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Abstract—Optimizing objective functions stands to benefit
significantly from leveraging quantum computers, promising
enhanced solution quality across various application domains in
the future. However, harnessing the potential of quantum solvers
necessitates formulating problems according to the Quadratic
Unconstrained Binary Optimization (QUBO) model, demanding
significant expertise in quantum computation and QUBO formu-
lations. This expertise barrier limits access to quantum solutions.

Fortunately, automating the conversion of conventional opti-
mization problems into QUBO formulations presents a solution
for promoting accessibility to quantum solvers. This article
addresses the unmet need for a comprehensive automatic frame-
work to assist users in utilizing quantum solvers for optimization
tasks while preserving interfaces that closely resemble conven-
tional optimization practices. The framework prompts users
to specify variables, optimization criteria, as well as validity
constraints and, afterwards, allows them to choose the desired
solver. Subsequently, it automatically transforms the problem
description into a format compatible with the chosen solver
and provides the resulting solution. Additionally, the framework
offers instruments for analyzing solution validity and quality.

Comparative analysis against existing libraries and tools in the
literature highlights the comprehensive nature of the proposed
framework. Two use cases (the knapsack problem and linear re-
gression) are considered to show the completeness and efficiency
of the framework in real-world applications.

Finally, the proposed framework represents a significant ad-
vancement towards automating quantum computing solutions
and widening access to quantum optimization for a broader range
of users.

The framework is publicly available on GitHub (https://github.
com/cda-tum/mqt-qao) as part of the Munich Quantum Toolkit
(MQT).

Index Terms—QUBO, Quantum Computing, Design Automa-
tion, Quantum Optimization, Quantum Annealer, Quantum Ap-
proximate Optimization Algorithm, Variational Quantum Eigen-
solver, Grover Adaptive Search

I. INTRODUCTION

Quantum computers have the potential to enhance the opti-
mization of objective functions in specific application domains
such as machine learning [1], [2], scheduling [3], and resource
allocation [4]. However, leveraging quantum solvers requires
writing the problem in a suitable format, demanding profi-
ciency in quantum computers and quantum-compliant problem
formulations. This challenges researchers or industries not
directly engaged in quantum computation, inhibiting the initial
exploration of quantum solutions for real-world use cases,

such as linear regression [1]. Automating the transformation
of problems into a quantum-compliant format offers a solution
to this obstacle.

This article proposes a framework to assist non-experts in
exploring the potential of quantum solvers for optimization
problems. It keeps the interfaces for the problem specifi-
cation as similar as possible to conventional optimization.
Users are prompted to declare variables and their operational
ranges, optimization criteria, as well as validity constraints,
and afterwards, allows them to choose the desired solver.
Subsequently, the tool automatically transforms the problem
description into a compatible format for the selected solver and
delivers the obtained solution. Moreover, it offers mechanisms
for evaluating solution validity and quality.

The framework’s characteristics are compared to those of
libraries and analogous tools already in the literature, distin-
guishing itself for its comprehensiveness. To this end, two
use cases (knapsack problems and linear regression models)
are considered to demonstrate the framework’s effectiveness
and flexibility in real-world application contexts. Notable
benefits are observed from the user’s perspective in both cases.
Consequently, this framework, which is publicly available on
GitHub (https://github.com/cda-tum/mqt-qao) as part of the
Munich Quantum Toolkit (MQT) [5], represents an important
step toward automating quantum computing solutions.

The rest of the article is organized as follows. Sec-
tion II briefly reviews quantum optimization, focusing on
quantum-compliant problem formulations, and discusses the
current workflow for solving an optimization problem with a
quantum solver. Based on that, Section III outlines the automa-
tion opportunities, which constitute the motivation behind the
framework, and a comparison with the state-of-the-art. The
actual implementation and its characteristics are described in
Section IV. The use cases are presented in Section V, evaluat-
ing the framework from a user perspective and discussing its
effectiveness and results. Finally, in Section VI, conclusions
are drawn, and future perspectives are illustrated.

II. SOLVING OPTIMIZATION PROBLEMS
WITH QUANTUM COMPUTERS

This section provides a comprehensive overview of quantum
optimization, focusing on solvers and the QUBO formulation,
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which is recognized as the best model for exploiting quantum
computing. Additionally, the key steps required for leverag-
ing quantum computers to solve optimization problems are
outlined. In particular, stages demanding quantum and QUBO
expertise are emphasized since the proposed framework aims
to automate these.

A. Overview
In order to exploit the quantum computing paradigm for

optimization problems, there are two possibilities: employ-
ing a Quantum Annealer (QA)—a special-purpose quan-
tum computer theorized in 1998 [6]–[10], using the natural
properties of a quantum system evolution for obtaining the
ground state—or executing algorithms entirely or partially
on a general-purpose quantum computer compliant with the
quantum circuit model [11].

In the second case, nowadays, the quantum computer is
usually exploited for accelerating specific tasks also involving
classical computers. The most popular approaches in this
context are:

• Quantum Approximate Optimization Algorithm (QAOA,
[12], [13]), which is a hybrid quantum-classical algorithm
that approximates the adiabatic evolution of a quantum
system encoding the optimization problem in the Hilbert
space;

• Variational Quantum Eigensolver (VQE, [14], [15]),
which is a hybrid quantum-classical algorithm for iden-
tifying the lower energy eigenstate of a given physical
system, allowing its applicability in a combinatorial op-
timization context;

• Grover Adaptive Search (GAS, [16]–[20]), a hybrid
quantum-classical algorithm, which implements a suc-
cessive approximation method for estimating the opti-
mal value. It executes the Grover Search algorithm for
sampling negative values of the problem cost function,
iteratively moving up the classically obtained sample until
the last negative value is found.

