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Abstract—Classical representations of quantum states and
operations as vectors and matrices are plagued by an exponential
growth in memory and runtime requirements for increasing
system sizes. Based on their use in classical computing, an
alternative data structure known as Decision Diagrams (DDs)
has been proposed, which, in many cases, provides both a more
compact representation and more efficient computation. In the
classical realm, decades of research have been conducted on DDs
and numerous variations tailored for specific applications exist.
However, DDs for quantum computing are just in their infancy
and there is still room for tailoring them to this new technology.
In particular, existing representations of DDs require extending
all operations in a quantum circuit to the full system size
through extension by nodes representing identity matrices. In this
work, we make an important step forward for quantum DDs by
stripping these identity structures from quantum operations. This
significantly reduces the number of nodes required to represent
them as well as eases the pressure on key building blocks of
their implementation. As a result, we obtain a structure that is
more natural for quantum computing and significantly speeds
up computations—with a runtime improvement of up to 70×
compared to the state-of-the-art.

Index Terms—Decision Diagrams, Quantum Computing,
Quantum Circuit Simulation

I. INTRODUCTION

Quantum computing is a promising new technology that is
step-by-step becoming closer to reality and has the chance to
propel our computational abilities forward to solve currently
intractable problems. Similar to classical computing, algo-
rithms on quantum computers can be decomposed into smaller
operations known as gates. These gates form a quantum circuit
analogous to digital circuits in which their combined operation
on quantum bits (qubits) performs some computation. How-
ever, currently it is still necessary to use classical methods
to simulate, verify, and compile these circuits. Unfortunately,
these tasks become increasingly difficult due to the standard
representation of quantum states and operations (namely vec-
tors and matrices) grows exponentially relative to the number
of qubits in the algorithm. Storing and manipulating these large
vectors and matrices quickly becomes infeasible for classical
computers—motivating both the need for a quantum computer
to perform these computations as well as the need for further
development of sophisticated classical methods to represent
and work with states and operations in quantum circuits.
Eventually, the capabilities of the most powerful classical
simulators define the boundary of quantum advantage.

In the classical realm, the design automation community has
spent decades to successfully develop solutions for tackling
excessive memory requirements. One of these solutions is to
use decision diagrams to represent information. Over the last
decades, a plethora of different types tailored for different
application scenarios has emerged [1]–[4]. Inspired by their
success in the classical realm, decision diagrams have been
adapted to the quantum realm in order to exploit both spar-
sity as well as redundancy in the underlying structures they
represent—leading to significant compression in memory re-
quirements and reduction in the runtime necessary to perform
calculations [5]–[13]. However, these methods do not fully
exploit that the underlying representations originate from a
quantum context, which leaves a huge potential untapped.

In this work, we focus on quantum decision diagrams as
defined in [12]. This type of DDs always requires the operands
of any DD operation (such as multiplication or addition) to
act on the same number of qubits—a reasonable assumption
considering that, e.g., plain matrix addition also requires both
matrices to have the same dimensions. This is accomplished by
blowing up the DD representations of operations with identity
nodes for any qubit that is not acted on. Since most quantum
operations only feature a low number of qubits (typically one
or two), this incurs a substantial overhead—not only in the
sheer number of nodes but also in the pressure that is being
put on key data structures such as compute and unique tables
within the respective DD package. Additionally, these identity
structures inherently do not play a role in the circuit as they
do not perform any action.

Motivated by this fact, this work proposes a new DD
structure that strips away these identities—leading to a sig-
nificantly more compact representation that, simultaneously,
better mimics the quantum gates that it represents. Experi-
mental evaluations on DD-based statevector and unitary sim-
ulation demonstrate that this seemingly simple change has
profound implications on the performance of the resulting
DD package—resulting in an average speed-up of 7.7× and
up to an 70× improvement compared to the state of the
art. The resulting implementation is publicly available at
https://github.com/cda-tum/mqt-ddsim as part of the Munich
Quantum Toolkit (MQT;[14]).

