
CERIAS Tech Report 2001-109
ViBE: A Video Indexing and Browsing Environment

 by J Chen, C Taskiran, A Albiol, E Delp, C Bouman
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

ViBE: A Video Indexing and Browsing Environment

Jau-Yuen Chen, Cüneyt Taşkıran, Alberto Albiol†,
Charles A. Bouman and Edward J. Delp

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285
{jauyuen,taskiran,bouman,ace}@ecn.purdue.edu

†Departamento de Comunicaciones
Universidad Politécnica de Valencia

Valencia, Spain
alalbiol@dcom.upv.es

ABSTRACT

In this paper, we describe a unique new paradigm for video database management known as ViBE (Video Indexing
and Browsing Environment). ViBE is a browseable/searchable paradigm for organizing video data containing a
large number of sequences. We describe how ViBE performs on a database of MPEG sequences.

Keywords: Video databases, face detection, browsing and indexing

1. INTRODUCTION

Applications for digital video are undergoing explosive growth. While these applications will generate and use vast
amounts of video data, the technologies for organizing and searching video data are in their infancy. To date,
most research in video content management has focused on specific video processing problems which are essential
components of any larger video database system. For example, temporal segmentation of video into shots,1–3 selection
of representative keyframes for shots,4,5 and design of shot similarity measures are problems which are relevant to
the design of video database systems. More recently, there have been efforts to extract high level properties of video
shots in an effort to better characterize and thereby manage the video. The motion trails features proposed in6 are
used to query video for specific object trajectories, whereas the motion features of7 are used to label each shot using
simple, but useful, categories. The objective of8 was to use features such as motion and shot length to infer high
level labels of the video sequence such as “comedy” and “action”.

In separate but related work, a number of techniques have been proposed for browsing or summarizing video
sequences. Shahraray and Gibbon exploited closed caption information to automatically generate pictorial transcripts
from news sequences.9 Yeung and Yeo10 clustered shots into scene transition graphs or video posters, and Rui, Huang
and Mehrotra11 merged shots into scenes to automatically create a table-of-contents. In each case, the objective of
this research is subtly different from a video database management, since the systems are designed to operate on
individual sequences rather than large databases of video.

Early approaches to video database, such as QBIC, have used what are essentially image database query techniques
to search the keyframes of video shots.12 Zhang et. al.13 proposed a video database system which used features
derived from color, and motion. While they mainly focused on search by example, they also proposed a basic browsing
capability based on a cluster-based hierarchy. Most recently, Rui, Huang and Mehrotra have proposed an approach
to video database which tightly integrates browsing and query methods into a single framework.14

In this paper, we present an integrated system for managing large databases of video which we call ViBE (video
indexing and browsing environment).15,16 The ViBE system introduces a variety of novel algorithms and techniques
for processing, representing, and managing video while keeping the user in the loop. Perhaps the most important
objective of this paper is to describe not only how these techniques function, but also how they integrate together
into a single system which can be scaled to large databases and extended to a wide variety of functionalities. Figure 1

Please address all correspondence relative to this manuscript to E. J. Delp.

Video
Sequences

Shot Boundary
Detection

Shot Tree
Representation

Pseudo-semantic
Labeling

User
Active

Browsing
Enviroment

Figure 1. The ViBE system

illustrates the four major components of ViBE: shot boundary detection, hierarchical shot representation, pseudo-
semantic shot labeling, and active browsing.

Shot boundary detection is the first step in processing the video data. Our shot boundary detection method
incorporates two major innovations: the extraction of a high dimensional compressed-domain feature vector which
we call the generalized trace (GT), and the use of a binary regression tree17 to estimate the conditional probability
of a shot boundary for each frame. The regression tree is essential because it automatically selects the relevant
information from the GT and generates probabilities which can be directly used for shot boundary detection.

In order to capture the salient aspects of complex shots, we introduce the idea of a shot tree. The shot tree is
a binary tree which contains a set of representative frames from the shot, with the keyframe being the root node
of the tree. The shot tree is formed by clustering the frames in a shot, hence it hierarchically organizes frames into
similar groups. The tree structure also allows important operations, such as similarity comparisons, to be obtained
efficiently using tree matching algorithms.

Ideally, one would like to query a video database using very high-level semantic descriptions. Unfortunately,
automatic labeling of such categories is currently impossible. In order to overcome this difficulty, we adopt the use of
pseudo-semantic classes which are broadly defined semantic categories to bridge the gap between low-level features
and semantic labels. In ViBE, pseudo-semantic labels are expressed as a vector with elements that take on values in
[0, 1] depending on the confidence of the label. The vector labels can then be incorporated into the search, browsing
and relevance feedback operation.

The active browsing environment provides a user interface that integrates together the results of shot boundary
detection, shot representation, and pseudo-semantic labeling. Our browsing environment is based on a similarity
pyramid data structure.18 The similarity pyramid uses a tree structure to organize the objects in the database for
efficient access. We utilize relevance feedback in the browsing environment, so that users can dynamically modify
the database’s organization to suit the desired task. We will demonstrate the performance of ViBE using a database
of MPEG sequences.

2. SHOT BOUNDARY DETECTION

A group of frames from a video sequence that have continuity in some sense is known as a shot. Often, a shot is
composed of frames which depict the same scene, signify a single camera operation, or contain a distinct event or
action. A scene is defined as a complete unit of narration which consists of a series of shots or a single shot that
takes place in a location and that deals with a single action.19 The first task in content-based video analysis is to
segment shots by detecting and classifying shot boundaries. Although shot boundaries can take a wide variety of
forms ranging from cuts to dissolves, fades, wipes, page turns, and special effects, in this paper we shall concentrate
on the detection of cuts which are abrupt changes of content from one frame to another.

2.1. Previous Work

A large number of techniques have been reported in the literature for temporal segmentation. To detect cuts, some
methods have used the difference of pixel values averaged over the entire frame as a similarity feature between
frames.20 Shahraray1 has proposed dividing a frame into blocks and finding the “best” matching blocks between
frames for comparison, similar to the block matching technique of MPEG. Yeo and Liu21 use the pixel differences of
the luminance component of DC frames in an MPEG sequence. The fact remains that the simple frame differencing
methods are susceptible to intensity differences caused by motion, illumination changes, and noise.