The formulation commonly employed for solving opti-
mization problems with quantum computers is the QUBO
model [21], [22]. The acronym stands for Quadratic Un-
constrained Binary Optimization, where quadratic indicates
the highest degree of the objective function, unconstrainted
means that the constraints cannot be considered convention-
ally, binary signifies that only unipolar binary variables can
be considered, and optimization emphasizes the purpose of
the model. The associated problem objective function can be
written as

f(b) = γ +
∑
i

αi · bi +
∑
i<j

βij · bibj , (1)

where bi ∈ [0, 1] is a binary variable, bibj is a coupler that
allows two variables to influence each other, αi is a weight
or bias associated with a single variable, βij is a strength that
controls the influence of variables i and j, and γ is an offset
that can be neglected during optimization. Usually, this model
is employed considering the minimization as the optimization
direction.

This formulation can consider a constraint through the ag-
gregation method. In particular, a quadratic penalty function
g(x)—assuming value 0 for configurations satisfying the con-
straints and a positive amount otherwise—is included in the
objective function, as shown by

minimize y = f(b) + λg(b) , (2)

where λ is a positive penalty weight assigned to the constraint
quadratic function g(b).

Note that the QUBO formulation is also compatible with
some classical solvers like Simulated Annealing (SA [23]).
This algorithm is commonly employed for the initial vali-
dation of a QUBO formulation and as an alternative when
the problem size exceeds the capabilities of current Noisy
Intermediate-Scale Quantum (NISQ) devices and simulators
since it can handle thousands of binary variables on classical
machines.

Remembering these concepts, the rest of the section covers
the steps required for solving an optimization problem with
quantum computers.
B. Problem Specification

The first step for leveraging the optimization procedure is
the declaration of the problem specifications, which consist
of the degrees of freedom (i.e., the variables), the criteria
for optimization (described as objective functions), and any
requirements (also called constraints) that a valid solution
must meet. The problem variables can be binary (unipolar
or bipolar), discrete (specifying the valid values), and contin-
uous (defining the operative range). Meanwhile, the objective
function is a parametric description of a figure of merit whose
optimal value could be its minimum or maximum, requiring
the specification of the optimization direction. In the case
of a problem composed of more than one expression to
optimize (multi-objective optimization), a criterion is essential
to establish the relative importance of each contribution in
relation to the others.

These operations do not depend on the problem and the
solver, thus maintaining consistency whether moving from
classical to quantum optimization context. In the following,
two examples, considered representative case studies through-
out the remainder of this article, are introduced to illustrate
this. The former is characterized by inequality constraints to
handle, while the latter involves real variables. Together, they
provide a wide overview of possible real-case scenarios.
Example 1. The knapsack problem is a practical challenge
where the objective is to determine the optimal subset S
from a collection of Nobj objects to put into a bag. Each
object is characterized by its weight warri and preference
score parri . The optimal subset maximizes the total score, i.e.,
the sum of the scores of the taken object

∑
obji∈S parri , and

ensures that the total weight
∑

obji∈S warri does not exceed
the maximum Wmax.
The problem variables represent the objects themselves, and
the optimization goal is to maximize the total score. Addition-
ally, a valid solution must adhere to the constraint that the
total weight does not exceed Wmax.



Example 2. Linear regression seeks to determine the straight
line that best fits a given dataset by minimizing the Euclidean
error function:

E(w) = ∥Xw + Y ∥ = wTXTXTXw − 2wTXTY + Y TY ,

where X ∈ RN×(d+1) is the augmented regression data
matrix, N the number of data points in the training set, d
the number of features, Y ∈ RN is the regression label of the
training data, w ∈ Rd+1 the regression weights and E(w) the
Euclidian error function.
The problem variables are the regression weights w ∈ Rd+1,
and the optimization objective is to minimize the Euclidean
error function. This problem is unconstrained.

C. Solver Selection
After the problem specification stage, the solving approach

has to be chosen among QA, QAOA, VQE, and GAS.
Subsequently, accurate consideration must be given to select-
ing appropriate settings for the chosen solver. For instance,
choosing an appropriate annealing time for the problem of
interest is crucial when QA is selected.

D. Encoding the Problem
After the solver selection, the problem must be written in a

compliant format. As previously discussed, all the mentioned
approaches support the QUBO formulation, which involves
exclusively binary variables. Therefore, continuous and dis-
crete variables must be expressed as a weighted set of binary
ones through proper encoding mechanisms. Additionally, it
requires including the constraints in the objective function
through weighted penalties for allowing their evaluation during
the optimization procedure, as explained in Section II-A.

Moreover, the quantum solver can only handle the min-
imization problem, requiring a sign change in the case of
problems with a maximization objective, and solve second-
order polynomials, necessitating a polynomial reduction step.

In the case of multi-objective optimization, the aggregation
approach can be employed by combining objective functions
into a higher scalar one, expressing a preference criterion.

Again, these steps are illustrated by considering the two
running examples.
Example 1. When formulating a knapsack problem in QUBO
form, assigning a binary variable to each object is necessary.
This step is straightforward in this case, as the problem
naturally lends itself to a binary representation of variables.
Additionally, optimization involves expressing the objective as
a unified cost function, incorporating constraints as penalty
functions. Translating inequality constraints into penalty func-
tions requires considerable expertise in QUBO formulation,
especially due to the need for auxiliary variables.

Example 2. The initial step for writing a linear regression
problem into a QUBO form involves encoding the variables
into a binary format. This process requires a suitable encod-
ing mechanism since the original variables are real-valued.
Subsequently, the expression must be redefined as a function
of these binary variables.