The rest of this paper is structured as follows: Section II
reviews the basics of quantum computing and decision di-
agrams. Based on that, Section III motivates the proposed

ar
X

iv
:2

40
6.

11
95

9v
1 

 [
qu

an
t-

ph
] 

 1
7 

Ju
n 

20
24

mailto:aaron.sander@tum.de
mailto:lukas.burgholzer@tum.de
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/research/quantum/
https://github.com/cda-tum/mqt-ddsim


idea of an identity-less DD structure—with detailed imple-
mentation changes described in Section IV and implications
of this change discussed in Section V. Afterwards, Section VI
presents and discusses the obtained experimental results, be-
fore Section VII concludes the paper.

II. BACKGROUND

In order to keep this paper self-contained, this section briefly
covers the basics of quantum computing used in the remainder
of this work and reviews decision diagrams for representing
and manipulating quantum states and operations.

A. Quantum Computing

While classical computing relies on bits (that can either
be 0 or 1), quantum computing relies on quantum bits (or
qubits) that can also be |0⟩ or |1⟩, but additionally in an
arbitrary superposition of both computational basis states. The
state |Ψ⟩ of a single qubit is described as α0 |0⟩ + α1 |1⟩,
with complex-valued amplitudes α0 and α1 such that |α0|2 +
|α1|2 = 1. In general, the state |Ψ⟩ of an n-qubit system is
described by 2n complex-valued amplitudes αi that describe
a linear combination of the computational basis states |i⟩ for
i = 0, . . . , 2n−1. Here, |i⟩ can be thought of as the (classical)
state corresponding to the bitstring of size n that is given by
the binary expansion of the integer i. Again, these amplitudes
are normalized such that

∑
i |αi|2 = 1. A quantum state |Ψ⟩

is typically represented by a complex-valued vector containing
its amplitudes that is frequently referred to as the statevector.

Example 1. Consider the following two-qubit quantum state
|Ψ⟩ = 1√

2

(
|00⟩ + |11⟩

)
. Then, the corresponding statevector

is given by

|Ψ⟩ =
(

1√
2

0 0 1√
2

)T

. (1)

This state is known as a Bell state and is the smallest example
of an entangled quantum state, where the state of the individual
qubits cannot be described separately any more.

Similar to quantum states being represented by vectors,
quantum operations (also called quantum gates) are repre-
sented by matrices that are unitary, i.e., U†U = I with
U† denoting the conjugate transpose of U and I denoting
the identity matrix. While n-qubit states require 2n complex
values, n-qubit operations require 2n × 2n entries.

Example 2. Common examples of single-qubit gates are the
Pauli-X and H (Hadamard) gates. The X gate is analogous to
a bit-flip, while the H gate is used to generate a superposition
from a computational basis state. These, along with the identity
operation, are defined in matrix form as follows

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, and I =

(
1 0
0 1

)
.

(2)
One of the most common two-qubit gates is the
Controlled-NOT (CNOT) gate, which applies an X gate

to a target qubit conditioned on a control qubit being |1⟩.
This corresponding unitary matrix is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
I 0
0 X

)
, (3)

which, as shown, is equivalent to smaller 2 × 2 blocks
corresponding to the identity I and X gate.

In general, a quantum algorithm is a unitary transformation
and, hence, can itself be represented as a unitary matrix U that
encodes the full functionality of the algorithm. The application
of a quantum algorithm to a certain initial state is then con-
ceptually equivalent to the matrix-vector multiplication of the
algorithm’s unitary U and the quantum state’s statevector |Ψ⟩,
i.e., |Ψ′⟩ = U |Ψ⟩ with α′

i =
∑

j uijαj |j⟩.
Since the size of these unitaries grows exponentially with

the system size, it is hardly feasible and practicable to rep-
resent quantum algorithms in this form. Even more so, since
actual quantum computers only offer a limited (yet universal)
set of natively available gates that is typically limited to
single- and two-qubit operations. As a consequence, quan-
tum algorithms are predominantly described as sequences of
smaller quantum gates that form a quantum circuit. A quantum
algorithm and its circuit representation can be thought of as a
direct analogue to high-level classical computations (such as
addition) and the logic circuits representing them (such as an
adder circuit).

