
Towards
Application-Aware Quantum Circuit Compilation

Nils Quetschlich∗ Florian J. Kiwit†‡ Maximilian A. Wolf†‡ Carlos A. Riofrío†

Lukas Burgholzer∗ Andre Luckow†‡ Robert Wille∗§
∗Chair for Design Automation, Technical University of Munich, Germany

†BMW Group, Munich, Germany
‡Ludwig Maximilian University, Munich, Germany

§Software Competence Center Hagenberg GmbH (SCCH), Austria
{nils.quetschlich, lukas.burgholzer, robert.wille}@tum.de

{florian.kiwit, maximilian.ww.wolf}@bmw.de {carlos.riofrio, andre.luckow}@bmwgroup.com
https://www.cda.cit.tum.de/research/quantum

Abstract—Quantum computing has made tremendous im-
provements in both software and hardware that have sparked
interest in academia and industry to realize quantum computing
applications. To this end, several steps are necessary: The
underlying problem must be encoded in a quantum circuit, a
suitable device must be selected to execute it, and it must be
compiled accordingly. This compilation step has a significant
influence on the quality of the resulting solution. However,
current state-of-the-art compilation tools treat the quantum
circuit as a sequence of instructions without considering the
actual application it realizes—wasting a yet untapped potential to
increase the solution quality. In this work, a different approach is
explored that explicitly incorporates the application considered
and aims to optimize its solution quality during compilation.
Initial results show the benefits of this approach: For an
industry-inspired application of a quantum generative model, the
proposed approach outperformed Qiskit’s most-optimized com-
pilation scheme and led to better solution quality. Therefore, this
work presents a first step towards application-aware compilation.

I. INTRODUCTION

Quantum computing has made tremendous progress in both
hardware and software development in recent years. This has
sparked interest not only in academia but also in industry
with an increasing number of quantum computing applications
being explored [1]. Realizing such applications using quantum
computing has gained significant attention in various domains
such as finance [2], logistics [3], and chemistry [4]. Usually,
these approaches follow a similar workflow consisting of
multiple steps (such as, e.g., described in [5]).

Starting with the problem itself, a respective quantum
algorithm generally capable of solving it must be selected
together with either a quantum simulator or an actual device.
Then, the problem must be encoded in a quantum circuit based
on the selected algorithm. This circuit must then be compiled
into an executable quantum circuit for the chosen device (if
a noise-free simulator is selected, this step can be skipped).
The compiled quantum circuit can be executed afterwards—
resulting in a histogram of measurement results that must be
decoded to extract the actual solution. Workflows like this help
end users realize their applications and can also be extended
to cover further aspects, e.g., resource estimation [6].

In the following, the focus is on the compilation step, which
greatly affects the quality of the solution of the considered
application and, therefore, can make the difference between a
successful execution and obtaining completely random results.
To achieve the best possible solution, current compilers usually
offer different levels of optimization as a trade-off between
the compilation time and quality of the compiled circuit. The
quality of a circuit is typically defined based on certain figures
of merit that act as a proxy for the true solution quality of the
considered application. However, currently established figures
of merit do not consider the actual application realized by
the quantum circuit being compiled in their evaluation of the
circuit’s quality.

In this work, a different approach to compilation is explored.
Instead of compiling for a figure of merit that acts as a proxy
for the resulting solution quality of a considered application,
the solution quality itself is used to guide the compilation.
For that, two steps are required: Firstly, an application-aware
figure of merit must be defined that, obviously, must depend
on the application considered. It relates the compiled circuit
to the quality of the solution of the application it realizes.
Second, a compilation environment is necessary that allows
one to consider this customizable figure of merit.

To explore the benefits of the proposed approach, it has been
evaluated for an industry-inspired application of a quantum
generative model. These generative learning applications are
experiencing rapid growth and attracting widespread interest
with applications extending from anomaly detection to text
and image generation, as well as speech and video synthesis.
However, generative learning still faces practical challenges,
such as the need for large datasets, extensive hyperparame-
ter tuning, long convergence times, and high computational
resource requirements. Quantum generative modeling might
offer an opportunity to overcome these challenges and im-
prove its capabilities by providing faster training, increased
expressive power, improved inference, and reduced energy
footprint [7]–[9]. Furthermore, quantum systems are inherently
probabilistic, which makes them a natural fit for modeling
probability distributions.

mailto:nils.quetschlich@tum.de
mailto:lukas.burgholzer@tum.de
mailto:robert.wille@tum.de
mailto:florian.kiwit@bmw.de
mailto:maximilian.ww.wolf@bmw.de
mailto:carlos.riofrio@bmwgroup.com
mailto:andre.luckow@bmwgroup.com
https://www.cda.cit.tum.de/research/quantum


q0

q1

q2

q3

RZ(π) H

H

RZ

RZ

RZ

RZ

=⇒

RZ(π) RZ(
π
2 )

RZ(
π
2 )

SX

SX

RZ(
π
2 )

RZ(
π
2 )

RZ

RZ

RZ

RZ

=⇒

q3 7→ Q1

q1 7→ Q2

q0 7→ Q3

q2 7→ Q4

RZ(
π
2 )

RZ(
3π
2 )

SX

SX

RZ(
π
2 )

RZ(
π
2 )

RZ

RZ

RZ

RZ

H = RZ(
π
2 ) SX RZ(

π
2 ) Q0 Q1 Q2

Q3

Q4

ibmq_quito

(a) Quantum circuit. (b) Synthesized circuit. (c) Mapped circuit.