E. Solving the Problem
The resulting formulation is then submitted to the chosen

solver with a proper parameters configuration. Due to their
stochastic nature, these solvers are usually run multiple times,
and the best-obtained result is considered.

Access to real quantum devices is enabled through cloud
services using a dedicated account. Alternatively, QAOA,
VQE, and GAS can also be executed on classical simulators,
such as those referenced in [24]–[29].

F. Solution Analysis
Finally, the obtained solution must be decoded, the original

problem variables recovered, and its quality evaluated. This
process consists of evaluating the initial cost functions with
the found configuration and verifying the satisfaction of con-
straints.

III. TOWARDS AN AUTOMATIC FRAMEWORK FOR
SOLVING OPTIMIZATION PROBLEMS

This section presents the unmet needs that the pro-
posed framework seeks to address, discusses the idea be-
hind it, and offers a high-level description of its struc-
ture. Additionally, it compares the framework with existing
state-of-the-art libraries and tools.

A. Motivations
All the steps reviewed above demand significant expertise in

QUBO formulation and quantum solvers, which is uncommon
among conventional optimization users. This expertise gap
limits accessibility to the potential quantum computational
advantage. Moreover, some tasks, such as variable encod-
ing, solution decoding, as well as function rewriting can be
cumbersome, and manual execution may introduce errors.
Managing penalty functions is also critical, especially for
translating constraints, which is not always effortless, espe-
cially when auxiliary variables are needed, e.g., for inequality
constraints. Furthermore, determining an appropriate penalty
weight is crucial for obtaining good results. A too-low value
may not adequately penalize invalid solutions, while a too-
high value may flatten the optimization function, complicating
effective solution space exploration. Lastly, the configuration
and the execution of solvers might not be intuitive for non-
experts in quantum computing. For all these reasons, these
steps can greatly benefit from automation for both preventing
errors arising from the manual translation of the optimiza-
tion problem into a solver-compatible format and improving
accessibility to quantum solvers for a wider range of users.

B. General Idea

This work aims to offer a versatile and user-friendly frame-
work for assisting non-experts in quantum solvers exploitation
for real-world problems, keeping the user in the conventional
optimization domain by requiring as input the problem de-
scription in its simplest and most intuitive formulation. In
particular, the user interface and the required inputs are anal-
ogous to one of Gurobi [30], a well-consolidated optimization
package for conventional solvers.
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Fig. 1: Quantum Optimization Flow.

The proposed framework aims to assist non-experts in ex-
ploring the potential of the quantum solver in the same fashion
as classical alternatives. It enables the automated translation of
a problem from a classical description to a format compatible
with the chosen quantum solver. Moreover, it allows and aids
in decoding and evaluating the obtained solution.

Figure 1 summarizes the corresponding steps to be done
by the user and those that are automatically covered by the
proposed framework. More precisely:

1) The user must provide the problem specification, con-
sisting of variables declaration, which can be binary
(unipolar or bipolar), discrete (specifying the valid
values), and continuous (defining the operative range
and the wanted precision), objective functions assertion,
specifying the importance weight, if a multi-objective
optimization occurs, as well as constraints definition,
belonging to equality, inequality, and boolean categories.

2) Then, the user has to select a solver among the supported
ones, i.e., QA, QAOA, VQE, GAS, or SA;

3) Based on that, the framework automatically translates
the description into a solver-compatible format and an-
alyzes the obtained solution by executing the following
steps.

a) Variables encoding, which consists of describing
the multilevel variables as a set of binary ones with
one of the techniques described in Section IV-A.

b) Composing the cost function involving only binary
variables, as Section IV-B describes.

c) Writing the constraints as penalty functions, and
estimating a proper penalty weight λ, as described
in Sections IV-C and IV-D, respectively.

d) Solving the problem with the chosen optimizer, as
described in Section IV-E.

e) Solution analysis, checking the constraint satisfac-
tion, and eventually updating the penalty weight
λ for obtaining valid outcomes, as described in
Sections IV-F and IV-G.

C. Related Works

In recent years, supporting and automating the procedure for
describing optimization problems in a quantum-compliant for-
mat for quantum solver exploitation has become a focus. Sev-
eral libraries and some tools have emerged to aid the QUBO
formulation process. The main libraries include pyqubo [31],
[48], qubovert [32], dimod [33], Qiskit-optimization [34], Fixs-
tarts Amplify [35] and openQAOA Entropica [36], while two
frameworks, AutoQUBO [37], [49], [50] and QUBO.jl [42],
have been proposed in the last two years to meet users’
requests for a tool that automates the entire procedure. Table I
provides a comprehensive overview of all these tools together
with a comparison of the features of the framework proposed
in this work aims to provide.

More precisely, the table shows that while libraries signif-
icantly simplify complex steps in their respective procedures,
their main limitation lies in the lack of support for the
automatic execution of these steps, restricting their usability
to users with at least a minimum level of expertise in the
field. Moreover, each library alone does not cover all essential
steps completely. On the other hand, the main limitation
of AutoQUBO is its lack of support for managing non-
binary variables and writing constraints as penalty functions.
Furthermore, it is principally designed for Digital Annealer
(DA) [51]—the quantum-inspired Fujitsu solver—, the SA and
the QA, with no support for execution on quantum-circuit-
model-based solvers. Finally, QUBO.jl [42] requires as input
a JuMP problem (expressed in the Julia language instead of
Python, which is the main language for quantum frameworks)
and stands out as the first tool supporting the encoding of
floating variables. However, it is incomplete concerning the
penalties weight assignment.