Other methods have been proposed to address the above problems based on the the use of color histograms of
the frames. One approach is to use a test statistic derived from the histograms to determine their similarity. Patel
and Sethi3 have experimented with various statistics and have found that the χ2 statistic gives the best performance.
They use the intensity histograms obtained for the entire frame. The histograms are found using DC coefficients of
MPEG video for only I frames. Tekalp and others22,23 use the sum of histogram differences for the Y , U , and V
components. Two-class clustering is then used to determine the cut locations.

Idris and Panchanathan24 use vector quantization to compress a video sequences using a codebook of size 256 and
64-dimensional vectors. The histogram of the labels obtained from the codebook for each frame is used as a frame
similarity measure and a χ2 statistic is used to detect cuts. Using the observation that during a shot transition the
locations of appearing edge pixels would be very different from old edge pixel locations, Zabih et. al.2 have proposed
a cut detection scheme based on edge detection. Shen et. al.25 have applied this technique to MPEG sequences
using multi-level Hausdorff distance histograms. Meng et. al.26 define various ratios of the number of macroblocks
to perform cut detection for P and B frames of a MPEG sequence.

2.2. The Generalized Trace

Most of the techniques in the literature detect shot boundaries by extracting some form of one-dimensional frame
similarity feature from the video data. Usually, this similarity feature is then thresholded using a fixed global
threshold. This approach has a number of problems. First, it is difficult to determine a single frame similarity
feature which can be used to accurately detect shot boundaries in a wide variety of situations. Second, there is no
single threshold value which is appropriate for all video sequences.

In ViBE, shot boundary detection is performed by first extracting a set of features from each DC frame. These
features are placed in a high dimensional feature vector that we call the generalized trace (GT).27 The GT is then
used in a binary regression tree to determine the probability that each frame is a shot boundary. These probabilities
can then be used to detect frames corresponding to shot boundaries. In this paper, we will describe the detection of
cut locations. However, we feel that the paradigm of the GT/regression tree can be extended for the detection and
classification of other types of shot boundaries.15

Our method has a number of advantages. First, the GT feature vector allows a multitude of very different features
to be collectively used to detect shot boundaries. This is important since different features may be useful in different
shot boundary scenerios. Second, since the regression tree generates probabilities, the detection can be made without
requiring the selection of arbitrary thresholds. Moreover, this method is also highly extensible. For example, if we
find new features that work well in detecting shot transitions, we can easily incorporate them.

Our method uses the “DC sequence” extracted from the compressed video sequence. The DC sequence is formed
from the DC coefficients of the DCT used in MPEG. While the DC coefficients are directly available for I frames,
they must be estimated for P and B frames. We have used the method described in28 for estimating these DC
coefficients.

The GT for frame i of the sequence is denoted by ~gi and its jth component by gi,j . For the experiments described
in this paper, the GT consists of the following features:

gi,1−3 - Histogram intersection29 of frames i and i− 1 for the Y , U , and V color components.

gi,4−6 - Standard deviation of the Y , U , and V color components for frame i.

gi,7 - Number of intracoded macroblocks in frame i.

gi,8 - Number of forward predicted macroblocks in frame i.

gi,9 - Number of backward predicted macroblocks in frame i.

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Y histogram intersection

frame number
100 200 300 400 500 600 700 800 900 1000 1100 1200

0

10

20

30

40

50

60

70
Y standard deviation

frame number
100 200 300 400 500 600 700 800 900 1000 1100 1200

0

10

20

30

40

50

60

70

80

90
number of intracoded MBs (B and P frames)

frame number

Y histogram intersection Y standard deviation number of intracoded macroblocks

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.2

0.4

0.6

0.8

1

tree classifier output

frame number
100 200 300 400 500 600 700 800 900 1000 1100 1200

0

0.2

0.4

0.6

0.8

1

cut groundtruth

frame number

Output of the regression tree Ground truth

Figure 2. Examples of features used in the GT, the ground truth for cut locations, and the output of the binary
regression tree.

gi,10−12 - Flags which identify the frame type {I, P , or B} for frame i.

Figure 2 illustrates how some of the components of the GT vary with frame number for a typical sequence. The
ground truth information indicates where actual cuts are located.

2.3. Binary Regression Tree

To detect whether a cut has occurred between frames i − 1 and i, we use the GT and a binary regression tree17 to
estimate the probability of a shot boundary. The binary regression tree provides a piecewise linear approximation to
the conditional mean, i.e.,

yi ≈ E[αi|~gi−w · · ·~gi · · ·~gi+w] (1)

where αi is the cut indicator function

αi =

{
1 if a cut occurs between frames i− 1 and i
0 if no cut occurs

and where yi is the output of the tree classifier for the ith frame and w controls the window size. The output yi can
be interpreted to be the probability of a cut occurring at frame i.17 It should be noted that in general the classifier
uses more than just ~gi to determine if a shot boundary has occurred. Our experiments have shown that the use of
~gi−1, ~gi and ~gi+1 (w = 1) provides a reasonable balance between complexity and performance.

Cuts are then detected by using the threshold yi > Thresh where we typically chose Thresh = 0.20. This
approach is more robust than thresholding the value of the features, as is used in many other shot boundary detection
techniques, because the classifier chooses the best features from the GT, and because the threshold is not dependent
on the specific video sequence. The detected cut locations are then post-processed to remove cuts that are too close
together. In the experiments described in Section 6.2, if two cuts are closer than ten frames, the cut with a smaller
yi is deleted.

The regression tree used in ViBE is a variation of the technique proposed in.30 The difference is that the training
and pruning step is used only once. The training process uses two sequences with known shot boundary locations, we
shall refer to these sequences as ground truth sequences. One of these sequences is used to build a large tree and the
other sequence is then used to prune the tree. The tree-based approach has a number of advantages when compared
to more traditional nonparametric methods such as nearest neighbor or kernel estimator approaches. The regression
tree has a simple form which can be compactly stored, and it efficiently classifies data. It also does automatic feature
selection and complexity reduction.30

(a) (b)

Figure 3. (a) Each shot is represented by a hierarchy of frames which are organized with agglomerative clustering;
(b) Shot dissimilarity is then determined by computing the distance between two trees.