Fig. 1: Quantum circuit compilation flow.

To realize the proposed compilation scheme, an
application-aware figure of merit is derived and used during
compilation based on the MQT Predictor framework [10]—an
open-source compilation framework that utilizes artificial
intelligence to determine how to best compile a given quantum
circuit for a customizable figure of merit. Experimental
evaluations for all considered application instances show that
the proposed approach results in a higher solution quality
compared to the state-of-the-art compiler Qiskit [11] using
its most-optimized compilation scheme. Therefore, this work
constitutes a first step towards application-aware compilation.

The remainder of this work is structured as follows: In
Section II, the necessary background on quantum circuit
compilation is provided along with a discussion of related
work. Then, Section III motivates the proposed approach,
which is described in more detail based on an exemplary ap-
plication in Section IV and evaluated in Section V. Lastly, the
proposed approach is discussed in Section VI and concluded
in Section VII.

II. BACKGROUND

This section describes how a given quantum circuit encod-
ing any kind of application is compiled to become executable
on a chosen device and reviews the related work for quantum
circuit compilation.

A. Quantum Circuit Compilation

Starting with the quantum circuit that could contain any
quantum gate with no restrictions on the type and number of
qubits used, an equivalent circuit shall be derived by compiling
it such that it adheres to the constraints induced by the chosen
device. To this end, different compilation passes are used,
namely synthesis, optimization, and mapping as visualized
in Fig. 1.

Example 1. Assume that the application considered is en-
coded as the quantum circuit shown in Fig. 1a. This circuit
shall now be compiled so that it becomes executable on the
ibmq_quito device with five qubits whose qubit connectivity is
visualized above the arrow between Fig. 1b and Fig. 1c.

Synthesis passes are run to ensure that all the quantum gates
present in the circuit are translated into executable gate types—
constituting the so-called native gateset of a device.

Example 2. For the chosen ibmq_quito device, the native
gateset comprises the gates: {RZ , SX , CX , X , ID}. How-
ever, the H gates present in the circuit shown in Fig. 1a are
not included and therefore must be synthesized to a sequence
of native gates—in this case as a sequence of RZ, SX , RZ
gates shown in Fig. 1b.

Optimization passes are typically run before and after
synthesis passes to enable efficient synthesis and reduce the
overhead introduced by translating to native gates.

Example 3. The synthesized quantum circuit from Fig. 1b can
be optimized by merging the subsequent RZ gates (marked in
dashed blue) into one gate by adding their angles.

Lastly, mapping passes are run to assign each logical qubit
of the quantum circuit to a physical qubit of the chosen
device. Often it is not possible to find a layout such that the
entire circuit adheres immediately to the device’s connectivity.
Typically, this is solved by inserting SWAP gates into the
circuit to dynamically permute the qubit arrangement on the
device—a procedure called routing that can lead to significant
overhead in terms of additional quantum gates. To counteract
this potential increase in the number of gates, optimization
passes are run again on the resulting circuit to reduce its size.
This finally results in a fully executable quantum circuit for
the chosen device that represents the same functionality as the
initial circuit, but usually has a very different structure.

Example 4. For the circuit shown in Fig. 1b, there is no layout
that immediately satisfies the connectivity of the ibmq_quito
device which is shown above the arrow between Fig. 1b and
Fig. 1c. Therefore, one SWAP gate is added, which has to
be synthesized into native gates again—resulting in the now
fully executable quantum circuit shown in Fig. 1c with the
synthesized SWAP gate highlighted in dashed blue.

B. Related Work

Since quantum circuit compilation is a very active field of
research, various compilation methods have been proposed
for synthesis [12]–[18], optimization [18]–[23], and map-
ping [24]–[36]. Over the years, these methods have been
adopted and incorporated by many quantum Software Devel-
opment Kits (SDKs) to create automated, powerful, and easily
accessible compilation flows. Prominent representatives from



industry of such SDKs are IBM’s Qiskit [11], Quantinuum’s
TKET [37], and Xanadu’s PennyLane [38]. Furthermore,
various academic compilation software tools have matured to
become more and more comprehensive, such as the Berkeley
Quantum Synthesis Toolkit [39], and the Munich Quantum
Toolkit (MQT) [40] (e.g., MQT QMAP [36]).