As can be seen, all existing libraries and frameworks still
heavily rely on the end user and do not fully harness the
potential for automation. In contrast, to the best of our knowl-
edge, the framework proposed in this work stands out as the
first to guarantee complete coverage of the most crucial steps
of quantum optimization. Moreover, it supports all methods
available in the literature for each step, allowing the selection
of the most suitable approach for a specific application.



TABLE I: Comparing the support provided by of proposed framework and existing libraries and framework in each step of
quantum optimization.
✓ indicates that the corresponding action is performed automatically.
✓ signifies that a proper function is available for implementing the step.
✗ indicates that the method is not fully supported.
+ denotes that logarithmic encoding is also compatible with bases different from two.
∗ signifies that the encoding techniques can be exploited only for constraints translation.
† indicates that the polynomial reduction is implemented by exploiting the corresponding qubovert function.

Supports for each step
Existing Libraries Existing Frameworks Proposed

pyqubo [31] qubovert [32] dimod [33] Qiskit [34] fixstars [35] openQAOA [36] AutoQUBO [37] QUBO.jl [38] Framework

Floating Encoding ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Integer Encoding

Logarithmic [39] ✓ ✓ ✓ ✓ ✓∗ ✗ ✗ ✓ ✓+

Unitary [39] ✓ ✓ ✗ ✗ ✓∗ ✗ ✗ ✓ ✓

Dictionary [39] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Domain-Wall [40] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Bounded-Coeff [41] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Arithmetic [42] ✗ ✗ ✗ ✗ ✓∗ ✗ ✗ ✓ ✓

Penalty Functions
Equality [22] [21] ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Inequality [22] ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Boolean [22] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

Penalty Weight

UB positive [43] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

MQC [43] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

VLM [44] ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

MOMC [43] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

MOC [43] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

UB Naive [45], [46] ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓

UB posiform [45], [46] ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Polynomial Reduction ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓†

Solvers

Dwave QA ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓

QAOA ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

VQE ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

GAS ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

SA ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Solution Decoding ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Check Constraints ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓

Penalty Update
Sequential [47] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Scaled [47] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Binary search [47] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

IV. IMPLEMENTATION OF THE PROPOSED FRAMEWORK

This section details the implementation of the proposed
framework, designed to automate the optimization of any poly-
nomial cost functions exploiting quantum solvers. Figure 2
shows the workflow considered. The example introduced in
the following is examined to adequately describe the steps re-
quired for transitioning a generic cost function into a quantum-
solver-compliant format.

Example 3. Let us consider the cost function a+bc+c2, where
a is a unipolar binary variable, b is a discrete variable taking
values in the set [−1, 1, 3], and c is a continuous variable in
the range [−2, 2]. The target is to determine the configuration
of variables that minimizes the cost function while satisfying
the constraint b+ c ≥ 2.

This abstract example has been chosen because its simplic-
ity enables us to effectively showcase various aspects of the

framework. Using this example, the following describes how
the steps illustrated in Figure 2 are automatically conducted.

A. Variable Encoding
First, the variables must be converted into a binary for-

mat through proper encoding techniques, whose target is to
associate with each multilevel variable a set of binary ones
with appropriate weights and, eventually, offset. The employed
encoding technique depends on the type of variable declared
by the user. In particular, for unipolar binary variables, a
one-to-one association is established without the need for
weights or offsets; for bipolar binary variables, a one-to-one
association is considered with a weight of two and an offset
of minus one; for discrete variables, a dictionary encod-
ing [39] mechanism can be implemented by associating a
binary variable with each possible value, ensuring that only
one of them can be active in a valid solution; for continuous
variables, various encoding techniques, for a wanted preci-
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Fig. 2: Workflow of the proposed framework. The letters correspond to the subsections where each step is discussed.

sion, are supported such as dictionary encoding [39] (as in
the discrete case exploiting operative range discretization),
logarithmic encoding [39], unitary encoding [39], arithmetic
progression encoding [42], domain-well encoding [40], and
bounded coefficient encoding [41].

In the proposed framework, an effort was made to extend the
mentioned encoding techniques, initially designed for integers,
to real numbers, even managing an asymmetric operational
range. Moreover, the framework allows the declaration of
multidimensional arrays of variables. This feature enables a
more concise definition of objective functions, allowing the
direct expression of matrix-based formulations.

Example 3. The presented variables can be encoded in the
following way:

• a → b0;
• b → −1b1 + 1b2 + 3b3, imposing b1 + b2 + b3 = 1;
• c →:

– dictionary considering a precision of 0.5: −2b4 −
1.5b5−1b6−0.5b7+0b8+0.5b9+1b10+1.5b11+2b12,
imposing b4+b5+b6+b7+b8+b9+b10+b11+b12 = 1;

– logarithmic considering a precision of 0.25 and the
base 2: 0.25b4 + 0.5b5 + 1b6 + 2b7 + 0.25b8 − 2;

– unitary considering a precision of 0.5: 0.5b4 +
0.5b5 + 0.5b6 + 0.5b7 + 0.5b8 + 0.5b9 + 0.5b10 +
0.5b11 − 2;

– arithmetic progression considering a precision of
0.2: 0.2b4 + 0.4b5 + 0.6b6 + 0.8b7 + 1b8 + 1b9 − 2;

– domain-well considering a precision of 0.5: 0.5b4 +
1b5+1.5b6+2b7+2.5b8+2b9−2 imposing bi ≥ bi−1;

– bounded coefficient considering a precision of 0.5,
with bound 1: 0.5b4 + 1b5 + 1b6 + 1b7 − 2.