3. SHOT REPRESENTATION

After the video sequence is segmented into shots, usually a frame is chosen to represent each shot. This is usually
known as a keyframe. The objective is to represent each shot with one or several frames that can provide a way to
manage the video content. The effectiveness of this approach will then depend on the algorithm used for the selection
of keyframes. An easy and straightforward approach is to select one keyframe per shot, usually the nth frame for
a fixed number n. To capture the concept of a shot with a great deal of motion, methods for sequentially selecting
multiple keyframes have also been proposed based on frame differencing.21,31 Other methods for selecting multiple
keyframes include the use of motion information,4 and clustering approaches.5,22

3.1. Shot Representation Using the Shot Tree

This section describes a novel way to represent a shot based on a tree structure, known as a shot tree, formed by
clustering the frames in a shot. The tree structure allows important operations, such as similarity comparisons, to be
obtained efficiently using tree matching algorithms. A typical shot tree is shown in Figure 3a. The frames in the shot
are organized by the tree in such a way that the root node is the most “representative” frame in the shot. As one
progresses down the tree, frames are organized into representative groups. For example, if one wants to categorize
the shot by one frame, the root node is used. If one wanted to categorize the shot by three frames, the first two levels
of the tree are used (Figure 3a). This tree representation is obtained through agglomerative clustering of the shot’s
frames. We use the color, texture and edge histograms proposed in18 as the feature vector for each frame in a shot,
and the L1 norm to measure feature distances. The depth of the tree will depend on the application. For browsing,
the root node can be used as a keyframe; for similarity measure and classification in the browsing environment, two
or three levels of the tree can be used.

Bottom-up (agglomerative) clustering algorithms work by first forming a complete matrix of the distances between
the frames and then using this matrix to sequentially group frames.32,33 Let ci be the set of all frames in cluster i,
and let ni be the number of frames in ci. The proximity matrix [dij] defines the pairwise distances between clusters
ci and cj . Let the shot contain frames fj , j = 1 · · ·N . Initially let ci = {fi}, i = 1 · · ·N , be the disjoint clusters each
of size ni = 1, i.e., one frame per cluster. The proximity matrix is set to the L1 distance between the frames fi and
fj . Each iteration of agglomerative clustering combines the two clusters, ci and cj , with the minimum distance. The
new cluster formed by joining ci and cj is denoted by ck, and the distance from ck to each of the remaining clusters
is updated.

The general algorithm for agglomerative clustering has the following form:

1. Ψ← {0, 1, · · · , N − 1}

2. For each (i, j) ∈ Ψ2 compute dij ← d(fi, fj)

3. For k = N to 2N − 2 {

(a) (i∗, j∗) = arg min
(i,j)∈Ψ2

dij

(b) Set ck ← ci∗ ∪ cj∗ and nk ← ni∗ + nj∗

(c) Ψ← {Ψ− {i∗} − {j∗}} ∪ {k}

(d) For each h ∈ Ψ− {k} compute dhk

}

The specific type of agglomerative clustering is defined by the choice of the distance function dhk in step 3.d.

Among agglomerative algorithms, the complete link algorithm has been used to organize keyframes,34 while the
flexible algorithm has been proposed in organizing image databases.18 In ViBE, we use Ward’s clustering algorithm,
also known as the minimum variance method,35 for building the shot tree. This clustering algorithm uses the
distance function:

dhk =
ni + nh

ni + nj + nh
dhi +

nj + nh

ni + nj + nh
dhj −

nh

ni + nj + nh
dij (2)

Figure 3a illustrates such a representation for a shot from an action sequence. In this example, the shot contains
significant changes which can not be captured by a single keyframe; hence the tree structure can better represent the
diverse aspects of the shot. The tree structure hierarchically organizes frames into similar groups, therefore allowing
automatic detection of subgroups inside a shot.

3.2. Shot Similarity

In ViBE, the distance between two shots is a sum of distances which depend on the shot tree, the temporal infor-
mation, the motion information, and the pseudo-semantic labels. Assume all video sequences in the database are
assigned a unique identification number, Si. Also assume that the jth shot in sequence Si is denoted as sij . Then
the distance between two shots is given by

D(sij , skl) = DST (sij , skl) +DT (sij , skl) +DM (sij , skl) +DPS(sij , skl)

where DST , DT , DM , and DPS are the shot tree, temporal, motion, and pseudo-semantic distance components.
Each of these components is defined below.

The shot tree dissimilarity, DST (sij , skl), is measured by obtaining the distance between the two corresponding
shot trees as in Figure 3b. Each node, t, of the shot tree is associated with a set of frames from the shot and a feature
vector, zt, for the cluster of frames. Generally, zt is the centroid of the feature vectors in the cluster. The distance
between the shot trees is then given by the weighted sum of the distances between nodes for the best mapping
between the shot trees. In this work, we only use trees of depth three, so the optimum mapping can be found by
simply checking the 8 distinct mappings between the two trees.

A shot is more than just a set of frames. The temporal relationship among shots is another useful yet often
ignored feature. Yeung, Yeo and Liu36 has formulated a time-constrained temporal distance. Let bij and eij be the
frame number of the beginning and ending frame of shot sij .

We define the “temporal distance” between shots sij and skl as the following

DT (sij , skl) =

{
KSeq +KShot, if i 6= k

KShot(min(1
2 ,

min(|bij−ekl|,|bkl−eij |)
2Tf

) + min(1
2 ,
|j−l|
2Ts

)), if i = k
(3)

Here we assume that if two shots are farther apart than Tf frames or Ts shots, we will not consider them similar in
a temporal sense. We shall use the values of Tf = 3000 and Ts = 30. Notice that the constants KSeq and KShot can
be used to control the relative importance of shot and sequence matching in the overall distance function.

Another feature that we exploit is the number of forward, backward and bidirectionally predicted macroblocks
in each P or B frame. For each P or B frame, we first compute

mk = (# forward MB) + (# backward MB) + 2(# forward-backward MB)

for each frame k. We next obtain the histogram hi,j of the values mk for all the frames k in the shot si,j . We then
define the “motion distance” between shots sij and skl to be the L1 norm of the difference between the histograms.

DM(sij , skl) = KMotion‖hij − hkl‖1

The constant KMotion controls the weighting of this component.