All of the mentioned SDKs are capable of compiling
a given quantum circuit for a chosen device and usually
offer pre-configured sequences of compilation passes with
an adjustable degree of optimization—constituting a trade-off
between the time to create the compiled circuit and its quality.
As a rule of thumb, the highest degree is used to derive the
best possible compiled quantum circuit—however, usually no
clear optimization criterion is given and it remains vague what
the SDK is actually optimizing for. Additionally, these SDKs
try to address the needs of many and therefore follow a “one-
fits-all” approach—aiming for a good average performance
across diverse quantum circuits and applications realized by
them. However, when considered a specific application, this
can lead to an untapped potential for the quality of its solution.

III. MOTIVATION

Due to the variety of different available compilers and
proposed compilation schemes, the respectively compiled
quantum circuits also significantly differ, e.g., in terms of the
number of gates, the mapping of logical to physical qubits,
and the induced overhead by adhering to a device’s restricted
connectivity. Although all compiled quantum circuits represent
the same functionality and should lead to the same solutions to
the application considered, this is not the case in reality due to
the imperfection of the currently available Noisy Intermediate
Scale Quantum (NISQ) computers [41].

This raises the question of how to evaluate the quality of
a compilation scheme. To this end, different metrics acting as
figures of merit have been proposed to compare compilation
schemes. Those figures of merit try to resemble how well a
compiled circuit can be executed on a quantum computer and,
by that, act as a proxy for the solution quality of the considered
application. These figures of merit can be grouped into three
categories with an increasing effort to calculate but also higher
resemblance of the actual execution:

1) Figures of merit based on characteristics of the compiled
quantum circuit: This includes efficiently computable
metrics such as the depth of the compiled circuit or
its gate count—frequently limited to the number of
two-qubit gates because, for most current architectures,
their execution error rate is significantly higher than that
of single-qubit gates.

2) Figures of merit based on the characteristics of the
compiled quantum circuit and quantum device: Here,
information such as specific gate error rates and qubit
decoherence times is also considered, e.g., in the ex-
pected fidelity used in [10] and the estimated success
probability described in [42].

3) Figures of merit based on the comparison of (noiseless)
simulations and actual execution results of the compiled
quantum circuit: When executed both on a noiseless
simulator and on an actual quantum device, the overlap
in the resulting histograms can be compared, such as,
e.g., in [42], [43]. The compilation scheme leading to
the largest overlap is selected as the most promising
one.

Example 5. To make those figures of merit more accessible,
the compiled quantum circuit from Fig. 1c has been evaluated
based on representatives of all three categories:

1) Two-Qubit Gate Count: 7
2) Expected Fidelity [10]: 0.5814
3) Histogram Intersection [43]: 0.6655

Although these figures of merit cover different aspects of
the compiled circuit and its execution, they are used for
specific purposes and neglect the end users’ perspective, which
prioritizes the solution quality of the considered application
above all else.

Plain gate counts are typically used to assess single compi-
lation passes, such as mapping, where these numbers directly
reflect the passes’ efficacy. However, they do not incorporate
hardware-induced errors such as gate execution, measure-
ment errors, and decoherence times—making them inadequate
for assessing entire compilation flows. Integrating hardware
characteristics through noise models derived from calibration
data provides a rough estimate of circuit execution quality.
Yet, these models often inadequately represent the actual
device due to outdated or incomplete data as shown, e.g.,
in [42]. Comparing the histogram of noiseless simulations with
the ones from actual executions of compiled circuits works
well for non-variational quantum algorithms but may not be
optimal for variational algorithms like QAOA [44] (which is
considered one of the most promising algorithms in the current
NISQ era [45]), where noise could potentially aid optimization
by preventing convergence to local minima, similar to gradient
descent optimization algorithms [46] used in classical machine
learning.

Furthermore, all figures of merit currently used in compi-
lation treat the to-be-compiled quantum circuit as a sequence
of instructions without considering the actual application it
realizes—wasting a yet untapped potential to increase the
solution quality, which is exactly what counts for the potential
end users. This is especially unfavorable since the compilation
itself can make the difference between a successful execution
and obtaining completely random results. Thus, compiling a
given quantum circuit in the most promising fashion consti-
tutes an important challenge in the development of quantum
computing applications.

In this work, a different approach is explored: instead
of defining a proxy for the expected solution quality of a
considered application and using this as the figure of merit
during compilation, the solution quality of the application
itself is used—offering the potential to further increase it for
a considered application.



IV. PROPOSED APPROACH

Realizing such an application-aware compilation scheme
for a considered application requires two steps: An
application-aware figure of merit must be defined and a
compilation environment must be set up that supports cus-
tomizable figures of merit. In the following, these steps are
described in detail. To this end, a running example of an
industry-inspired application is used for illustrative purposes,
which is introduced first.