B. Cost Function Composition
Afterwards, the declared objective functions have to be com-

bined, considering the aggregation weight, the optimization
sense (adjusting the sign for maximization contributions), and
replacing the original variables with the binary ones, as in the
following:

(min, f(x), δ), (max, g(y), η) → q(b) = δf(b)−ηg(b) , (3)
where x and y are the variables declared by the user, b the
array of binary variables for the encoding, min and max
indicate minimization and maximization, respectively, δ and η
are the user preference weights. The result is a cost function
considering all the optimization figures of merit involving
exclusively binary variables.
Example 3. Considering the logarithmic encoding mechanism
with a precision of 0.25 and the base 2 for variable c, the
declared objective function a+ bc+ c2 becomes:

a+ bc+ c2 → (b0) + (−1b1 + 1b2 + 3b3)(0.25b4+

+ 0.5b5 + 1b6 + 2b7 + 0.25b8 − 2) + (0.25b4 + 0.5b5+

+ 1b6 + 2b7 + 0.25b8 − 2)2

Finally, the expression is expanded.

C. Writing Constraints as Penalty Functions
Subsequently, the problem constraints are transformed into

appropriate penalty functions within the framework. This step
consists of identifying the type of constraint, replacing the
original variable with binary counterparts in the constraint
expression, and composing the proper penalty function as-
sociated with the constraint, eventually inserting auxiliary
variables.

The framework can handle equality constraints [22], in-
equality constraints (greater than, greater equal, less than, and



less equal)—expressed as equality constraints with the intro-
duction of auxiliary variables [22], whose necessary precision
can be defined by the user or inferred by the expression—,
and boolean constraints (not, and, or, xor). These constraint
categories aim to ensure comprehensive coverage of prevalent
situations encountered in real-world scenarios.

Example 3. The first constraint to evaluate in the proposed
example is one deriving from the encoding of variable b, i.e.,
b1 + b2 + b3 = 1. Therefore, the proper penalty function
expressing this constraint is g(b) = (b1+b2+b3−1)2. In this
case, the constraint is already written with the final problem
binary variables, not requiring the substitution step.
The expression can be expanded as:

g(b) = −b1 − b2 − b3 + 2b1b2 + 2b1b3 + 2b2b3 + 1 ,

remembering that bi = b2i . It is possible to notice, that,
as desired, g(x) is null only when exactly one among the
variables is set to one and assumes a positive value otherwise.
The second constraint is imposed by the user and requires
that b + c ≥ 2. First of all, this has to be written as
an equality constraint through the introduction of a real
auxiliary variable aux, which should have the operative
range [−(max(b + c) − 2), 0], i.e., [−3, 0]. In this way, the
constraint becomes b+ c+ aux = 2, which can be written
as k(b, c) = (b+ c+ aux−2)2. It is possible to notice that,
choosing proper values of the auxiliary variable, all the b, c
configurations satisfying the constraint are not penalized (e.g.,
for b = 3, c = 1, the penalty function is null for aux = −2).
Then, the variables are replaced in the function with their
binary encoding (logarithm is considered for the auxiliary
variable) as follows:

k(b) = (0.25 a0 + 0.5 a1 + 1 a2 + 1.25 a3 − 1b1 + 1b2+

3b3 + 0.25b4 + 0.5b5 + 1b6 + 2b7 + 0.25b8 − 2− 3)2 .

Finally, the expression is expanded.

D. Penalty Weight Estimation

Determining the penalty weight, denoted as λ, is critical
for effectively penalizing non-valid solutions while integrating
penalty functions with the objective function. In particular, it
is necessary to select a λ satisfying the following relation:

f(x∗) < f(x)+λg(x) ∀x ∈ S → λ > max
x∈S

(
f(x∗)− f(x)

g(x)

)
where f(x) is the cost function to optimize, f(x∗) is the
cost function value for the optimal solution x∗, g(x) is the
penalty function and S is the space of infeasible solutions.
Accordingly, its evaluation would require knowing the range
of values that cost and penalty functions assume (functions
bounds). Therefore, limited complexity methods for estimating
a λ satisfying the relation, i.e., ensuring the correct penaliza-
tion of unfeasible solutions without compromising the quality
of the solution space exploration. The state-of-the-art suggests
taking λ equal to a certain percentage of the objective function
range, i.e., about 75%-150% [21].

The framework supports the following methods of literature:

• Upper bound of objective functions involving only pos-
itive coefficients (UB positive, [43]), which is valid
for QUBO problems with all positive coefficients and
estimates the objective function upper bound by summing
all the QUBO coefficients.

• Maximum QUBO coefficient (MQC), which is originally
thought for travelling salesman problem and chooses as
λ the QUBO coefficient presenting the highest value.

• Verma and Lewis (VLM, [44]), which estimates the
amount of gain/loss that an objective function can achieve
by flipping a single variable. λ is its maximum value.

• Maximum change in Objective function divided by Mini-
mum Constraint function of infeasible solutions (MOMC,
[43]), which is a modified version of VLM, dividing its
λ, by the minimum variation in the constraint function.

• Maximum value derived from dividing each change in
Objective function with the corresponding change in
Constraint function (MOC, [43]), which is derived from
VLM, dividing each change in the objective function by
the corresponding change in the constraint function and
choosing the maximum ratio.

• Upper bound Naive (UB Naive, [45], [46]), which
estimates the cost function upper bound as the sum of
all positive QUBO coefficients and the lower bound as
the sum of negatives. The λ is the difference between
the upper and lower bound.

• Upper Bound posiform (UB posiform, [45], [46]), which
computes upper and lower bounds by exploiting the
concept of posiform and negaform.

It is possible to notice that MOMC and MOC are unique
policies considering not only the objective functions but also
the penalties to apply.

In the proposed framework, the values found with the
presented method are multiplied by an amount, close to one,
which can be chosen by the user, which is different for hard
and weak constraints. This provides an additional degree of
freedom for the user to adapt the approaches to their needs.
Alternatively, the λ’s values can be set manually, although is
not recommended.