The last but perhaps the most important features are the pseudo-semantic labels we will discuss in Section 4.
For each shot, we define a label vector, pij , where each element of the vector takes on continuous values in the range
[0,1] indicating the confidence level for the corresponding pseudo-semantic class. The “semantic distance” between
shots sij and skl is then defined to be the L1 norm of the difference of these feature vectors pij and pkl.

DS(sij , skl) = KSemantic‖pij − pkl‖1

The constant KSemantic controls the weighting. We shall describe how these similarity measure are used for browsing
in Section 5.

4. PSEUDO-SEMANTIC LABELING

The purpose of semantic labeling is to classify or label each frame in a video sequence using a high level semantic
description. True semantic labels such as “young girl running”, “blue dress”, and “park scene” characterizes a scene
based on its content. Ideally, such semantic labels might provide the most useful descriptions for indexing and
searching databases. Currently, however, automatic extraction of truly semantic features is not possible.

Pseudo-semantic labeling bridges the gap between low-level and truly semantic labels. We are investigating in
ViBE the use of several pseudo-semantic labels. These include labels such as “face,” “indoor/outdoor,” “high action,”
“man made,” and “natural.” Since pseudo-semantic labels are generally associated with some level of uncertainty,
each label is assumed to be a continuous value in [0, 1] where 1 indicates that the video frame has the associated
property with high confidence, and 0 indicates that it does not.

In this paper, we will briefly describe our work on the “face” label. The goal here is to detect whether a frame in
the sequence contains a face. Different approaches have been developed in recent years for the face detection problem.
Some of the most representative work includes shape-feature approaches.37–39 In,40 a hierarchical knowledge-based
pattern recognition method is presented. Neural network approaches are used in,41–43 and template matching
approaches are used in.44–46 These approaches have tended to focus on still grayscale images. While they report
good performance, they are often computationally expensive. Also, the results may still be excessively sensitive to
the rotation and pose of the face. Recently, a number of authors have used color and shape as important cues for
face detection. In47–49 both color and spatial information is exploited to detect segmented regions corresponding to
faces. However, in48,49 the color and spatial information is also used to merge image regions in the segmentation
process.

Our method is designed to be robust for variations that can occur in face illumination, shape, color, pose, and
orientation. To achieve this goal, our method integrates information we have regarding face color, shape, position and
texture to identify the regions which are most likely to contain a face. It does this in a computationally efficient way
which avoids explicit pattern matching. Furthermore, we believe that the general processing strategy is extensible
to a wider variety of pseudo-semantic categories.

Figure 4 illustrates the processing steps that we use to obtain the face label for a given frame. The first step,
skin detection, is used to segment regions of the image which potentially correspond to face regions based on pixel
color. Figure 5 shows the histogram of a representative set of skin pixels in the UV plane. Notice that the skin
tones occupy a relatively small portion of the color space. This property allows us to eliminate many regions from
consideration based on color.

Once the pixels of interest are identified, unsupervised segmentation is used to separate these pixels into smaller
regions which are homogeneous in color. This is important because the skin detection will produce nonhomogeneous

root
node

face
label

Skin
Detection

Unsupervised
Segmentation

Region and
Feature

Extraction

Hierarchical
Region Labeling

Figure 4. Block diagram illustrating the processing steps used to obtain the pseudo-semantic “face” label for the
root node of each shot tree.

50 100 150 200 250

50

100

150

200

250

U component

V
 c

om
po

ne
nt

pdf skin data

Figure 5. Projection on the UV plane of the histogram of the skin pixels.

regions often containing more than a single object. For example, skin colored materials may be erroneously included
in the skin detection. These undesired regions are separated from true faces using the subsequent unsupervised seg-
mentation step. The next step extracts regions using connected components analysis. For each connected component,
a set of features is extracted which characterizes the region in terms of its color and shape.

The final step is to label face regions. Face areas will often be divided up into two or more regions in the
unsupervised segmentation process. Therefore to improve detection accuracy, we would like to consider all possible
mergings of these initial regions to find the new composite region which best fits our hypothesis for the behavior of
face areas. Of course, a search of all possible merges is impractical even for a moderate number of initial regions.
Hence we instead use a pair-wise steepest descent method in which all pairs of merged regions are considered to find
the merged region which best fits the hypothesis. This pair-wise merging process is recursively performed and results
in a single composite region which best fits the face hypothesis.

Figure 6 illustrates the effect of these four processing steps on three example images. The first column shows
three original images, each containing a face. The second column shows the result of skin detection with the white
pixels representing the regions that have been classified to be skin. The third column is the result of unsupervised
segmentation of the skin detected pixels into homogeneous color regions. The fourth column shows the single merged
region which best fits the face hypothesis.

A complete description of this method is presented in.50

5. THE VIBE ACTIVE BROWSING ENVIRONMENT

Many approaches for content-based management of video databases have focused on query-by-example methods51 in
which an example shot is presented and the database is searched for shots with similar content. However, query-by-
example techniques tend to quickly converge to a small set of shots that may not be of interest to the user.

In previous research,18,52 we introduced the similarity pyramid as a structure for organizing and browsing large
image databases. The similarity pyramid uses a tree structure to organize the shots in the database for efficient
access. To construct these trees, we apply a bottom-up or agglomerative clustering method because our experiences
have shown that bottom-up methods tend to yield better results.18,52

In ViBE, we adapt this browsing approach to the problem of video databases.16,15 The pyramid is organized
using the shot dissimilarity measure described in Section 3. Our dissimilarity measure allowed weights to be adjusted
which control the relative importance of color, edges, motion, temporal position, and pseudo-semantic labels. To

Original images Detection step Unsuper. Seg. Face Region

Figure 6. Results of each of the four steps used in obtaining the face label.

Figure 7. An example of a similarity pyramid and its embedded quad-tree.

exploit this flexibility, our browsing environment allows dynamic reorganization based on the user’s needs. For
example, the database may be organized to group together shots from the same sequence, or from similar times, or
containing similar content or pseudo-semantic labels. To do this, the browsing environment is designed to allow user
feedback. This feedback can be through the direct selection of parameters that control the relative importance of
sequence number, time, content, and labeling in the similarity measure. However, it can also be through relevance
feedback mechanisms provided in the user interface of the browsing environment.53,54 While a number of techniques
have used relevance feedback in content-based image retrieval,55–57 we believe that the use of relevance feedback for
browsing is a very different problem which requires a fundamentally different approach.