A. Quantum Generative Modeling

Generative learning is experiencing rapid growth and is at-
tracting widespread interest across industries, with applications
ranging from anomaly detection to text and image generation,
as well as speech and video synthesis. Ultimately, the objective
of training a generative model is to express the underlying
distribution of a dataset using a machine learning model. In
quantum generative learning, this model is represented by a
parameterized quantum circuit [47].

Example 6. A Quantum Circuit Born Machine (QCBM) [48]–
[51] is a quantum generative model that is trained as depicted
in Fig. 2. To learn the target distribution—in this case, the
distribution of a two-dimensional dataset that resembles the
letter X (indicated by the orange tiles)—the parameter values
of the shown parameterized quantum circuit are adjusted so
that the resulting model distribution is as close as possible to
the target distribution.

B. Application-Aware Figure of Merit

A figure of merit must be defined that takes into account
the actual application. For MaxCut problems, it might be the
size of the cut. For ground state estimation, it might be the
current estimate for the ground state energy. For the traveling
salesperson problem, it might be the cost of the determined
route. Hence, such application-aware figures of merit might
look quite different depending on the considered application.

Furthermore, variational algorithms are executed in a hybrid
classical-quantum fashion in which the parameter values of
the underlying parameterized quantum circuit are optimized
using a classical optimizer. Those optimizers usually already
optimize for an application-aware figure of merit that defines
the solution quality of the considered application. Therefore,
the same metric should also be used during the compilation—
aiming for the best overall resulting solution quality.

Example 7. During the QCBM training described in Ex-
ample 6, the deviation of the model distribution Q to the
target distribution P shall be minimized. This difference is
determined using the Kullback-Leibler (KL) divergence,

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

Whenever the KL divergence reaches its minimum, the train-
ing is completed and the lower it is, the better the model
is trained. Therefore, it is a suitable candidate for the

application-aware figure of merit in this exemplary applica-
tion. To minimize the KL divergence, the model parameters
are adapted via the covariance matrix adaption evolutionary
strategy (CMA-ES) [52], a gradient-free optimizer.

C. Compilation Environment

A compilation environment is necessary that actually sup-
ports customizable figures of merit. Although this is not the
case for the currently frequently used SDKs such as Qiskit
and TKET, other tools offer this freedom, such as, e.g.,
the MQT Predictor framework [10]. This compilation frame-
work allows one to use a customizable figure of merit and
learns, based on artificial intelligence, the optimal sequence
of compilation passes for the considered application. To this
end, reinforcement learning is utilized to determine the most
promising sequence of synthesis, optimization, and mapping
passes from a large number of available passes provided by
multiple quantum SDKs, such as Qiskit [11] and TKET [37].

To realize the proposed approach, significant changes to
the MQT Predictor framework were necessary. Previously, the
framework would try to learn an optimized sequence of passes
to compile arbitrary circuits to a particular device—following a
“one-fits-all” approach similar to other SDKs. For the use case
considered here, only a single input circuit (aiming to solve
a particular application instance) is considered and the goal
is to find the compiled circuit that is expected to achieve the
best application result. Due to the variational nature of most
applications currently being explored using quantum comput-
ing, the framework also had to be extended to handle the
compilation of parameterized quantum circuits—a seemingly
simple, yet daunting task in practice due to many subtleties
across different quantum compilers and their handling of these
circuits. Last, but certainly not least, the framework had to be
extended with the possibility to execute/simulate the resulting
circuits in order to evaluate the application-aware figure of
merit as well as running the application.

Example 8. To compile the underlying quantum circuit
of the QCBM application for the KL divergence as its
application-aware figure of merit, the MQT Predictor frame-
work [10] has been adapted accordingly. By providing the
quantum circuit of the considered application, such as, e.g.,
an application instance with 4 qubits as shown in Fig. 2, the
framework over time learns the most efficient combination of
compilation passes that leads to the highest solution quality—
while, during the training, the application itself is run for each
determined sequence of compilation passes.

V. OBTAINED RESULTS

In this section, the application described in the running ex-
amples of Section IV is evaluated with three different problem
sizes of 4, 6, and 8 qubits using the described setup based
on the MQT Predictor framework v2.0.0 and Qiskit v0.45.3
in Python1. For circuit execution, noisy simulators are used

1The source code to create those results is publicly-available on
GitHub (https://github.com/cda-tum/mqt-predictor/tree/quantum_generative_
modeling).

https://github.com/cda-tum/mqt-predictor/tree/quantum_generative_modeling
https://github.com/cda-tum/mqt-predictor/tree/quantum_generative_modeling


0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

CMA-ES
Optimizer

DKL(P, Q(θ1))
...