Example 3. For the considered example, the values found for
λ are as follows:

• UB positive: Not applicable;
• MQC: λ = 6 + 4 = 10, where 6 is the maximum

coefficient and 4 the function offset, for both constraints;
• VLM: λ = 12, for both constraints;
• MOMC: λ0 = 6.19 and λ1 = 12, for the inequality and

equality constraints, respectively;
• MOC: λ0 = 1 and λ1 = 6, for the inequality and equality

constraints, respectively;
• UB Naive: λ = 52.25, for both constraints
• UB posiform: λ = 31.625, for both constraints.



E. Solving the Problem

Next, the problem is optimized by exploiting the selected
solver. However, a preliminary step involves reducing poly-
nomials to second order before proceeding. In our frame-
work, this task is currently performed by functions within
the qubovert library. This choice was made for simplicity, as
the method for this reduction is essentially standard, with few
degrees of freedom and possible optimizations with respect to
the other steps of the tool, and was already well-implemented
in the library. Unfortunately, polynomial reduction is expensive
from the problem complexity point of view, as it involves
adding auxiliary binary variables to represent polynomials
with degrees higher than two.

The framework offers a common interface for all supported
solvers, with solutions provided in the same format, as
discussed in the next section. However, setting optimizer
parameters differs between solvers, as they are specific to
each solver’s requirements.

F. Solution Analysis
The solvers provide in output a solution object comprising:
• the list of obtained solutions in binary variables;
• the list of obtained solutions in the originally declared

variables through a proper decoding mechanism;
• list of energies found;
• the best solution in binary and originally declared vari-

ables, i.e., ones corresponding to the lowest energy;
• the best energy value.

Moreover, the framework provides a set of methods for
analyzing the obtained results:

• Methods for checking constraint satisfaction of the best
solution or all the obtained solutions, eventually consid-
ering weak constraints if a flag is set.

• Method for evaluating the value obtained with the best
solution for each objective function declared (particularly
useful in case of multi-objective optimization).

• Method for showing the cumulative distribution of the
obtained results. To understand the meaning of this, one
rule has to be considered: the probability of obtaining
the optimal value (or a value close to it) with a solver
is higher when its corresponding cumulative distribution
is more concentrated on the left of the plot, where the
lowest values are located.

• Method for evaluating the rate of valid solutions found.
• Method for evaluating the prange, which is the probability

of obtaining a final energy lower than a certain value
(val ref) and can be computed as follows:

prange ≜
nin range

ntot
100 , (4)

where nin range is the number of times in which the solver
achieved final energy lower than val ref, and ntot is the
number of runs.

• Method for computing the Time-To-Solution (TTS), if the
proper flag for saving the solver execution time was set.
It is a figure of merit commonly employed for comparing

quantum and quantum-inspired approaches with classical
solutions [52]–[56]. It is defined as the time required to
find a target solution, which is the optimal one or a sub-
optimal with final energy lower than a certain value with
a percentage of confidence pconf and can be computed as:

TTS = tf
log (1− pconf)

log (1− prange(tf ))
, (5)

where tf is the algorithm execution time, prange(tf ) is the
probability of finding energy lower than a certain value,
executing the algorithm for a time tf .

• Method for saving all the information related to the
solution in a JavaScript Object Notation (JSON) file,
allowing the post-processing or the exploitation of the
solution at a later time.

Example 3. In this case, the expected optimal solution in
binary variables is:

{b0 : 0, b4 : 1, b1 : 0, b5 : 0, b6 : 1, b7 : 1, b8 : 0, b2 : 0,

b3 : 0, a0 : 0, a1 : 0, a2 : 0, a3 : 0, a4 : 0.0}

while written with the original variables is

{a : 0.0, b : 3.0, c : −1.0}

The best energy is equal to −2.0.
It is possible to notice that the solution satisfies both con-
straints:

b1 + b2 + b4 == 1 → 1 = 1 ,

and

b+ c ≥ 2 → 2.0 ≥ 2.0 .

G. Penalty Weight Update
Finally, the framework provides further instruments, i.e.,

the possibility of automatically performing the constraints
satisfaction check on the best solution and, if the solution is not
valid, executing the algorithm again, adjusting the value of λ
until a valid solution is found or the maximum number of trials
t, selected by the user, is exceeded. This could be necessary,
even if the tool provides methods for λ estimation, since they
are not exact methods, and consequently, their effectiveness
could be problem-dependent, thus requiring adjustment.

The framework supports three methods, presented in [47],
for this purpose:

• sequential scaling (sequential), which multiplies the old
λ for a factor equal to 10, increasing it by one order of
magnitude;

• scaled-sequential scaling (scaled), which increases the λ
with the following equation:

λnew = round(λλ
1

t−1
max ) ,

whereλmax is the upper bound for the penalty weight;
• binary-search scaling (binary search), which increases the

λ with the following equation:

λnew = round(
√
λλmax) .



Example 3. Finally, the problem specification of the con-
sidered example can be provided to the framework with the
following code.
var = Variables()
a = var.add_binary_variable("a")
b = var.add_discrete_variable("b", [-1, 1, 3])
c = var.add_continuous_variable("c", -2, 2, 0.25)
obj_func = ObjectiveFunction()
obj_func.add_objective_function( a + b * c + c**2)
cst = Constraints()
cst.add_constraint("b + c >= 2", variable_precision=True)
prb = Problem()
prb.create_problem(var, cst, obj_func)

To solve it with, for example, the Dwave QA, it is sufficient to
write the command in the following. The framework automat-
ically performs problem translation and the solver execution,
providing the solution object previously described as output.
solution = Solver().solve_dwave_quantum_annealer(prb,token=

token)
V. USE CASES

This section summarizes the results obtained from the use
cases, evaluating the proposed framework from the user’s
perspective in terms of effectiveness and flexibility. To this
end, the case studies already covered above have been con-
sidered: the knapsack problem (chosen to showcase the han-
dling of inequality constraints) and a linear regression task
(highlighting the utilization of real variables). The problems
can be solved in both instances without requiring expertise in
quantum-compliant formulation and with minimal familiarity
with quantum solvers.

