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This manual describes the use of lci, which is an advanced interpreter for
the λ-calculus. This program was first developed by Kostas Chatzikokolakis
as an assignment for the “Theory of Programming Languages” course in the
Department of Informatics of University of Athens. Later it became an open
source project licenced under GPL, in order to be used and improved by the
open source community. It’s main purpose is to compute the normal form of pure
λ-calculus terms. Moreover it supports various extensions which are, however,
implemented through the pure calculus.

1 Syntax

lci supports the syntax of λ-calculus enriched with integers, identifiers and
operators. The supported language is described by the following grammar:

Term → var
| ( Term Oper Term )
| ( λ var . Term )
| num
| id

Oper → op
| ε

The symbol λ can be written as “\” or as the greek character “λ” (using
a greek character set). Also “->” can be used instead of a dot. var and id

are arbitary strings of latin characters (uppercase or lowercase), numbers and
underscores. However var must start with a lowercase or underscore, while id

must start with an uppercase . It is also possible for any character to be used in
an id if enclosed in single quotes. num is a string of numbers and op is a string
that contains the following characters
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~ ! @ $ % ^ & * / + - = < > | . , : ;

except from the reserved operators -> . = ; ?. Finally parentheses can be
avoided according to the following rules

• Outmost parentheses can be avoided

• Application is left-associative

• The scope of an abstraction extends as far to the right as possible

• Terms that contain operators are parsed according to the precedence and
associativity of these operators (see section 6).

2 Basic function

lci is an interactive program. When executed it displays the lci> prompt and
waits for user input. The most simple usage is to enter a λ-term and press return.
The program performs all β and η reductions and generates the term’s normal
form. The result is printed in a “readable” way, that is only the necessary
parentheses are displayed, church numerals are displayed as integers and lists
using the standard Prolog notation. However the way terms are displayed can
be modified, for example the following command

Set showpar on

causes all parentheses to be displayed.
Terms are reduced using the normal order evaluation strategy, that is the

leftmost β or η reduction is performed first. This strategy guarantees that term’s
normal form will be computed in finite time, if it exists. However if a term has no
normal form then execution will not terminate. After the execution the program
displays the number of reductions that were performed and the CPU usage time.

3 Integers

lci supports integers by encoding them as church numerals during parsing. In-
teger n will be converted to

cn ≡ λf.λx.fn(x)

So, actually, it is just a syntactic sugar. All operations are implemented in
pure λ-calculus and can be used through identifiers and operators. Although the
use of calculus for ordinary operations is sleek, it has has a serious performace
drawback. The complexity of an operation is far from constant, for example the
power-of operator (**) requires an exponential number of reductions. Moreover,
due to stack limitaions, the greatest suported integer is 9999.
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4 Identifiers

Identifiers are used to represent big λ-terms by defining aliases. For example term
λx.x can be assigned to alias I so that the term I y is equivalent to (λx.x) y.
Aliases must be defined in a file that is read by the program. The syntax of this
file is described by the following grammar.

CmdList → Cmd ; CmdList
| ε

Cmd → id = Term
| ? Term

Command id = Term assings Term to identifier id while command ? Term

causes the evaluation of Term just as if it was entered interactively. File processing
is made using the following command

Consult ’file’

Morever, when being started, lci searches for a file named .lcirc in the follow-
ing places

$PREFIX/share/lci/.lcirc (eg. /usr/local/share/lci/.lcirc)

$HOME/.lcirc

./.lcirc

in that order. All files found are executed, if none is found then a warning is
printed. This file contains definitions for many basic functions and operators
(integer operations, for expample) and is similar to Haskell’s prelude.hs.

Identifiers are replaced by the corresponding terms during evaluation and
not during parsing. Thus the order of the definitions is not significant. If an
alias is not defined an error message is displayed during evaluation. If no alias
contains itself (directly or indirectly) then aliases are just a syntactic sugar, for
if we replace all of them we get valid λ-terms. However lci supports curcular
references of aliases as a way to implement recursion. This idea is described in
the following section.

5 Recursion

Recursion is an essential programming tool provided by all serious programming
languages. lci supports two methods of implementing recursion: using infinite

temrs or using fixed point combinators.

5.1 Recursion using infinite terms

If we allow an alias to contain itself then we can write terms like

M = λx.M y
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Replacing M according to this definition we get the term λx.(λx.M x) x and if
we keep on replacing we get the term

λx.(λx.(λx.(...) y) y) y

Thus M can be considered as a term of infinite length. Of course this is not a
valid λ-term, however it can be useful.