DKL(P, Q(θλ))

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

Target distribution P

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

q0 : H • RZ (x0) RX (x1) RZ (x2)
RXX (x24)

0

RXX (x26)

0

RXX (x28)

0

q1 : H • RZ (x6) RX (x7) RZ (x8)
1

RXX (x30)

0

RXX (x32)

0

q2 : H • RZ (x12) RX (x13) RZ (x14)
1 1

RXX (x34)

0

q3 : H • RZ (x18) RX (x19) RZ (x20)
1 1 1

q4 : RZ (x3) RX (x4) RZ (x5)
RXX (x25)

0

RXX (x27)

0

RXX (x29)

0

q5 : RZ (x9) RX (x10) RZ (x11)
1

RXX (x31)

0

RXX (x33)

0

q6 : RZ (x15) RX (x16) RZ (x17)
1 1

RXX (x35)

0

q7 : RZ (x21) RX (x22) RZ (x23)
1 1 1 Sample new generation of parameters {θ1 ... θλ}

Circuit distribution Q

CMA-ES
Optimizer

DKL(P, Q(θ1))
...

DKL(P, Q(θλ))

Target Distribution P

Sample new Generation of Parameters {θ1 ... θλ}

Model Distribution QQuantum Circuit

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

2D Distribution

H

H

RZ(θ)

RZ(θ)

RZ(θ)

RZ(θ)

RX(θ)

RX(θ)

RX(θ)

RX(θ)

RZ(θ)

RZ(θ)

RZ(θ)

RZ(θ)

RXX(θ)

RXX(θ)

Fig. 2: The QCBM fits the model distribution Q, generated by a parameterized quantum circuit, to the target distribution P ,
given by the dataset. For a population of size λ, the fitness of each candidate solution θi is evaluated. The CMA-ES optimizer
samples a new population of candidate solutions, based on the best-performing candidate solutions of the previous generation.

instead of actual devices due to their limited access and asso-
ciated costs, although the proposed methodology is not limited
to classical simulations and also works on actual devices2.
To that end, mock-ups of the ibmq_quito, ibmq_nairobi, and
ibmq_montreal devices with 5, 7, and 27 qubits are used, and
each problem instance has been run on the smallest fitting
device. The results are shown in Fig. 3.

To evaluate the proposed application-aware compilation
scheme, the solution quality of the considered application—in
this case, the KL divergence for the QCBM application—is
used as a figure of merit with lower values representing better
solutions. Since the application itself runs for a certain number
of epochs to optimize the parameter values of the underlying
quantum circuit, the figure of merit generally decreases over
the epochs, and the lowest KL divergence reached at any epoch
constitutes the best solution. To this end, the same compiled
and parameterized quantum circuit is used throughout all
episodes—just with different parameter values. The proposed
approach is compared to Qiskit’s most-optimized compilation
scheme (O3) as the baseline to beat, as this is what was
originally used for the application considered. Furthermore,
the results of Qiskit’s default compilation scheme (O1) are also
denoted to underline the effect compilation has on the solution
quality. For both baselines, 25 compilation runs have been
carried out to cover the spread of their compilation outcomes
and, therefore, solution quality. To this end, the worst, median,
and best run have been determined—again, measured by the
lowest KL divergence that occurred during those runs.

The results for the 4 qubits application instance (whose
underlying quantum circuit has been depicted as the exemplary
circuit shown in Fig. 2) executed on the mock-up of the
ibmq_quito device are shown in Fig. 3a. To visualize the
solution quality of all 25 runs of both the most-optimized and

2In fact, running on real devices can be expected to yield the most accurate
and optimized results as it does not involve any modeling.

the default baselines, their spread is visualized as a tube graph
between the best and worst solution quality of all 25 runs at
the respective epoch. Additionally, the median compilation run
of the most-optimized leading to the median solution quality
is denoted within the corresponding tube.

The proposed approach surpasses both baselines, yielding
the best KL divergence, and hence, solution quality. Mean-
while, both baselines show qualitatively similar convergence
behavior and solution quality. Measured by the minimal KL di-
vergence across all epochs and compared to the minimal
KL divergence of the best baseline, the proposed approach
results in an improvement of

1− minproposed

minbest baseline
≈ 6.21%.

This performance gain is achieved without any adjustments of
the encoding of the generative model as a quantum circuit and
is achieved solely taking into account the actual application
during the compilation. Compared to the median/worst run of
the most-optimized baseline, the improvement is even greater
with 9.59%/32.54%. This performance improvement, even
over the most-optimized baseline, highlights the potential of
application-aware compilation.