All details of these case studies, as well as an open-source
implementation of the proposed framework, are publicly avail-
able on GitHub (https://github.com/cda-tum/mqt-qao).
A. Knapsack

As previously mentioned, the knapsack problem [57] aims
to define for a set of Nobj objects, characterized by weights
warri and of preference scores parri , the best subset to put
into a bag, ensuring that the total weight does not exceed the
maximum Wmax. The problem is conventionally formulated by
associating a variable for each object (obji), assuming 1 if the
object is in the subset and 0 otherwise, and optimizing the
objective function

maximize f(obj) =
Nobj∑
i

parriobji = objT parr ,

subject to
Nobj∑
i

warriobji = objTwarr ≤ Wmax . (6)

Traditionally, writing the problem according to QUBO for-
malism usually requires following the methodology outlined in
[58], consisting of the steps reviewed in Section II. However,
leveraging the proposed framework substantially streamlines
the process. In fact, only the following code is required to
provide the problem specification:
var = Variables()
obj = vars.add_binary_variables_array("obj", [N_obj])
obj_func = ObjectiveFunction()
obj_func.add_objective_function( np.dot(np.transpose(obj),

p_arr), minimization=False)
cst = Constraints()
cst.add_constraint(str(np.dot(np.transpose(obj), w_arr)) +

" <= " + format(W_max))
prb = Problem()
prb.create_problem(var, cst, obj_func)

Afterwards, the problem can be solved with the QAOA
optimizer (as one possible representative solver) by simply
executing the following command:
solution = Solver().solve_qaoa_qubo(prb)

For providing examples of the results analysis that can be
conducted with the framework, Figures 3a and 3b were gener-
ated by considering the f3 l-d kp 4 20 knapsack problem of
the 0/1 set, which comprises the weights and preference scores
for different sets of objects. In particular, Figure 3a shows the
cumulative distribution derived from executing each supported
solver one hundred times on the problem, while Figure 3b
illustrates the rate of valid solutions, i.e., those satisfying the
constraint, and the prange values computed by the framework
using Equation 4, with a reference value of -30, proximate to
the expected optimal value of -35.
B. Linear Regression

Linear regression [1] is a statistical technique for modeling
the relation between variables and others exploitable in a
wide range of applications, including machine learning. As
discussed above, it consists of identifying the straight line that
best fits some available data. The model to optimize can be
expressed as

minimize E(w) = ∥Xw + Y ∥ ,
where X ∈ RN×(d+1) is the augmented regression data
matrix, N the number of data points in the training set, d
the number of features, Y ∈ RN is the regression label of
the training data, w ∈ Rd+1 the regression weights and E(w)
the Euclidian error function. This can be rewritten in a linear
form as

minimize E(w) = wTXTXTXw − 2wTXTY + Y TY ,

allowing the exploitation of the framework for describing
the problem—establishing the operative range (minv, maxv,
precision) of the regression weights—in a practical way, as
shown in the following, instead of applying the complex
procedure presented in [1], consisting of the steps discussed
in Section II.

More precisely, the problem specification can be provided
to the framework with the following instructions:
var = Variables()
w = var.add_continuous_variables_array("w", [d + 1], minv,

maxv, precision)
obj_func = ObjectiveFunction()
obj_func.add_objective_function(np.dot(np.dot(np.dot(np.

transpose(w), np.transpose(X_training)), X_training), w
) - 2 * np.dot(np.dot(np.transpose(w), np.transpose(
X_training)), Y_training)+ np.dot(np.transpose(
Y_training), Y_training),)

cst = Constraints()
prb = Problem()
prb.create_problem(var, cst, obj_func)

Afterwards, the VQE optimizer (as one possible representative
solver) can solve it by launching the following command:
solution = Solver().solve_vqe_qubo(prb)

For showing the framework tools for results analysis, Figure
3c shows the cumulative distribution obtained by executing
one hundred times each supported solver considering two
features of the Iris dataset and w range [−0.25, 0.25] with
precision 0.25.

https://github.com/cda-tum/mqt-qao
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
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Fig. 3: Analysis of the results obtained by solving with each supported optimizer the use case problems.

C. Discussion
The two real-world use cases discussed demonstrate the

framework’s comprehensiveness, adeptly managing constraints
and real variables. Observing the code implementations, it
becomes evident that the user interface is intuitive and closely
resembles conventional optimization packages, enabling users
to express their problems in a familiar and conventional way
based on variables, constraints, etc. A single black box func-
tion completely hides the complexities of translating problems
into QUBO formalism and harnessing quantum solvers from
non-expert users. This function produces a solution object
common to all solvers as output.

For users possessing a certain level of expertise, the
framework offers the flexibility to manually specify various
aspects, such as the encoding method or the mechanism
for λ estimation, as well as the solver parameters, rather
than relying on default settings. Furthermore, as shown in
Figure 3, the framework provides valuable tools for analyzing
the obtained solution and facilitating comparisons between
different solvers.