5.1. Similarity Pyramids for Video Browsing

The structure of a similarity pyramid is illustrated in Figure 7. The similarity pyramid organizes large video databases
into a three dimensional pyramid structure. Each level of the similarity pyramid contains clusters of similar shots
organized on a 2-D grid. As users move down the pyramid, the clusters become smaller, with the bottom level of the
pyramid containing individual shots. Each cluster of the pyramid is represented by a single key frame chosen from
the cluster; so as the user moves through the pyramid they have a sense of database content at various scales. In
addition, users can pan across at a single level of the pyramid to see shots or shot clusters that are similar.

The similarity pyramid is created by first hierarchically clustering the shots, reorganizing them into a quad-tree
structure, and then mapping the quad-tree’s clusters onto the 2-D grid at each level of the pyramid. The shots
are clustered using the distance metric of Section 3, and an agglomerative method similar to the general algorithm
described in Section 3. However, our clustering method is adapted to use a sparse proximity matrix. For a database
with N shots, we only compute the distance between each shot and its M closest matches,58 and then use a clustering
technique similar to the flexible method developed by Lance and Williams.59 The result of this clustering is a binary

Figure 8. Active Browsing Environment: The top level of the similarity pyramid is shown to the left, and the set
of relevant shots (relevance set) is shown to the right. The users can incrementally add or remove shots from the
relevance set as they browse through the database.

tree which is subsequently converted to a quad-tree, and then remapped to the pyramid structure in a way which
best preserves the organization of the database.

5.2. Browsing Interface

Figure 8 shows the browsing environment presented to the user. The similarity pyramid is shown to the left, and the
set of relevant shots, which we call the relevance set, is shown to the right. For a large database, even upper levels
of the pyramid will be too large to display on a single screen. Therefore, the user can move along the horizontal or
vertical directions in a panning motion to search for image clusters of interest. If a specific cluster appears to be of
interest, then the user can choose to move down to the next level by “clicking” on a cluster. The next level of the
pyramid is then presented with the corresponding group of four children clusters centered in the view. Alternatively,
the user may desire to backtrack to a higher level of the pyramid. In this case, the previous level of the pyramid is
presented with proper centering.

The relevance set is a set of shots that the user selects as they move through the pyramid. The user can
incrementally add or remove shots from the relevance set at any time during the browsing process. For browsing, the
user’s objective may be to locate all shots from a desired class. In this case, the relevance set may contain dissimilar
groupings of shots that represent the variations that can occur among shots in the class. As the user browses through
the database, the relevance set also becomes a buffer or clip board which stores all the shots of interest to the user.
Once users have defined a set of relevant shots, they may associate the relevance set with a semantic label. These
relevance sets may then be stored and recalled based on the semantic label.

5.3. Pruning and Reorganization

We incorporate relevance feedback into two basic browsing functions: pruning and reorganization. Pruning removes
shots from the database that are not likely to be of interest to the user while retaining all or most potentially
desirable shots, and reorganization changes the structure of the similarity pyramid to facilitate the user’s search. In
order to perform these basic pruning and reorganization functions, we use statistical estimation techniques based on
cross-validation. In,53,54 we showed that the cross-validation approach gives reliable performance independently of
the database content and the specific choice of similarity measures.

tree classifier sliding window simple thresholding
Sequence Detect Miss FA MC Detect Miss FA MC Detect Miss FA MC

news1 171 15 18 7 145 41 10 3 148 38 31 10
news2 46 1 0 0 44 3 1 0 41 6 2 1
news3 40 5 4 0 39 6 1 0 30 15 9 1
news4 65 0 4 3 65 0 4 0 59 6 10 8
news5 128 19 11 6 108 39 17 2 105 42 18 11
movie 121 8 4 0 114 15 1 0 110 19 7 2
drama 94 5 1 1 85 14 3 1 56 43 2 1

Total 665 53 42 17 600 118 37 6 549 169 79 34

Table 1. Results for cut detection using the GT/tree classifier, the sliding window method, and simple thresholding.
Detect indicates a correct detection, Miss indicates a miss detection, FA indicates a false alarm and MC indicates a
missclassify.

The pruning is useful because it reduces the size of the database, and therefore makes browsing easier and more
effective. While traditional query methods attempt to find shots that are likely to be of interest, pruning retains all
shots which are of possible interest, but at the expense of retaining many questionable shots. Intuitively, pruning
attempts to achieve high recall, but at the expense of precision; whereas traditional queries tend to emphasize
precision over recall. The reduced precision of pruning is acceptable because the similarity pyramid structure allows
the user to efficiently browse the resulting shots.

The objective of reorganization is to dynamically rebuild the similarity pyramid based on the relevance informa-
tion. As with pruning, reorganization makes the browsing process more efficient by moving the desired shots nearer
to one another in the similarity pyramid structure. To do this, we will assume that the distance function Dθ(y, x)
is parameterized by a vector θ. In this work, θ is a 13 component vector containing the 9 weightings corresponding
to the L, a and b components of the color, edge and texture histogram features18 of the shot tree, and KSeq, KShot,
KMotion, and KSemantic described in Section 3.

Our objective is to find the parameter θ̂ which minimizes a cost function E(θ,R) that measures the separability
of the relevance set R from the rest of the database. The detailed form of E(θ,R) is given in.53,54 With this cost

function, we then compute the optimal value of the parameter θ̂ = arg minθ E(θ,R). This minimization is done
using conjugate gradient optimization. The resulting distance function Dθ̂(y, x) is then used to rebuild the similarity
pyramid.

6. EXPERIMENTAL RESULTS

6.1. The Experimental Data Set

At this time, ViBE consists of 23 MPEG-1 sequences obtained from several standard broadcast television channels.
All sequences used in our database are copyright cleared for use in ViBE. These sequences are 10 minutes in length
and have been digitized at a rate of 1.5 Mbytes/sec in CIF format (352× 240). The data set used therefore contains
nearly four hours of video with more than 400,000 frames. We have obtained ground truth for the shot boundary
locations and semantic content for seven sequences in the data set. These ground truth sequences were used for
training purposes.