Now consider an arbitary closed λ-term M , that is FV (M) = ∅. We can
easily infer the following

M [x := N ] ≡ M

(λy.N)[x := M ] ≡ λy.N [x := M ]
λx.M x →η M

Thus variable substitution as well as η-reduction can be performed without know-
ing the definition of M, that is without the need to replace it. So during the
evaluation of a term, M must be replaced only if we reach one of the following
terms:

M N (1)

M (2)

If the first case M may contain an abstraction and in the second any redex.
If we replace an alias only when necessary, we can finish the evaluation without
performing all the replacements. For example the abstraction λx.y does not use
its argument, so the following reduction

(λx.y) M →β y

eliminates M without computing it.
lci handles identifiers using this techique. That is it replaces an identifier

with it’s corresponding term only when necessary and only once at a time. So
even if a term is recursive, it is possible to find a normal form if recursion is inter-
rupted by some condition. .lcirc contains many recursive definitions, mainly
concerning list manipulation functions.

This technique is not compatible with the pure calculus, as it uses invalid λ-
terms. However the following must be noted: suppose that in term M = λx.M x

we need to replace M only twice until we reach it’s normal form. This means
that in term λx.(λx.(λx.M y) y) y no replacement will be performed. M . So we
can substitute M with an arbitary valid λ-term N and we get

M ′ = λx.(λx.(λx.N y) y) y

M ′ behaves exactly like M but it is a valid term. Of course in a different situation
more replacements could be needed, producing a different M ′. So M could be
considered as a “term generator” that produces an appropriate M ′ each time.
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5.2 Recursion using a fixed point combinator

Recursion can be implemented in pure λ-calculus in a very sleek way, using a
fixed point combinator. A such combinator Y is a closed λ-term that satisfies
the following relation

Y f → f (Y f)

for any term f . Now let f be a term that satisfies f = E, where E is an expression
that containts f . We convert f to a variable forming the non-recursive term
F = λf.E. It is easy to see that the function we seek is a fixed point of F, that
is Y F .

Things get a little bit more complicated if we have the following set of mu-
tually recursive terms

f1 = E1

...

fn = En

where any fi can be contained in any Ej . Now, before applying Y , we must join
all terms in one. This can be done using the functions TUPLE n and INDEX k.
The former packages n terms into a n-tuple, the latter returns the k-th element
of a tuple. Both of them can be implemented in pure λ-calculus. So we build
the following recursive term

f = TUPLE n fi . . . fn

and replace any occurences of terms fi using INDEX k

fi → INDEX i f

Finally f is defined using a fixed point combinator

f = Y (λf.TUPLE n fi . . . fn)

We have already mentioned that lci allows an alias to contain itself. The
default way of handling such aliases was described in paragraph 5.1. Moreover
lci provides the command FixedPoint which removes circular references from
aliases using a fixed point combinator. Initially this command creates a graph
in which each vertex corresponds to an alias. Two vertexes S, T are connected
with a directed arc if alias S contains T in it’s definition. A circle in this graph
denote a set of mutually recursive terms. FixedPoint detects such circles and, in
case they contain more than one arc, it packages the corresponding terms using
functions TUPLE and INDEX. Then it removes recursion using the combinator
Y which must be defined in .lcirc. The modified definition of recursive aliases
can be displayed using the ShowAlias command.
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6 Operators

Operators is another tool that is provided by almost all programming languages.
lci supports operators as a special kind of function that takes two arguments
and syntactically appears between them. Using an operator requires two steps.
The first is it’s declaration together with it’s precedece and associativity, in a way
similar to Prolog. This can be done with the command

DefOp ’operator’ preced assoc

Quotes are necessary so that operator’s name is recognized as an identifier. Prece-
dence is an integer between 0 and 255 and is used during parsing when no paren-
theses are present. Associativity takes one of the following values:

yfx Left-associative operator
xfy Right-associative operator
xfx Non-associative operator

Character x corresponds to a term with lower precedence than the operator,
while y to one with higher or equal. Thus expression a+b+c*d will be recog-
nized as (a+b)+(c*d), for operator * has lower precedence 1 than + and + is
left-associative. Terms that are not the result of an operator, or are enclosed in
parentheses, are considered to have precedence 0. Moreover application is con-
sidered as a left-associative operator with precedence 100. So if an operator $

is declared with precedence 110 then the expression a b$c will be recognized as
(a b)$c.

The second step is operator’s definition which is performed by defining an
alias with the same name:

’operator’ = ...

Operator definitions must be placed in a file (as all alias definitions) and quotes
are required. During parsing, lci replaces operators with identifiers, thas is
expression a+b will be transformed to ’+’ a b. Now + is an identifier, not
an operator, and will be replaced with the corresponding term during term’s
evaluation.

In .lcirc many common operators are declared and defined, mainly concern-
ing integers and list manipulation. These include the right-associative operator
: to write lists as a:b:c:Nil, operator ++ to append lists, operator “,” to build
ordered pairs (a,b), integer operations, integer comparisons etc.

