approaches extract gates in a less
efficient way, resulting in a gate and time overhead. In such cases, replacing multi-controlled gates
without changing circuit structure as in the No-decomp scheme is the best option. This can also be seen
when comparing the number of GR gates for the two adder circuits to the No-decomp scheme, where

https://github.com/pnnl/QASMBench
https://www.cda.cit.tum.de/mqtbench/
https://github.com/meamy/feynman
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Table 2: Evaluation results for six benchmarks, selected to illustrate both good and poor performance.
Numbers after the names indicate the corresponding benchmark collection. The first table shows gate
counts corresponding to the native gate set of Equation (7). The second table contains the total execution
time T [ms] and the synthesis algorithm runtime r[s] on a consumer notebook.

ZX Qiskit Own alternative
Default No-insert With-insert Default No-decomp

G
R

C
P

G
R

C
P

C
2P

G
R

C
P

C
2P

C
3P

C
4P

C
5P

G
R

C
P

G
R

C
P

C
2P

hhl_n7 (1) 448 296 362 241 - 306 207 42 29 6 - 356 196 356 196 -
qft_10 (2) 90 140 36 75 - 14 62 14 - - - 44 105 44 105 -
qnn_10 (2) 106 334 62 199 - 28 159 48 26 8 1 76 188 76 188 -
gf2^7_mult (3) 214 956 134 447 19 14 22 114 - - - 194 300 18 6 49
rc_adder_6 (3) 76 100 84 95 - 62 91 4 - - - 86 93 28 27 11
qcla_adder_10 (3) 128 331 138 462 1 24 153 121 - - - 74 233 18 29 34

ZX Qiskit Own alternative
Default No-insert With-insert Default No-decomp

T r T r T r T r T r

hhl_n7 (1) 11.07 0.085 8.71 0.156 7.70 0.239 5.45 0.122 5.45 0.277
qft_10 (2) 2.16 0.036 0.91 0.029 0.35 0.039 0.89 0.043 0.89 0.103
qnn_10 (2) 3.12 0.031 1.53 0.108 0.74 0.214 3.06 0.117 3.06 0.151
gf2^7_mult (3) 5.84 0.218 3.31 1.286 0.40 3.421 4.20 0.083 0.47 0.041
rc_adder_6 (3) 1.89 0.030 2.04 0.049 1.56 0.052 1.67 0.033 0.71 0.041
qcla_adder_10 (3) 3.26 1.326 3.48 0.448 0.66 2.063 1.63 0.073 0.47 0.078

the ZX approaches are not capable of reconstructing a similar efficient circuit structure. Since all ZX
strategies yield inefficient circuits, it may be that in such cases the ZX-diagram simplification creates too
complex graph structures.
Regarding algorithmic runtime, ZX performs similarly to the Qiskit internal synthesis. Note, however,
the significant increase in runtime for qcla_adder and gf2^t_mult for the With-insert synthesis. This is
likely the overhead due to the insertion of additional phase gadgets, resulting in worst-case exponential
runtime as discussed in Section 4.2.2.

6 Conclusion

In this work we introduced a novel approach to synthesize quantum circuits to the universal gate set
{H,Rz,CnP}. As a key contribution, our approach is able to efficiently identify structures in graph-like
ZX-diagrams that correspond to multi-controlled phase gates and extract them to quantum circuits. This
allows the synthesis of such gates even if they were not present in the original circuit. Together with exist-
ing simplification strategies for ZX-diagrams, our approach can be used to synthesize arbitrary quantum
circuits towards neutral atom architectures. Here, our synthesis often trades slow global pulse rotations
for fast multi-controlled qubit gates and we are thus able to reduce execution time significantly for many
common circuits. Further, this could also help hardware developers to evaluate whether increasing the
number of qubits supported by multi-controlled phase gates is beneficial for certain problems in terms
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of execution time and fidelity. In cases where the circuit already consists of optimized multi-controlled
gates, such as circuits based on arithmetic functions, the synthesis may result in less efficient quantum
circuits. This is likely due to overly complex graph structures resulting from ZX-diagram simplification.
We leave it as a topic for further research whether in those cases more sophisticated strategies allow
exploiting the phase gadget structures for multi-controlled phase gates synthesis without increasing the
underlying graph structure complexity. Possible approaches include advanced heuristics applying the
proposed scheme only to cases where it is likely to improve the circuit structure. We also want to men-
tion that a similar synthesis approach could be done without ZX-calculus using the Pauli Dependency
DAG representation of quantum circuits [48]. It has been shown that the diagram simplification rules
from Section 3.1.2 are equivalent to reordering Pauli terms in a Pauli Dependency DAG and by identi-
fying patterns of individual Pauli-Z terms similar to Theorem 1 we can then synthesize CnP gates. As
future work, it would be interesting to see how these two versions compare.
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A Gadget insertion

Inserting Y Z measurements on the outputs preserves gflow:

Corollary 1. Let (g,≺) be a gflow for (G, I,O,λ ) and let W ⊆ O. Then (G′, I,O,λ ′), where G′ =
(V ′,E ′) with V ′ =V ∪{x}, λ ′(x) = Y Z and E ′ = E ∪{(x,w)|w ∈W} has a gflow (g′,≺′) with following
properties:

• g′(x) = {x},

• ∀v ∈V : g′(v) = g(v),

• ≺′ is the transitive closure of ≺ ∪{(x,v)|v ∈ O}∪{(v,x)|v ∈V\O}.