6.2. Scene Change Detection

In the results presented here, the version of the GT/regression tree implemented consists of using the three vectors,
~gi−1, ~gi and ~gi+1, for classification. This means that the regression tree uses 36 features. This “windowing” approach
has shown to be robust. For all results of our method, we have used a threshold of yi > 0.20 as our detection criteria.

We have compared our method with two other methods. The first comparison method uses a global threshold
on the luminance histogram intersection of the frames, i.e, the gi,1 component of the GT. Again, if two shots occur
closer than 10 frames, the one having a smaller histogram intersection is deleted. The global threshold was chosen
experimentally to provide the best performance. We have also implemented a sliding window technique, similar to
the one proposed by Yeo and Liu,21 using the sum of the histogram intersections of the Y, U, and V components,

Figure 9. Face images used in training the pseudo-semantic classifier. The manually segmented face masks are also
shown.

i.e, gi,1 + gi,2 + gi,3, as the frame similarity feature. In this technique, a symmetric window of size 2M + 1 is placed
around the ith frame and a cut is declared from frame i− 1 to i if

1. the value of the similarity feature for i is the maximum within the window, and

2. it is also N times the value of the second maximum in the window.

In our experiments we have used M = 5 and N = 1.8 because these values gave the best over all performance on our
data sets.

We used our seven ground truth sequences to examine the performance of the three methods. The results are
shown in Table 1. Our experiment indicates that the GT/regression tree in general performs better for a wide variety
of video content.

6.3. Pseudo-Semantic Classification

Our approach was tested using the ground truth sequences. The root nodes of the shot trees were extracted for each
shot and then ground truth information relative to “face” and “no face” was determined. Finally, the root nodes
were extracted from the MPEG sequence at full frame resolution. These images were then used for classification.
The algorithm was trained using “face masks” obtained from manually segmented faces from 100 randomly chosen
frames that contained faces. A representative set of face masks is shown in Figure 9. The results were evaluated in
the following way:

• A False Alarm results if the frame contains no faces, but our algorithm says that there is at least one face.

• A Detection results if the frame contains at least one face, and our algorithm says that there is at least one
face.

• A Correct Classification results when a Detection is achieved or when there is no face in the frame and our
algorithm finds no face in the frame.

Once we have merged skin-like regions, we apply a threshold to the dissimilarity values in the remaining regions.
If there exist any value below the threshold, the frame is said to contain at least one face. Thus an optimal threshold
can be obtained that maximizes the Classification rate.

It is important to emphasize that no thresholds are used when similarity measurements are performed. Our
algorithm produces confidence values that are then used by the browsing environment. Thresholds are used only in
this section to show the performance of the face labeling stage.

In Figure 10, a bounding box is drawn in each image for regions whose dissimilarity value is less than 20. As
shown, we are able to detect faces under many different illumination conditions and poses. In Figure 10g, we can see
that two boxes are drawn. In the classical face-detection problem this would have been classified as a false alarm.
In our application, we do not care about such false alarms because our objective is to determine whether a face is
presented or not. Figures 10m, 10n, 10o and 10p show false alarms where faces are detected in frames containing
no human faces. In Table 2, the results for each ground truth sequence are shown separately.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 10. The boxes indicate the faces detected (threshold Dmax = 20).

Sequence Shots Faces Detect (%) FA (%) Correct. Class. (%)
news1 231 76 73.68 16.13 80.51
news2 72 29 93.1 23.25 83.33
news3 78 33 87.87 15.55 85.89
news4 103 42 90.47 13.11 88.34
news5 188 51 76.47 13.86 83.51
movie 142 92 84.78 28 80.28
drama 100 90 94.4 20 93
total 914 413 85.23 16.96 84.02

Table 2. Results for face detection using the ground truth sequences. Faces indicates the number shots containing
at least one face. Detect indicates the Detection rate. FA indicates the False Alarm rate and Correct. Class the
Correct Classification rate.

6.4. Active Browsing

Figure 11 and Figure 12 demonstrate the significance of each component of the shot dissimilarity measure. Figure 11
shows the first 15 shots returned for a query using a Boilermaker football shot (upper left hand shot) when searching
23 sequences of video. Figure 11a) shows the result when only using DST the distance between the shot trees.
Figure 11b) shows the result when the motion distance DM is added, and Figure 11c) is the result when temporal
distance DT is added. Notice that the temporal and motion information are important cues in identifying good
matching shots.

Figure 12 shows the first 15 shots returned for a query using local weather report shot (upper left hand shot)
when searching 7 sequences of video. Figure 12a) shows the result when only using DST the distance between the
shot trees. Figure 12b) shows the result when the motion distance DM is added, and Figure 12c) is the result when
pseudo-semantic distance DPS is added. For this task, the pseudo-semantic distance is very effective at identifying

(a) DST (shot tree distance)

(b) DST +DM (a + motion distance)

(c) DST +DM +DT (b + temporal distance)

Figure 11. Example of search results using dif-
ferent similarity measures.

(d) DST (shot tree distance)

(e) DST +DM (d + motion distance)

(f) DST +DM +DPS (e + psudo-semantic distance)

Figure 12. Example of search results using dif-
ferent similarity measures.

(a) organized with default weightings (b) organized with optimized distance

Figure 13. The pruning result of Figure 8. (a) The pyramid organized with the default weightings (b) The pyramid
organized with the optimized distance.

matching shots.

In Figure 13, we show the shots using relevance feedback for similarity pyramid pruning and design. Figure 8
shows the original pyramid and the shots that have been selected by a user. Although these shots have dissimilar
attributes, they all form a single semantic category, “anchorperson”. Notice that the pruned set contains most of
the shots which closely match the user selected set (Figure 8). Figure 13b shows the reorganized sub-database where
the dissimilarity function is defined by the optimized distance described in Section 5. Notice that the shots in the
relevance set are clustered together. These experiments with ViBE indicate that the use of the pseudo-semantic label
and motion and temporal information can provide powerful aids in querying and browsing the database.

7. CONCLUSION

In this paper, we have presented a new paradigm for video database management known as ViBE. ViBE introduces
a variety of novel algorithms and techniques for processing, representing, and managing digital video in an integrated

environment.