Example 3. Consider the following quantum circuit G

|0⟩

|0⟩
H

(4)

that acts on two qubits and consists of two gates—a Hadamard
gate applied to the top qubit and a CNOT gate controlled
by the top qubit and targeted at the bottom qubit. Then, the
functionality U of G is described by U = (CNOT )(H ⊗
I), where ⊗ corresponds to the Kronecker product, used here
to expand the H operation to the full system size with the
identity matrix I so that the matrix-matrix multiplication can
be applied. This results in the unitary

U =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 . (5)

Applying this unitary to the all-zero initial state |00⟩, i.e.,
computing

U |00⟩ = (CNOT )(H ⊗ I) |00⟩ = 1√
2
(|00⟩+ |11⟩) (6)

yields the Bell state from Example 1.

While vectors and matrices are perfectly suitable for repre-
senting small-scale quantum systems on classical computers,
the inherent exponential complexity quickly becomes pro-
hibitive for larger system sizes. This motivates the need for
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Fig. 1: DDs for Example 1 and Eq. (3)

alternative methods to efficiently represent and manipulate
quantum states and operations on classical computers, thus
continuously pushing the boundary of what can currently be
simulated and understood without an actual quantum com-
puter.

B. Decision Diagrams

Decision Diagrams (DDs) have been proposed as one such
alternative data structure [5]–[10], [12], [13], [15]. Inspired by
their classical counterparts, commonly used to represent and
manipulate Boolean functions in classical circuit design [1]–
[4], the use of the underlying principles has recently been
introduced as a tool for classical simulation, verification, and
compilation of quantum circuits [5]–[8], [16]–[22]. In the
following, we explicitly focus on DDs as described in [12]
as the basis of this work1. Thereby, the main principle is
the recursive subdivision of the underlying representations
into subcomponents corresponding to individual qubits and
explicitly exploiting sparsity and redundancy throughout this
subdivision in conjunction with suitable normalization criteria.

For quantum states, this amounts to recursively halving the
corresponding statevector until only scalar numbers remain.
At each division, a node with two successors is introduced—
the left successor representing the top half of the (sub)vector
and the right successor representing the bottom half of the
(sub)vector. In this splitting, the left successor always leads
to an amplitude where the qubit corresponding to the current
level in the DD is |0⟩, whereas the right successor leads to
amplitudes where that qubits is |1⟩. Whenever a node is solely
composed of zero-entries, it is removed and replaced by a so-
called zero-stub indicating that anything along the respective
path will lead to 0. DDs are a canonic data structure, so
whenever two nodes have an identical structure, only one of
them is ever actually represented and shared within a DD—
reducing the overall resources required to represent the state.

Example 4. The Bell state described in Example 1 is rep-
resented as the decision diagram Fig. 1a Herein, each level
corresponds to a qubit in the system. Individual amplitudes are
obtained by multiplying the edge weights throughout the tree
along the path of a given computational state. For example,
the amplitude of the |00⟩ state is reconstructed starting at

1Due to page limitations, the following descriptions had to be kept rather
brief. We refer the interested reader to [12] and the references therein for an
in-depth introduction to decision diagrams.

the top of the above DD and going left twice, leading to the
computation 1× 1√

2
× 1 = 1√

2
.

The decomposition of matrices follows a similar scheme in
that the underlying unitary matrix is recursively quartered and
nodes with four successors are created at each division. Here,
the left-most successor corresponds to the top-left, the second
to the top-right, the third to the bottom-left, and the right-most
to the bottom-right quadrant.

Example 5. The CNOT gate is represented by the decision
diagram in Fig. 1b Again, each level corresponds to an
interaction with a given qubit in the system. This is equivalent
to the block decomposition as seen in Eq. (3).

The unique selling point of DDs is that, instead of scaling
with the number of entries in the underlying vectors or ma-
trices, operations on decision diagrams (such as addition and
multiplication) scale with the number of nodes in the respec-
tive DDs—a direct consequence of their recursive definition.
That is, as long as these representations stay compact, DDs
not only allow to compactly represent, but also to efficiently
manipulate components relevant for classically conducting
quantum computations.