VI. CONCLUSIONS
This work introduced a framework, publicly available on

GitHub (https://github.com/cda-tum/mqt-qao) as part of the
Munich Quantum Toolkit (MQT), designed to empower non-
experts in quantum computing and QUBO formulation to
explore the potential of quantum solutions for optimization
problems. To this end, we first reviewed the procedure required
for solving an optimization problem with a quantum solver.
Then, we demonstrated how the framework automates this
process, providing users with an interface as similar as possible
to one of the commonly used packages for conventional
optimization. This automation conceals the complexity of
formulating problems according to the QUBO formalism and
managing quantum solvers. The effectiveness and flexibility of
the framework have been shown in two different case studies:
the knapsack problem and linear regression modeling. In both
cases, it could be seen that, after the declaration of the problem
specifications, a solution can be obtained by executing a simple
black-box command.

Even though the considered use case has shown the potential
and the resulting benefit of the framework for the users,
opportunities for enhancement and expansion remain. First,
partial or total automation of quantum solver parameter adap-
tation tailored to specific problems could enhance efficiency.
Moreover, the framework can be exploited for performing
comparisons among quantum solvers and developing a pre-
diction mechanism to identify the most suitable solver for a
given problem, automating the solver selection. Finally, recog-
nizing that the main limitation of the tool is the requirement
of providing input cost functions in a polynomial form—
excluding non-linearities such as exponential or trigonometric
functions—a linearization step can be added, thus expanding
its application domain.

In conclusion, the proposed framework lays the foundation
for automating quantum computing solutions and broadening
access to quantum optimization for a wider range of users.
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[9] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, and
V. Smelyanskiy, “Quantum optimization of fully connected spin glasses,”
Physical Review X, vol. 5, no. 3, p. 031040, 2015. https://doi.org/10.
1103/PhysRevX.5.031040.

[10] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dick-
son, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al., “Quantum
annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–
198, 2011. https://doi.org/10.1038/nature10012.

[11] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge ; New York: Cambridge University Press, 10th
anniversary ed ed., 2010.

[12] K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li, K. Pandya, and
A. Summer, “A review on quantum approximate optimization algorithm
and its variants,” arXiv preprint arXiv:2306.09198, 2023. https://doi.
org/10.48550/arXiv.2306.09198.

[13] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014. https:
//doi.org/10.48550/arXiv.1411.4028.

[14] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, et al., “The variational quantum
eigensolver: a review of methods and best practices,” Physics Reports,
vol. 986, pp. 1–128, 2022. https://doi.org/10.1016/j.physrep.2022.08.
003.

[15] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
no. 1, p. 4213, 2014. https://doi.org/10.1038/ncomms5213.

[16] D. Bulger, W. P. Baritompa, and G. R. Wood, “Implementing pure
adaptive search with grover’s quantum algorithm,” Journal of opti-
mization theory and applications, vol. 116, pp. 517–529, 2003. https:
//doi.org/10.1023/A:1023061218864.

[17] A. Gilliam, S. Woerner, and C. Gonciulea, “Grover adaptive search for
constrained polynomial binary optimization,” Quantum, vol. 5, p. 428,
2021. https://doi.org/10.22331/q-2021-04-08-428.

[18] Y. Sano, K. Mitarai, N. Yamamoto, and N. Ishikawa, “Accelerating
grover adaptive search: Qubit and gate count reduction strategies with
higher-order formulations,” arXiv preprint arXiv:2308.01572, 2023.
https://doi.org/10.48550/arXiv.2308.01572.

[19] Y. Sano, M. Norimoto, and N. Ishikawa, “Qubit reduction and quantum
speedup for wireless channel assignment problem,” IEEE Transactions
on Quantum Engineering, 2023. https://doi.org/10.1109/TQE.2023.
3293452.

[20] L. Giuffrida, D. Volpe, G. A. Cirillo, M. Zamboni, and G. Turvani,
“Engineering grover adaptive search: Exploring the degrees of freedom
for efficient qubo solving,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 12, no. 3, pp. 614–623, 2022. https:
//doi.org/10.1109/JETCAS.2022.3202566.

[21] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and
using qubo models,” arXiv preprint arXiv:1811.11538, 2018. https://doi.
org/10.48550/arXiv.1811.11538.

[22] E. Combarro, S. Gonzalez-Castillo, and A. Di Meglio, “A practical
guide to quantum machine learning and quantum optimization: Hands-
on approach to modern quantum algorithms,” 2023.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, May 1983.
https://doi.org/10.1126/science.220.4598.671.

[24] M. Fingerhuth, T. Babej, and P. Wittek, “Open source software in
quantum computing,” PloS one, vol. 13, no. 12, p. e0208561, 2018.
https://doi.org/10.1371/journal.pone.0208561.

[25] G. G. Guerreschi, J. Hogaboam, F. Baruffa, and N. P. Sawaya, “Intel
quantum simulator: A cloud-ready high-performance simulator of quan-
tum circuits,” Quantum Science and Technology, vol. 5, no. 3, p. 034007,
2020. https://doi.org/10.1088/2058-9565/ab8505.

[26] A. Zulehner and R. Wille, “Advanced simulation of quantum compu-
tations,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 5, pp. 848–859, 2018. https:
//doi.org/10.1109/TCAD.2018.2834427.

[27] S. Hillmich, I. L. Markov, and R. Wille, “Just like the real thing: Fast
weak simulation of quantum computation,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6, IEEE, 2020. https:
//doi.org/10.1109/DAC18072.2020.9218555.

[28] T. Vincent, L. J. O’Riordan, M. Andrenkov, J. Brown, N. Killoran, H. Qi,
and I. Dhand, “Jet: Fast quantum circuit simulations with parallel task-
based tensor-network contraction,” Quantum, vol. 6, p. 709, 2022. https:
//doi.org/10.22331/q-2022-05-09-709.

[29] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas,
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