Proof. The only new correction set in g′ is g′(x) = {x}, for all other vertices, it is the same as in g.
Therefore, all conditions except (g2) are trivially satisfied. For (g2), we need to distinguish two cases
for the new vertex x and vertices v ∈V\{x}:

• x ∈ Odd(g(v)): By definition, x is the last element in the partial order ≺′ of all non-outputs, thus
(g2) holds.

• v ∈ Odd(g(x)): x ≺ v holds, because g(x) = {x} and Odd({x}) only contains outputs which we
chose to be after x in the partial order.

Note that x /∈ Odd(g(x)) by definition.

B Alternative proof of Theorem 1

Figure 3: Illustration of the possible combinations and their contribution in Equation (12) for n = 3. For
each possible value of l = 0, . . . ,3 the combinations for the possible k ≤ n and j ≤ l are illustrated as
three-circle circles, and their contribution to the sum is computed. The final row shows that the sums of
the contributions fulfill the condition of Lemma 2.

This section provides an alternative, combinatorial proof of Theorem 1 instead of using the graphical
approach discussed in the main part of the work. The overarching idea is to find a closed formula for the
unitary defined by the ZX illustration by summing the corresponding phase contributions and showing
that this corresponds to diag(1,1, . . . ,eiα) for an arbitrary number of qubits n.



114 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

To find a closed formula for Theorem 1 consider the definition of a single phase gadget and its corre-
sponding unitary action on the n-qubit basis states according to [23]:

α

...

U |x1, . . . , xn⟩= eiα(x1
⊕

...
⊕

xn) |x1, . . . , xn⟩ , (9)

where the binary xi ∈ {0,1}, i = 1, . . . , n label the basis states and ⊕ is the binary sum modulo two,
i.e. XOR. Note that all phase gadgets of Theorem 1 can be written in such a way, summing only the xi

connected by Hadamard wires to the phase. The single qubit phases give an additional contribution of
eiα x j |x1, . . . , xn⟩ for each applied qubit j, corresponding to a single-qubit phase gadget.
As the binary sum does not depend on the order of the xi but only on their value, we introduce the
following notation, where we assume that l entries in the sum are non-zero, resulting in a non-zero-sum
whenever l is odd:

x1 ⊕ . . . ⊕ xn =
(−1)l+1 +1

2
= mod2(l) =

{
1 , l is odd
0 , l is even

. (10)

Considering again Equation (2) one can see that there are two contributions to the total accumulated
phase. First, for each qubit, a single-qubit phase α is added. Second, for each possible combination of
length k of all the xi, there is a phase gadget with phase (−1)k+1 α . For the C1P(2α) gate, this reduces
to a single k = 2 phase gadget of phase −α . For the C2P(4α) gate, on the other hand, there are

(3
2

)
= 3

phase gadgets of size k = 2 and angle −α and a single (
(3

3

)
= 1) k = 3 gadget with angle α . In general,

for a n qubit gate, there are
(n

k

)
combinations for phase gadgets of size k = 1, . . . , n. A combination

contributes to the total phase if the number l of non-zero entries in the direct sum of Equation (9) is odd,
resulting in an additional phase ±α . Otherwise, the combination does not contribute to the phase. To
express the number of possible combinations depending on l, the

(n
k

)
combinations for a length k can

also be expressed as choosing j variables from the l one-valued variables and choosing k− j variables
from the n− l zero-valued variables and summing over all possible j:(

n
k

)
=

k

∑
j=0

(
l
j

)(
n− l
k− j

)
. (11)

This relation is known as the Vandermonde identity. An illustration of the possible combinations depend-
ing on k and l is shown in Figure 3 for the simple case n = 3.
Multiplying the unitaries of all these phase gadgets corresponds to summing the accumulated phases with
the appropriate sign, converting the problem of Theorem 1 into a summation of the appropriate phases
with a corresponding sign. For the total structure to represent a multi-controlled phase gate, the phases
have to vanish for all possible basis states |x1, . . . , xn⟩ except for |1, . . . 1⟩ where they have to sum to
2n−1α .
Based on these considerations, an equivalent statement of Theorem 1 can be formulated, dropping the
illustrations of the ZX-calculus and formulating the multi-controlled phase gate extraction as a purely
combinatorial problem, focusing on the accumulated phase. Theorem 1 then directly follows from this
Lemma based on the considerations above and using eiα·0 = 1.
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Lemma 2 (Multi-controlled phase gate). For n binary variables x1 . . . xn of which l is non-zero, summing
the modulo two sum over all possible combinations of length k with sign (−1)k+1, it holds:

n

∑
k=1

(−1)k+1
min(k,l)

∑
j=0

(
l
j

)(
n− l
k− j

)
mod2( j) =

{
2n−1 , if n=l
0 , else

. (12)

Where the min(k, l) results from the fact that the number of ones in the current combination j cannot be
larger than the length k of the combination, nor the total number of ones l available.