III. MOTIVATION AND GENERAL IDEA

The above description might make it seem that DDs for
quantum computing are a rather mature data structure where
everything is solved. However, compared to the decades of
research on variations of classical DDs for dedicated classes
of problems, theoretical bounds on their growth, as well as
highly engineered software implementations, DDs for quantum
computing are still in their infancy with many unanswered
questions and lots of potential to improve the underlying
concepts. Especially, since these methods do not fully exploit
that the underlying representations originate from a quantum
context. An example illustrates the untapped potential.

Example 6. Say that we have a 100-qubit system and want to
generate a Bell state between the first and the last qubit such
that we generate the state

|Ψ⟩ = 1√
2

(
|0 . . . 0 . . .︸ ︷︷ ︸

98 times

0⟩+ |1 . . . 0 . . .︸ ︷︷ ︸
98 times

1⟩
)

(7)

The circuit used to generate this state as well as the DD
representing every entity in it are shown in Fig. 2.

Observe how each gate DD contains identity nodes at levels
which are not affected by the operation (drawn as wires). This
is a direct consequence of the extension to the full system size
previously observed in Example 3 that is used to make the
dimensions of the respective quantities fit. As a consequence,
the DD for the single-qubit Hadamard gate consists of 100
nodes while the DD for the CNOT gate is blown up to a total of
199 nodes (one at the control, 2 identities at each intermediate
level, plus an identity and an X gate at the target level).

As the above example has shown, the extension to the
full system size introduces a severe overhead for represent-
ing quantities that per-definition do not affect the circuit
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Fig. 2: Bell State between 0th and 99th qubit as described in Example 6 represented as a circuit, the current DD structure, and
the new identity-less structure

functionality at all. For that reason, many sophisticated im-
plementations of other techniques for statevector simulation
directly manipulate the amplitudes of the state vector that
are affected by an operation and never construct the full
operation matrix (which, in many cases, could not even be
feasibly represented due to its exponential size) [23]–[25]. To
further advance the state of the art in decision diagrams for
quantum computing, it is necessary to strip decision diagrams
representing quantum operations of their identity nodes. This
makes them both a more natural representation of quantum
circuits as well as significantly reduces the node count needed
in their implementation—especially for large systems. The
following example demonstrates the profound implications
that this proposed change brings along.

Example 7. Say that we want to recreate the situation in
Example 6, but completely strip away the identity nodes.
Then, the operations become significantly more compact as
illustrated in Fig. 2. Now, the single-qubit Hadamard gate is
only represented by a single-level DD, while the two-qubit
CNOT gate is represented by a two-level DD. Overall, this
reduces the node count for these operations from 100 and 199
to 1 and 2, respectively.

IV. IMPLEMENTATION

While the change proposed above is seemingly small, the
underlying assumption that two interacting DDs always have
to act on the same number of levels is deeply rooted in all of
the methods present in state-of-the-art realizations. Hence, this
section discusses the key changes required to deliver on the
promise of stripping DDs of their identity—specifically in (1)
the creation of DDs for quantum operations, (2) the creation
of DD nodes themselves, and (3) the DD operations such as
multiplication and addition. For each of these, a simplified

Algorithm 1 Gate DD Creation (simplified)

1: procedure GATEDD(n, c, t, U )
2: [ e00 e01 e10 e11 ]← TERMINAL([ u00 u01 u10 u11 ])
3: for l= 0,. . . ,t-1 do ▷ Identities below t
4: eij ← NODE(l, [ eij 0 0 eij ])
5: e← NODE(t, [ e00 e01 e10 e11 ])
6: for l= t+1,. . . ,c-1 do ▷ Identities between t and c
7: e← NODE(l, [ e 0 0 e ])
8: e← NODE(c, [ Ic−11 0 0 e ])
9: for l= c+1,. . . ,n-1 do ▷ Identities above c

10: e← NODE(l, [ e 0 0 e ])
return e

Algorithm 2 DD Node Creation (simplified)