7 Evaluation strategies

An evaluation strategy determines the choice of a redex when there are more
than one in a term. lci uses the normal order strategy, which selects term’s

1
lci behaves similarly to Prolog, that is lower precedence operators are applied first.
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leftmost redex. The main advantage of this strategy is that it always leads to
term’s normal form, if it exists. However it has a serious drawback which is the
multiple computation of terms. For example in the following series of reductions

(λf.f(f y))((λx.x)(λx.x))

→ (λx.x)(λx.x)((λx.x)(λx.x)y)

→ (λx.x)((λx.x)(λx.x)y)

→ (λx.x)(λx.x)y

→ (λx.x)y

→ y

the term (λx.x)(λx.x) was computed twice. An alternative strategy is call-by-

value, in which all arguments are computed before applied to a function. This
method can avoid multiple computation.

(λf.f(f y))((λx.x)(λx.x))

→ (λf.f(f y))(λx.x)

→ (λx.x)((λx.x)y)

→ (λx.x)y

→ y

This strategy, however, does not guarantee that normal form will be found. There
are also some other strategies like call-by-need that is used in some functional
languages like Haskell.

lci does not implement any such technique, but there has been an effort
to overcome this problem using a special operator ∼. This operator does not
behave like ordinary operators. The expression M ∼ N denotes the application
of M to N which, however, uses call-by-value. So, if M ∼ N is the leftmost
redex then all reductions of N are performed before the application. Thus the
term (λf.f(f y)) ∼ ((λx.x)(λx.x)) will be reduced according to the second of
the previous ways. Operator ∼ has the same precedence and associativity as the
application operator, so it can be easily combined with it.

This operator, however, should be used with caution since the normal form of
(λx.y) ∼ ((λx.x x)(λx.x x)) will never be found, yet it exists. In file queens.lci
there is an implementation of the well-known n-queens problem, using experimen-
tally this operator. Without the use of the operator the program is impossible
to terminate, even for 3 queens where the combinations that must be examined
are very few. This is due to the fact that terms are extremely complex and cause
a lot of recomputation. Using the operator ∼ and testing in an Athlon 1800, all
solutions for the 3 queens where found in 0.3 seconds, for 4 queens in 4.4 and for 5
in 190. For 6 queens after many hours of testing the program did not terminate.
This is not strange, though, since Haskell (with the same implementation and
using lazy-evaluation and constant time arithmetic) needs 1799705 reductions for
the 8 queens and extremely much time for n > 12.
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8 Tracing

lci supports evaluation tracing. This function is enabled using the following
command

Set trace on

or pressing Ctrl-C during the evaluation of a term. When tracing is enabled,
the current term is displayed after each reduction and the program waits for
user input. Available commands are step, continue and abort. The first one
performs the next reduction, the second continues the reductions without tracing
and the last one stops the evaluation. An alternative function is to display all
intermediate terms without interrupting the evaluation. This can be enabled
using the following command

Set showexec on

9 System commands

In previous paragraphs we have already mentioned some commands that are
supported by lci. These commands are functions that may have arguments. If
such a function is the leftmost in a term, then, instead of evaluating the term, a
system command is executed. All system commands are described in table 1.

Command Function

FixedPoint Removes circular references from aliases
using a fixed point combinator Y

DefOp op prec ass Declares an operator with the given prece-
dence and associativity.

ShowAlias [name] Displays the definition of the given alias,
or a lists of all aliases.

Print term Displays a term. Useful to check parsing.
Consult file Reads and processes the given file.
Set option on/off Changes one of the following parameters.

trace Evaluation tracing
showexec Display all intermediate terms
showpar Display all term’s parentheses
greeklambda Display “λ” instead of “.”
readable Readable display of integers and lists

Help Displays a help message.
Quit Terminates the program.

Table 1: System commands
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10 Examples

In this section there are some expamples of using the program.

lci> 3+5*2

13

lci> Sum 1..10

55

lci> Take 10 (Nats 5)

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

lci> Map (Add 3) 1..5

[4, 5, 6, 7, 8]

lci> Map (\n.n**2) 1..5

[\y.y, 4, 9, 16, 25]

lci> Filter (Leq 6) 3:6:10:11:Nil

[6, 10, 11]

lci> Length 1..10 ++ 4:5:Nil

12

lci> (Member 3 1..10) && (Length 3:4:5:Nil) >= 3

\x.\y.x

Note that term λy.y is the normal form of number 1. In file queens.lci

there is an implementation of n-queens problem.

lci> Consult ’queens.lci’

Successfully consulted queens.lci

lci> Queens 4

[[2, 4, \y.y, 3], [3, \y.y, 4, 2]]

All of the above functions can be also evaluated using the FixedPoint com-
mand, which removes circular references using the fixed point combinator Y .
Using ShowAlias you can see an alias definition after the modification.

> FixedPoint

> ShowAlias Sum

Sum = Y \_me.\l.If (IsNil l) 0 (+ (Head l) (_me (Tail l)))

9