REFERENCES

1. Behzad Shahraray, “Scene change detection and content-based sampling of video sequences,” in Proceedings of
SPIE Conference on Digital Video Compression: Algorithms and Technologies, San Jose, CA, February 1995,
vol. 2419, pp. 2–13.

2. Ramin Zabih, Justin Miller, and Kevin Mai, “A feature-based algorithm for detecting and classifying scene
breaks,” in Proceedings of the ACM International Conference on Multimedia, San Francisco, CA, November 5-9
1995, pp. 189–200.

3. Nilesh V. Patel and Ishwar K. Sethi, “Video shot detection and characterization for video databases,” Pattern
Recognition, vol. 30, no. 4, pp. 583–592, April 1997.

4. Wayne Wolf, “Key frame selection by motion analysis,” in Proceedings of IEEE Int’l Conference on Acoustic,
Speech and Signal Processing, 1996.

5. Yueting Zhuang, Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Adaptive key frame extraction using
unsupervised clustering,” in Proceedings of IEEE Int’l Conference on Image Processing, Chicago, IL, October
4-7 1998.

6. Shih-Fu Chang, William Chen, Horace J. Meng, Hari Sundaram, and Di Zhong, “A fully automated content
based video search engine supporting spatio-temporal queries,” to Appear in IEEE Trans. on Circuits and
Systems for Video Technology Special Issue on Image/Video Processing for Interactive Multimedia, 1998.

7. Edoardo Ardizzone and Marco La Cascia, “Multifeature image and video content-based storage and retrieval,”
in Proceedings of SPIE Conference on Multimedia Storage and Archiving Systems, Boston, MA, November 18-19
1996, vol. 2916, pp. 265–276.

8. Nuno Vasconcelos and Andrew Lippman, “Towards semantically meaningful feature spaces for the character-
ization of video content,” in Proceedings of IEEE Int’l Conference on Image Processing, Santa Barbara, CA,
October 1997, vol. II, pp. 542–545.

9. Behzad Shahraray and David C. Gibbon, “Automatic generation of pictorial transcripts of video programs,” in
Proceedings of SPIE Conference on Multimedia Computing and Networking, San Jose, CA, Febrary 1995, vol.
2417, pp. 338–341.

10. Minerva M. Yeung and Boon-Lock Yeo, “Video visualization for compact presentation and fast browsing of
pictorial content,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 7, no. 5, pp. 771–785,
October 1997.

11. Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Browsing and retrieving video content in a unified
framework,” in Proceedings of IEEE International Conference on Multimedia Computing and Systems, Austin,
TX, June 28-July 1 1998, pp. 237–240.

12. Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom, Monika
Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, and Peter Yanker, “Query by image content:
The QBIC system,” IEEE Computer, pp. 23–31, September 1995.

13. HongJiang Zhang, Jianhua Wu, Di Zhong, and Stephen Smoliar, “An integrated system for content-based video
retrieval and browsing,” Pattern Recognition, vol. 30, no. 4, pp. 643–658, April 1997.

14. Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Browsing and retrieving video content in a unified
framework,” in Proceedings of IEEE Multimedia and Signal Processing workshop, Los Angeles, CA, 1998.

15. Cuneyt Taskiran, Jau-Yuen Chen, Charles A. Bouman, and Edward J. Delp, “A compressed video database
structured for active browsing and search,” in Proceedings of IEEE Int’l Conference on Image Processing,
Chicago, IL, October 4-7 1998.

16. Jau-Yuen Chen, C. Taskiran, Edward J. Delp, and Charles A. Bouman, “ViBE: A new paradigm for video
database browsing and search,” in IEEE Workshop on Content-Based Image and Video Databases, Santa
Barbara, CA, June 21 1998, pp. 96–100.

17. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Wadsworth
International Group, Belmont, CA, 1984.

18. Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Similarity pyramids for browsing and organization
of large image databases,” in Proceedings of SPIE/IS&T Conference on Storage and Retrieval for Image and
Video Databases III, San Jose, CA, January 26-29 1998, vol. 3299.

19. James Monaco, How to Read a Film: The Art, Technology, Language, History, and Theory of Film and Media,
Oxford University Press, New York, NY, 1977.

20. Arun Hampapur, Ramesh Jain, and Terry Weymouth, “Digital video segmentation,” in Proceedings of Second
Annual ACM MultiMedia Conference and Exposition, San Francisco, CA, October 1994, pp. 357–364.

21. Boon-Lock Yeo and Bede Liu, “Rapid scene analysis on compressed video,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 5, no. 6, pp. 533–544, December 1995.

22. A. Mufit Ferman and A. Murat Tekalp, “Multiscale content extraction and representation for video indexing,”
in Proceedings of SPIE Conference on Multimedia Storage and Archiving Systems II, Dallas, TX, November 3-4
1997, pp. 23–31.

23. Bilge Gunsel, Yue Fu, and A. Murat Tekalp, “Hierarchical temporal video segmentation and content charac-
terization,” in Proceedings of SPIE Conference on Multimedia Storage and Archiving Systems II, Dallas, TX,
November 3-4 1997, vol. 3329, pp. 46–56.

24. F. Idris and S. Panchanathan, “Indexing of compressed video sequences,” in Proceedings of SPIE/IS&T
Conference on Storage and Retrieval for Image and Video Databases IV, San Jose, CA, February 1996, vol.
2670, pp. 247–253.

25. Bo Shen, Donnge Li, and Ishwar K. Sethi, “Cut detection via compressed domain edge extraction,” in IEEE
Workshop on Nonlinear Signal and Image Processing, Mackinac Island, MI, September 1997.

26. Jianhao Meng, Yujen Juan, and Shih-Fu Chang, “Scene change detection in a MPEG compressed video se-
quence,” in Proceedings of SPIE Conference on Multimedia Computing and Networking, San Jose, CA, February
1995, vol. 2417, pp. 180–191.

27. Cuneyt Taskiran and Edward J. Delp, “Video scene change detection using the generalized trace,” in Proceedings
of IEEE Int’l Conference on Acoustic, Speech and Signal Processing, Seattle, WA, May 1998, pp. 2961–2964.

28. Ke Shen and Edward J. Delp, “A fast algorithm for video parsing using MPEG compressed sequences,” in
Proceedings of IEEE Int’l Conference on Image Processing, Washington, D.C., October 26-29 1995, vol. II, pp.
252–255.