1: procedure NODE(l, [ e00 e01 e10 e11 ])
2: e := (enode, eweight)← (GETNODE(), 1)
3: enode.l← l
4: enode.edges← [ e00 e01 e10 e11 ]
5: e← NORMALIZE(e)
6: if RESEMBLESIDENTITY(e) then
7: s← SUCCESSOR(e, 0)
8: FREE(enode)
9: return s

10: return UTLOOKUP(e)

pseudo-code diff is provided to illustrate the change. To this
end, additions will be marked in green while deletions will be
marked in red. The interested reader is welcome to check out
the open source implementation at https://github.com/cda-tum/
mqt-core for further details.

The most obvious change lies in the method used to create
DDs for quantum gates which, previously, had to be extended

https://github.com/cda-tum/mqt-core
https://github.com/cda-tum/mqt-core


to the full system size by explicitly inserting identities for lev-
els not acted on by the gate. For simplicity, we only consider
the case of a two-qubit controlled-U gate (U being specified
as a 2 × 2 unitary matrix) with control qubit c and target
qubit t in an n-qubit system. We additionally assume that the
control qubit comes before the target qubit in the variable
order of the DD, i.e., t < c < n. This is not required by
the implementation, but is simpler to illustrate the algorithm.
Then, Algorithm 1 sketches the corresponding method and
how it was adapted to not even create the identities. In the
new implementation, the method only ever touches the levels
the operation acts on—regardless of system size n.

However, it is not sufficient to simply avoid creating identity
nodes during gate construction. Such nodes may naturally
occur as the result of a computation, e.g., in lines 5 or 8 in
Algorithm 1. Hence, it is also required to adapt the method for
creating DD nodes given a level l and a list of successor DDs
[ e00 e01 e10 e11 ]. This is shown in Algorithm 2. Compared to
the original implementation, an additional check is introduced
after the normalization that triggers if the normalized DD node
resembles the identity, i.e., its first and last successor point to
the same node with an edge weight of one, while the other
successors are zero. If so, the newly created node is freed (as
it is not needed) and the first successor is returned as a result
of the call—effectively skipping the identity node.

Finally, the addition and multiplication routines were mod-
ified to account for the fact that two DDs that act as operands
in these routines can no longer be assumed to always act on
the same level due to potentially skipped nodes. For illustrative
purposes, we consider the multiplication algorithm here that
takes a matrix DD U , a vector DD v, as well as a level l
and recursively computes the matrix-vector product Uv. The
resulting algorithm is shown in Algorithm 3. Compared to the
original version, it checks whether the matrix DD is at the
correct level and implicitly treats the DD as an identity if it
is not. In the following, the implications of the above changes
on the overall methodology are discussed—both in theoretical
limits as well as practical performance.

V. IMPLICATIONS

When developing data structures for quantum computing,
the scalability with the number of qubits is one of the crucial
criteria for determining a method’s viability. In the previous
iterations of decision diagrams, all gates on an n-qubit system
must be scaled to n-level DDs. This is objectively a signifi-
cant bottleneck for scalability, as infinite-level operations, i.e.
(n→∞) would be required in the asymptotic limit. However,
removal of the identity nodes means that the DDs representing
gates are no longer connected to the overall number of qubits,
but rather the number of qubits the gate acts upon. This
localization gives credence to the theoretical capabilities of
DDs in representing very large systems.

Stripping identity nodes in DDs for operations also di-
rectly leads to a reduction in the overall node count and,
consequently, the memory required to represent the necessary

Algorithm 3 Matrix-Vector Multiplication (simplified)

1: procedure MULTIPLY(U , v, l)
2: if ISZERO(U ) or ISZERO(v) then return 0

3: if ISIDENTITY(U ) then return v

4: if success, r ← CTLOOKUP(U, v) then return r
5: edges ← [ 0 0 0 0 ]
6: for i, j = 0, 1 do
7: if U.l = l then
8: e1 ← SUCCESSOR(U , 2i+ j)
9: else e1 ← i = j ? x : 0

10: e2 ← SUCCESSOR(y, j)
11: m← MULTIPLY(e1, e2, l − 1)
12: edges[i]←ADD(edges[i], m)
13: r ← NODE(l, edges)
14: CTINSERT(U , v, r)
15: return r

quantities for a particular task. Instead of scaling with the over-
all system size, the memory requirements to store operations
are entirely based on the number of qubits upon which they
operate. As confirmed by the experimental evaluations, which
are summarized in Section VI, this leads to a drastic reduction
in the overall number of allocated nodes.