Proof. The proof is two-fold. First, the n = l case is shown explicitly, while the case n ̸= l is shown by
induction in both variables n and l. Also, note that

min(k,l)

∑
j=0

(
l
j

)(
n− l
k− j

)
=

k

∑
j=0

(
l
j

)(
n− l
k− j

)
=

l

∑
j=0

(
l
j

)(
n− l
k− j

)
(13)

as for k > l the first binomial coefficient vanishes in all additional cases, and for l > k the second, as
k− j < 0 in these cases. This also becomes clear from the illustration in Figure 3 where the vanishing
combinations are either non-existent or only contain zero entries. These identities are used multiple times
in the following proof.

Case n = l:

If n = l all variables are one and, therefore, min(k, l) = k. Furthermore, the second binomial coefficient
is non-zero only in the j = k case, where it equals 1. This results in

n

∑
k=1

(−1)k+1
(

n
k

)
(−1)k+1 +1

2
=

1
2

[
n

∑
k=1

(
n
k

)
(−1)k+1 +

n

∑
k=1

(
n
k

)]
=

1
2
[1+2n −1] = 2n−1 ,

using the regular and the alternating binomial sum, directly showing the first part of Lemma 2.

Case n ̸= l:

Proving Equation (12) for arbitrary n and l < n is done by induction. Therefore, showing the term to be
zero for l = 0 and arbitrary n as the base case and then performing the induction step both in n and in l.
Base case l = 0, n: In this case the second sum reduces to the j = 0 case, trivially giving zero, indepen-
detly for all n. In other words, as all variables are zero, the sum in Equation (9) always gives zero.
Induction step n → n+ 1: Inserting this step into Equation (9) and using the recurrence relation of the
binomial coefficient

(n+1
k

)
=
( n

k−1

)
+
(n

k

)
and the abbreviation ξ := mod2( j) one gets

n+1

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n− l

k− j−1

)
ξ +(−1)n +

n

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n− l
k− j

)
ξ︸ ︷︷ ︸

=0 (Base case)

+

�������������

(−1)n
l

∑
j=0

(
l
j

)(
n− l

n+1− j

)
ξ

=
n

∑
k=0

(−1)k
l

∑
j=0

(
l
j

)(
n− l
k− j

)
(−1) j +1

2
=

n

∑
k=0

(−1)k+1
k

∑
j=0

(
l
j

)(
n− l
k− j

)
(−1) j+1 +1−2

2
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= (−1)1
(

l
0

)(
0− l
0−0

)
−2
2︸ ︷︷ ︸

k=0 case

+
n

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n− l
k− j

)
ξ︸ ︷︷ ︸

=0 (Base case)

+
n

∑
k=0

(−1)k+1
k

∑
j=0

(
l
j

)(
n− l
k− j

)
︸ ︷︷ ︸

Vandermonde

= 1+0−1 = 0 ,

writing the n+ 1 term separately to recover the base case. The term in the second line vanishes due to
the lower part of the binomial coefficient always being larger than the top part. Going to the third line,
an index shift in k is performed, and then using Equation (13) with an additional reinserted (−1) factor
to recover the original form of ξ . Separating the k = 0 case and the additional introduced −2 term, the
base case can be inserted again, resulting in zero after using again the Vandermonde identity and the
alternating binomial sum. In a similar fashion, also the induction step in l can be shown.
Induction step l → l + 1: With the base case for arbitrary n and the corresponding induction step in n,
one can, in the following, assume the base case to be true for arbitrary n, in particular for n′ = n− 1.
Performing the induction step in l → l +1 and again using the recurrence relation, one gets

n

∑
k=1

(−1)k+1
l+1

∑
j=0

(
l +1

j

)(
n− (l +1)

k− j

)
ξ

=
n

∑
k=1

(−1)k+1
l+1

∑
j=0

(
l

j−1

)(
n′− l
k− j

)
ξ +

n′

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n′− l
k− j

)
ξ︸ ︷︷ ︸

=0 (Base case for n′)

+

���������������n

∑
k=1

(−1)k+1
(

l
l +1

)(
n′− l

k− l −1

)
︸ ︷︷ ︸

j=l+1 case

+

�������������
(−1)n+1

l

∑
j=0

(
l
j

)(
n′− l
n− j

)
ξ︸ ︷︷ ︸

k=n case

=
n

∑
k=1

(−1)k+1
l

∑
j=−1

(
l
j

)(
n′− l

k− j−1

)
(−1) j +1

2

=
n′

∑
k=0

(−1)k
l

∑
j=0

(
l
j

)(
n′− l
k− j

)
(−1) j+1 +1

2

= 0 ,

with the base case for n′ used in the second line and the additional terms vanishing because either the
first or the second binomial coefficient is zero. In the following two lines, first, an index shift in j is
performed, and then, secondly, in k. The result is the same formula as in the previous calculation, just
for n′ and therefore, also vanishes.
This concludes the induction step in l, concluding also the n ̸= l case of Equation (12) and therefore
proving Lemma 2.
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