29. Michael J. Swain and Dana H. Ballard, “Color indexing,” Intern. Journal of Computer Vision, vol. 7, no. 1,
pp. 11–32, 1991.

30. Saul Gelfand, C. Ravishankar, and Edward Delp, “An iterative growing and pruning algorithm for classification
tree design,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13, no. 2, pp. 163–174, February
1991.

31. Bilge Gunsel and A. Murat Tekalp, “Content-based video abstraction,” in Proceedings of IEEE Int’l Conference
on Image Processing, Chicago, IL, October 4-7 1998.

32. P.H.A. Sneath and R.R. Sokal, Eds., Numerical Taxonomy, Freeman, San Francisco, 1973.
33. Anil K. Jain and Richard C. Dubes, Eds., Algorithms for Clustering Data, Prentice Hall, New Jersey, 1988.
34. Minerva M. Yeung and Bede Liu, “Efficient matching and clustering of video shots,” in Proceedings of IEEE

Int’l Conference on Image Processing, Washington, DC, October 23-26 1995, vol. I, pp. 338–341.
35. Jr. Joe H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the American Statistical

Association, vol. 58, pp. 236–244, 1963.
36. Minerva M. Yeung, Boon-Lock Yeo, and Bede Liu, “Extracting story units from long programs for video browsing

and navigation,” in IEEE International Conference on Multimedia Computing and Systems, Hiroshima, Japan,
June 17-21 1996, pp. 296–305.

37. Sargur N. Srihari Venu Govindaraju and David. B. Sher, “A computational model for face location,” in
Proceedings of the third International Conference on Computer Vision, Osaka, Japan, 1990, vol. 2, pp. 162–177.

38. T.K. Leung, M.C. Burl, and P. Perona, “Finding faces in cluttered scenes using random labeled graph matching,”
in Fifth International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 637–644.

39. Kin Choong Yow and Roberto Cipolla, “Feature-based human face detection,” Image and Vision Computing,
vol. 15, no. 9, pp. 713–735, 1997.

40. Guangzheng Yang and Thomas S. Huang, “Human face detection in a complex backgroung,” Pattern Recogni-
tion, vol. 27, no. 1, pp. 53–63, 1994.

41. Shumeet Baluja Henry A. Rowley and Takeo Kanade, “Human face detection in visual scenes,” Advances in
Neural Information Processing Systems, vol. 8, pp. 875–881, 1996.

42. Gilles Burel and Dominique Carel, “Detection and localization of faces on digital images,” Pattern Recognition
Letters, vol. 15, no. 10, pp. 963–67, October 1994.

43. Kah-Kay Sung and Tomaso Poggio, “Example-based learning for view-based human face detection,” Technical
Report AI Memo 1521, MIT, 1994.

44. Baback Moghaddam and Alex Pentland, “Probabilistic visual learning for object detection,” in Proceedings of
the fifth International Conference on Computer Vision, Cambridge, MA, 1995, pp. 786–793.

45. Antonio J. Colmenarez and Thomas S. Huang, “Face detection with information-based maximum discrimina-
tion,” in Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San
Juan, PR, 1997, pp. 782–787.

46. Michael S. Lew, “Information theoretic view-based and modular face detection,” in 2nd. International Confer-
ence on Automatic Face and Gesture Recognition, Killington, VT, October 1996, pp. 198–203.

47. N. Herodotou, K. Plataniotis, and A. Venetsanopoulos, “A color segmentation and classification scheme for
facial image and video retrieval,” in IX European Signal Processing Conference, Rhodes, Greece, September
1998.

48. Veronica Vilaplana, Ferran Marques, Philippe Salembier, and Luis Garrido, “Region-based segmentation and
tracking of human faces,” in European Signal Processing, Rhodes, September 1998, pp. 593–602.

49. Ming-Hsuan Yang and Narendra Ahuja, “Detecting human faces in color images,” in Proceedings of IEEE Int’l
Conference on Image Processing, Chicago, IL, October 4-7 1998, pp. 127–130.

50. A. Albiol, C. A. Bouman, and E. J. Delp, “Face detection for pseudo-semantic labeling in video databases,” in
Proceedings of the 1999 IEEE International Conference on Image Processing, Kobe, Japan, October 1999.

51. Di Zhong and Shih-Fu Chang, “Spatio-temporal video search using the object based video representation,” in
Proceedings of IEEE Int’l Conference on Image Processing, Santa Barbara, CA, October 1997, pp. 21–24.

52. Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Hierarchical browsing and search of large image
databases,” Submitted to IEEE Trans. on Image Processing, 1998, 1998.

53. Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Active browsing using similarity pyramids,” in
Proceedings of 1998 Asilomar Conference on Signals, Systems, And Computers, Pacific Grove, CA, November
2-4 1998.

54. Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Active browsing using similarity pyramids,” in
Proceedings of SPIE/IS&T Conference on Storage and Retrieval for Image and Video Databases VII, San Jose,
CA, January 24-29 1999, vol. 3656.

55. Ingemar J. Cox, Matt L. Miller, Stephen M. Omohundro, and Peter N. Yianilos, “Pichunter: Bayesian relevance
feedback for image retrieval,” in Proceedings of International Conference on Pattern Recognition, Vienna,
Austria, August 1996, vol. 3, pp. 361–369.

56. Leonid Taycher, Marco La Cascia, and Stan Sclaroff, “Image digestion and relevance feedback in the Imagerover
WWW search engine,” in Proceedings of International Conference on Visual Information, San Diego, CA,
December 15-17 1997.

57. Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Relevance feedback techniques in interactive content-
based image retrieval,” in Proceedings of SPIE/IS&T Conference on Storage and Retrieval for Image and Video
Databases VI, San Jose, CA, January 26-29 1998, vol. 3312, pp. 25–36.

58. Jau-Yuen Chen, Charles A. Bouman, and Jan P. Allebach, “Fast image database search using tree-structured
VQ,” in Proceedings of IEEE Int’l Conference on Image Processing, Santa Barbara, CA, October 26-29 1997,
vol. 2, pp. 827–830.

59. G. N. Lance and W.T. Williams, “A general theory of classificatory sorting strategies. i. hierarchical systems,”
Computer Journal, vol. 9, pp. 373–380, 5 1966.