For the application instance with 6 qubits executed on
the mock-up of the ibmq_nairobi device, the solution quality
is shown in Fig. 3b. Although the spread of the default
baseline is significantly larger than that of the most-optimized
one, its solution quality is comparable in the respective best
cases. Similarly to before, the proposed approach again re-
sults in the best solution quality with an improvement of
8.23%/13.30%/22.94% compared to the best/median/worst
run of the most-optimized baseline. The 8 qubit application
instance that is executed on the ibmq_montreal device has
led to qualitatively similar results, as shown in Fig. 3c.
Here, the proposed approach resulted in an improvement of
2.03%/16.45%/32.47% compared to the best/median/worst



0 25 50 75 100 125 150 175 200
Episodes

10 4

10 3

10 2

10 1

100

K
L 

D
iv

er
ge

nc
e

Qiskit Default Qiskit Most-optimized Proposed Approach

0 50 100 150
Epochs

0.3

0.4

0.6

K
L 

D
iv

er
ge

nc
e

(a) 4 qubits on ibmq_quito.

0 50 100 150 200
Epochs

0.1

0.2

0.3

0.4

0.5

K
L 

D
iv

er
ge

nc
e

(b) 6 qubits on ibmq_nairobi.

0 200 400
Epochs

0.1

0.2

K
L 

D
iv

er
ge

nc
e

(c) 8 qubits on ibmq_montreal.

Fig. 3: Results of the training process across three different circuit sizes. Lower values indicate a higher solution quality.

run of the most-optimized baseline. For the training itself, the
number of necessary epochs to reach convergence increases
with the application size due to the larger number of quantum
circuit parameters.

Although the evaluations indicate a general trend of improv-
ing solution quality with larger application instances, this is
mainly caused by the formulation of the underlying 2D dataset.
The percentage of tiles that are used to represent the X letter
(orange tiles in Fig. 2) decreases with the application size. For
the shown 4 qubit instance it is 8 out of 16 tiles, while for the
6 qubit instance it is significantly lower with 12 out of 36 tiles.
To show how this relation affects the KL divergence values,
consider the case where the randomly initialized circuits yield
the superposition—leading to an initial KL divergence value of
0.69 for the 4 qubit instance and 0.29 for the 6 qubit instance.
Therefore, the relative differences in solution quality yielded
by different compilation schemes for the same application
instance are more meaningful than the absolute values reached
across different application sizes.

Furthermore, it should be noted that the spread of both
baselines varies significantly between the application instances
considered and, respectively, used mock-ups of the actual
devices during noisy simulation. This is due to a combination
of reasons: the calibration data of the devices being considered
are rather different, the circuit width and depth are also
different, and, lastly, there is randomness in the classical
CMA-ES optimizer, too. Therefore, more studies are needed
to clearly determine the influence of each of these factors.

VI. DISCUSSION

Determining useful solutions for the application is a chal-
lenge in and of itself in the current NISQ era. Therefore, no
opportunity should be left unexplored to further increase the
solution quality and application-aware compilation could be a
further step towards meaningful use of quantum computing.

The proposed approach allows end users to further increase
the quality of their solution without adjusting how they derive
their quantum circuit. However, it comes with a large effort
in both setting up the proposed compilation scheme and

running it—while the latter can be significantly reduced when
executing on actual devices instead of using a noisy simulator.
Consequently, end users should determine whether this effort
outweighs the gains in solution quality.

This work constitutes a first step towards exploring the
direction of application-aware quantum compilation offering
many possible paths to further explore this idea, e.g., when
choosing between different quantum devices to run the con-
sidered application or even before selecting the most promising
algorithm and encoding the problem, respectively. Addition-
ally, the influence of other factors such as the underlying noisy
simulator or actual devices as well as the classical optimizers
and their influence should be further investigated to fully
explore the potential the proposed approach offers.

VII. CONCLUSION

Quantum circuit compilation greatly affects the quality of
the solution when using quantum computers to realize a con-
sidered application and often makes the difference between a
successful execution and obtaining completely random results.
Current state-of-the-art compilers offer a selectable optimiza-
tion level as a trade-off between the compilation time and
the quality of the compiled circuit—based on figures of merit
aiming at resembling how successful a compiled circuit can be
executed on a quantum computer and, by that, acting as a proxy
for the solution quality of the considered application. However,
they treat the to-be-compiled quantum circuit as a sequence
of instructions without considering the actual application it
realizes—wasting a yet untapped potential to increase the
solution quality. In this work, a different compilation approach
has been proposed that optimizes directly for the solution
quality itself instead for any proxy of it. To showcase the
effectiveness over the current compilation schemes, the experi-
mental evaluations for an industry-inspired quantum generative
model showed an increased solution quality for all evaluated
application instances compared to Qiskit’s most-optimized
compilation scheme. By this, this work presents a first step
towards application-aware compilation.



ACKNOWLEDGMENTS

This work received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
101001318), was part of the Munich Quantum Valley, which is
supported by the Bavarian state government with funds from
the Hightech Agenda Bayern Plus, and has been supported
by the BMWK on the basis of a decision by the German
Bundestag through project QuaST, as well as by the BMK,
BMDW, the State of Upper Austria in the frame of the
COMET program, and the QuantumReady project within
Quantum Austria (managed by the FFG). AL and CAR were
partly funded by the Bavarian State Ministry of Economic
Affairs in the project BenchQC under Grant DIK-0425/03.