The reduction in the number of nodes also has direct
consequences on the performance of key data structures within
the DD package. This most significantly affects the unique
table, which is used to check whether two DD nodes represent
the same functionality and, thus, to ensure canonicity of the
data structure. By reducing the number of nodes, there are
significantly fewer lookups and inserts into this unique table
(which is commonly implemented as a hash table for each
variable). This implies that less cleanup (so-called garbage
collection) is required to get rid of superfluous entries and
guarantee the amortized O(1) complexity for lookup and
insertion. Since garbage collection is quite costly when it
comes to runtime, this reduction in frequency constitutes a
major performance improvement. A similar impact applies to
the compute table.

VI. EXPERIMENTAL EVALUATIONS

In order to evaluate the impact of the newly proposed
type of decision diagrams, we implemented the removal of
identity nodes on top of the state-of-the-art decision dia-
gram package publicly available as part of the MQT Core
library (https://github.com/cda-tum/mqt-core). The resulting
simulator is available as part of the Munich Quantum Toolkit
(MQT; [14]) at https://github.com/cda-tum/mqt-ddsim. Then,
we benchmarked the resulting implementation against the
original package by performing statevector simulations (in
which the gates are applied sequentially to the initial state)
and unitary simulations (in which the functionality of the
quantum algorithm is constructed directly) for a wide range of
benchmarks—including generating the GHZ state, generating
the W state, the Bernstein-Vazirani (BV) algorithm, Quantum

https://github.com/cda-tum/mqt-core
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TABLE I: Experimental Results
Circuit Simulation Unitary Simulation

Old New Old New

n |G| t [s] |V | |GC| t [s] |V | |GC| n |G| t [s] |V | |GC| t [s] |V | |GC|

BV 256 636 <0.1 49 506 0 <0.1 382 0 256 636 0.1 180 645 1 <0.1 81 753 0
512 1 271 0.3 328 054 2 0.1 761 0 512 1 271 0.4 788 888 6 0.2 327 378 2

1 024 2 546 1.3 1 311 591 9 0.5 1 524 0 1 024 2 546 1.7 6 442 227 24 0.7 4 595 427 10
2 048 5 104 6.9 5 252 986 39 2.7 3 058 0 2 048 5 104 8.7 25 854 080 97 3.7 7 420 378 40
4 096 10 221 40.6 21 213 345 160 17.5 6 127 0 4 096 10 221 52.3 51 188 288 399 21.9 21 018 096 164

GHZ State 256 256 <0.1 33 151 0 <0.1 511 0 256 256 <0.1 125 792 0 <0.1 33 151 0
512 512 0.1 132 350 1 <0.1 10 23 0 512 512 0.1 265 600 2 0.1 131 839 1

1 024 1 024 0.5 529 915 4 0.2 2 047 0 1 024 1 024 0.5 1 049 600 8 0.3 525 823 4
2 048 2 048 2.6 2 132 975 16 1.0 4 095 0 2 048 2 048 2.7 4 196 352 32 1.4 2 100 223 16
4 096 4 096 15.6 8 660 926 65 6.6 8 191 0 4 096 4 096 16.3 17 875 872 131 8.0 8 394 751 64

W State 256 1 021 0.1 132 093 1 0.1 1 786 0 256 1 021 0.3 651 639 4 0.2 520 971 3
512 2 045 0.6 527 156 4 0.3 3 578 0 512 2 045 1.2 2 614 852 19 0.9 2 090 512 15