REFERENCES

[1] A. Bayerstadler et al., “Industry quantum computing
applications,” EPJ Quantum Technology, 2021.

[2] N. Stamatopoulos et al., “Option pricing using quantum
computers,” Quantum, 2020.

[3] S. Harwood et al., “Formulating and Solving Routing
Problems on Quantum Computers,” IEEE Transactions
on Quantum Engineering, 2021.

[4] S. McArdle et al., “Quantum computational chemistry,”
Rev. Mod. Phys., 1 2020.

[5] N. Quetschlich, L. Burgholzer, and R. Wille, “Towards
an Automated Framework for Realizing Quantum Com-
puting Solutions,” in Int’l Symp. on Multi-Valued Logic,
2023.

[6] N. Quetschlich, M. Soeken, P. Murali, and R. Wille,
“Utilizing resource estimation for the development of
quantum computing applications,” 2024. arXiv: 2402.
12434.

[7] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Express-
ibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms,”
Advanced Quantum Technologies, 2019.

[8] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, “Expressive
power of parametrized quantum circuits,” Physical Re-
view Research, 2020.

[9] B. Villalonga et al., “Establishing the quantum
supremacy frontier with a 281 pflop/s simulation,”
Quantum Science and Technology, 2020.

[10] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT
Predictor: Automatic Device Selection with Device-
Specific Circuit Compilation for Quantum Computing,”
2023. arXiv: 2310.06889.

[11] A. Javadi-Abhari et al., “Quantum computing with
Qiskit,” 2024. arXiv: 2405.08810.

[12] B. Giles and P. Selinger, “Exact synthesis of multiqubit
Clifford+T circuits,” Physical Review A, 2013.

[13] M. Amy, D. Maslov, M. Mosca, and M. Roetteler,
“A meet-in-the-middle algorithm for fast synthesis of
depth-optimal quantum circuits,” IEEE Trans. on CAD
of Integrated Circuits and Systems, 2013.

[14] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary
quantum gate realizations for multiple-control Toffoli
gates,” in Int’l Symp. on Multi-Valued Logic, 2011.

[15] A. Zulehner and R. Wille, “One-pass design of re-
versible circuits: Combining embedding and synthesis
for reversible logic,” IEEE Trans. on CAD of Integrated
Circuits and Systems, 2018.

[16] P. Niemann, R. Wille, and R. Drechsler, “Advanced
exact synthesis of Clifford+T circuits,” Quantum Infor-
mation Processing, 2020.

[17] T. Peham et al., “Depth-optimal synthesis of Clifford
circuits with SAT solvers,” in Int’l Conf. on Quantum
Computing and Engineering, 2023. arXiv: 2305.01674.

[18] E. Younis and C. Iancu, “Quantum circuit optimiza-
tion and transpilation via parameterized circuit instan-
tiation,” in Int’l Conf. on Quantum Computing and
Engineering, 2022.

[19] W. Hattori and S. Yamashita, “Quantum circuit opti-
mization by changing the gate order for 2D nearest
neighbor architectures,” in Int’l Conf. of Reversible
Computation, 2018.

[20] G. Vidal and C. M. Dawson, “Universal quantum circuit
for two-qubit transformations with three controlled-
NOT gates,” Physical Review A, 2004.

[21] T. Itoko et al., “Quantum circuit compilers using gate
commutation rules,” in Asia and South Pacific Design
Automation Conf., 2019.

[22] D. Maslov, G. Dueck, D. Miller, and C. Negrevergne,
“Quantum circuit simplification and level compaction,”
IEEE Trans. on CAD of Integrated Circuits and Systems,
2008.

[23] S. Niu et al., “Powerful quantum circuit resizing with
resource efficient synthesis,” 2023. arXiv: 2311.13107.

[24] W.-H. Lin et al., “Scalable optimal layout synthesis
for NISQ quantum processors,” in Design Automation
Conf., 2023.

[25] A. Zulehner, A. Paler, and R. Wille, “An efficient
methodology for mapping quantum circuits to the IBM
QX architectures,” IEEE Trans. on CAD of Integrated
Circuits and Systems, 2019.

[26] A. Matsuo and S. Yamashita, “An efficient method for
quantum circuit placement problem on a 2-D grid,” in
Int’l Conf. of Reversible Computation, 2019.

[27] B. Tan and J. Cong, “Optimal qubit mapping with
simultaneous gate absorption,” in Int’l Conf. on CAD,
2021.

[28] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping
quantum circuits to IBM QX architectures using the
minimal number of SWAP and H operations,” in Design
Automation Conf., 2019.

[29] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping
problem for NISQ-era quantum devices,” in Int’l Conf.
on Architectural Support for Programming Languages
and Operating Systems, 2019.

https://arxiv.org/abs/2402.12434
https://arxiv.org/abs/2402.12434
https://arxiv.org/abs/2310.06889
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2305.01674
https://arxiv.org/abs/2311.13107


[30] T. Peham, L. Burgholzer, and R. Wille, “On Optimal
Subarchitectures for Quantum Circuit Mapping,” ACM
Transactions on Quantum Computing, 2023.

[31] S. Hillmich, A. Zulehner, and R. Wille, “Exploiting
Quantum Teleportation in Quantum Circuit Mapping,”
in Asia and South Pacific Design Automation Conf.,
2021.

[32] A. Zulehner and R. Wille, “Compiling SU(4) quantum
circuits to IBM QX architectures,” in Asia and South
Pacific Design Automation Conf., 2019.

[33] J. Liu et al., “Tackling the qubit mapping problem
with permutation-aware synthesis,” in Int’l Conf. on
Quantum Computing and Engineering, 2023.

[34] A. Cowtan et al., “On the Qubit Routing Problem,” in
Conf. on the Theory of Quantum Computation, Com-
munication and Cryptography (TQC), 2019.

[35] L. Schmid, S. Park, and R. Wille, “Hybrid Circuit Map-
ping: Leveraging the Full Spectrum of Computational
Capabilities of Neutral Atom Quantum Computers,” in
Design Automation Conf., 2024.

[36] R. Wille and L. Burgholzer, “MQT QMAP: Efficient
quantum circuit mapping,” in Int’l Symp. on Physical
Design, 2023.

[37] S. Sivarajah et al., “t|ket〉: A retargetable compiler
for NISQ devices,” Quantum Science and Technology,
2020.

[38] “Pennylane: Automatic differentiation of hybrid
quantum-classical computations,” 2018. arXiv:
1811.04968.

[39] E. Younis et al., “Berkeley Quantum Synthesis Toolkit
(BQSKit) v1,” https: / /www.osti .gov/biblio/1785933,
2021.

[40] R. Wille et al., “The MQT Handbook: A Summary of
Design Automation Tools and Software for Quantum
Computing,” in Int’l Conf. on Quantum Software, 2024.
arXiv: 2405.17543, A live version of this document is
available at https://mqt.readthedocs.io.

[41] J. Preskill, “Quantum Computing in the NISQ era and
beyond,” Quantum, 2018.

[42] S. Dangwal, G. S. Ravi, L. M. Seifert, and F. T. Chong,
“Clifford assisted optimal pass selection for quantum
transpilation,” 2023. arXiv: 2306.15020.

[43] M. Salm, J. Barzen, F. Leymann, and B. Weder, “Pri-
oritization of compiled quantum circuits for different
quantum computers,” in Int’l Conf. on Software Analy-
sis, Evolution and Reengineering (SANER), 2022.

[44] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum ap-
proximate optimization algorithm,” 2014. arXiv: 1411.
4028.

[45] R. Shaydulin and Y. Alexeev, “Evaluating quantum
approximate optimization algorithm: A case study,” in
Int’l Green and Sustainable Computing Conf. (IGSC),
2019.

[46] S. Ruder, “An overview of gradient descent optimiza-
tion algorithms,” 2017. arXiv: 1609.04747.

[47] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini,
“Parameterized quantum circuits as machine learning
models,” Quantum Science and Technology, 2019.

[48] S. Cheng, J. Chen, and L. Wang, “Information per-
spective to probabilistic modeling: Boltzmann machines
versus born machines,” Entropy, 2018.

[49] M. Benedetti et al., “A generative modeling approach
for benchmarking and training shallow quantum cir-
cuits,” npj Quantum Information, 2019.

[50] F. J. Kiwit et al., “Application-oriented benchmarking
of quantum generative learning using QUARK,” Int’l
Conf. on Quantum Computing and Engineering, 2023.

[51] F. J. Kiwit et al., “Benchmarking quantum generative
learning: A study on scalability and noise resilience
using QUARK,” 2024. arXiv: 2403.18662.

[52] N. Hansen, Y. Akimoto, and P. Baudis, “CMA-
ES/pycma on Github,” Zenodo, https://doi.org/10.5281/
zenodo.2559634, 2019.

https://arxiv.org/abs/1811.04968
https://www.osti.gov/biblio/1785933
https://arxiv.org/abs/2405.17543
https://mqt.readthedocs.io
https://arxiv.org/abs/2306.15020
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/2403.18662
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

	Introduction
	Background
	Quantum Circuit Compilation
	Related Work

	Motivation
	Proposed Approach
	Quantum Generative Modeling
	Application-Aware Figure of Merit
	Compilation Environment

	Obtained Results
	Discussion
	Conclusion