1 024 4 093 2.7 2 106 893 16 1.3 7 162 0 1 024 4 093 5.8 10 477 875 80 4.5 8 375 330 64
2 048 8 189 14.4 8 440 874 64 7.1 14 330 0 2 048 8 189 32.0 41 970 068 322 24.5 33 527 949 257
4 096 16 381 85.6 33 923 956 256 46.2 28 666 0 4 096 16 381 200.1 168 183 059 1299 159.6 134 164 915 1 041

Grover 28 1 019 143 0.1 45 146 0 0.1 42 668 0 28 1 019 143 0.2 9 580 0 0.2 7 345 0
32 4 658 751 0.3 84 913 0 0.3 81 583 0 32 4 658 751 0.8 151 349 0 0.7 147 866 0
36 20 964 167 1.2 156 491 1 1.1 152 108 1 36 20 964 167 2.6 266 061 1 2.5 260 593 1
40 93 174 159 1.1 272 885 3 0.9 268 040 3 40 93 174 159 3.1 429 992 3 2.6 427 986 3
42 195 665 483 1.5 238 364 1 1.3 233 159 1 42 195 665 483 1.6 336 721 2 1.4 328 534 2

QFT 256 33 024 1.0 1 435 826 10 0.1 20 380 0 18 180 8.4 527 414 4 0.3 524 591 4
512 131 584 7.5 5 785 838 44 0.7 42 652 0 19 199 49.1 1 052 288 7 1.1 1 048 915 7

1 024 525 312 67.1 23 251 301 176 3.5 87 196 0 20 220 338.8 2 101 530 11 6.4 2 097 529 11
2 048 2 099 200 566.9 93 733 455 711 21.3 176 284 1 21 241 2 456.5 4 199 433 16 38.6 4 194 721 16
4 096 8 392 704 4 683.8 380 202 897 2 870 134.5 354 460 2 22 264 18 855.5 8 394 578 22 267.8 8 389 067 22

QPE 15 134 0.2 1 254 0 0.2 225 0 8 43 <0.1 10 676 0 <0.1 10 507 0
16 151 1.7 1 527 2 1.2 257 2 9 53 <0.1 41 760 1 <0.1 41 519 1
17 169 27.3 1 835 3 9.1 291 3 10 64 0.3 165 727 2 0.2 165 387 2
18 188 333.8 2 180 4 57.0 327 4 11 76 13.4 661 130 5 3.7 660 649 5
19 208 2 239.5 2 564 5 332.8 365 5 12 89 667.8 2 643 492 8 82.9 2 641 229 8

n: Number of qubits |G|: Gate count t [s]: Runtime |V |: Node Count |GC|: Garbage Collection Runs

Fourier Transform (QFT), Quantum Phase Estimation (QPE),
and Grover’s algorithm. For both types of simulation, each
algorithm is simulated for several different qubit counts n,
while the gate count |G|, runtime t, overall count of matrix
DD nodes |V |, as well as number of garbage collection runs
|GC| of the old and new implementation are recorded. These
results are summarized in Table I.

The results align well with the theoretical and practical
expectations laid out in Section V. As expected, removing
the identity nodes yields an increase in performance across
all benchmarks—resulting in an average speed-up of 7.7×
and up to a 70× improvement compared to the state of
the art. Furthermore, the overall node count required for the
simulation is reduced, on average, by a factor of 218× and
up to 3462×. This reduction in the number of nodes allows
the new implementation to perform fewer garbage collections,
which, along with the reduction in node count and required
operations, is a major factor for the drastic runtime decrease
that can be observed for both types of simulation.

VII. CONCLUSION

By stripping quantum decision diagrams of their identity
nodes, decision diagrams have been brought closer to a natural,
more efficient representation of quantum operations. In this
work, it has been shown that this change is not only theoreti-
cally motivated towards allowing DDs to push towards larger
and larger systems, but also sees significant practical advantage
compared to previous state-of-the-art implemenations. Due to
the significant runtime and storage benefits presented here, it

is expected that the structure of the decision diagrams outlined
in this work will supplement previous implementations to
become the de facto representation used to simulate, verify,
and compile quantum circuits.
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