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by Mich~le GIRY (Amiens) 

The aim of this paper is  to give a ca tegor ica l  def ini t ion of random p r o c e s s e s  and provide 

tools  for their  study. 

A process  is  meant to descr ibe  something evolv ing  in time, the history before time t 

~,probabilistically,> determining what will  happen Iater on. For ins tance ,  it may represent  a mov- 

ing point x ,  being at time t in a space  ~t  endowed with a c~-algebra ~t  ; the problem is then 

the exac t  posit ion of x in ~ t "  

In the very part icular  example of a Markov process ,  time is  running through N and the 

posi t ion of x in ~ n + l  only depends  on where it was in ~n"  So, for each n ,  a map [n from 

~n • to [ 0 , 1 ]  is  g iven :  fn(c~ is  the probabili ty for x to be in Bn+ 1 at time 

n+l if it was on con at time n.  fn is  thus asked to sa t i s fy  the two fol lowing proper t i es :  

for each con, [n(con,') is a probabili ty measure on ( ~ n + l , ~ n + l ) , a n d  for each Bn+l, 
fn ( "  Bn +1 ) is  measurable ,  fn is ca l led  a transi t ion probabil i ty [4] ,  or a probabi l i s t ic  map- 

ping [3] from (~2n ,~n)  to (F~n+1, ~ n + l ) "  The p rocess  is then ent i rely defined by the [n's. 
13ut if time runs through R,  we need a transi t ion probabil i ty /t s from (i '2s, ~ s )  to 

( f l t , ~ t )  for each couple (s,  t) with s <  t .  Then, if r<  s < t ,  there are two ways of comput- 

ing the probabili ty for x to be in B t knowing it was on cot at time r : forgett ing s ,  which 

g ives  frt(cor, Bt) ; or consider ing how z behaved at time s , it seems then reasonable  to take 

the mean value of f~ (cos, Bt) (f~ cos running through ~ s  ) re la t ive ly  to the probabil i ty mea- 

sure fsr(cor,.) on f t s ,  which y ie lds  to f f~ ( . ,  Bt) dfr(cor,.). This  integral  is  shown to de-  

f ine a transi t ion probabili ty from ft r to f~t, ca l led  the composi te  of f ]  and f ~ ,  which is  

asked ,  in (,good,> p rocesses ,  to be the same as  f~.  This  equal i ty  is ca l led  the Chapman-Kol-  

mogoroff relat ion.  

The composit ion of transi t ion probabi l i t ies  is  a s s o c i a t i v e .  This  property is  equivalent  

to Fubini  Theorem for bounded funct ions and i ts  proof, as  well  as  that of s tab i l i ty  of t ransi t ion 

probabi l i t ies  for this law, is  rather t echnica l .  These  resul ts  will  be consequences  of the follow- 

ing one : the transi t ion probabi l i t ies  and their  composi t ion form the Kle i s l i  category of a monad 

on the category of measurable  spaces .  A similar  monad will  be cons t ruc ted  on a category of top- 

o log ica l  spaces  ( genera l i z ing  the one def ined by Swirszcz  [6] on compact s p a c e s ) .  

As F. W. Lawvere  already pointed out in an unpublished paper [3 ] in 1962, most problems 

in probabili ty and s t a t i s t i c s  theory can be translated in terms of diagrams in these  Kle i s l i  ca t -  

egor ies .  

In the seque l  we ' l l  mainly study project ive  l imits  which will  lead us to construct  proba- 

bi l i ty  measures  on sample se t s  of p roces se s .  
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I. THE PROBABILITY MONADS. 

]. Notations. ~ , ~  is the category of measurable spaces ;  an object will be denoted by 

and its a-algebra by ~ . The morphisms are the measurable maps�9 ~,,l is the category of 

Polish spaces (topological spaces underlying a complete metric space) ; again, an object is 

called ~ and ~fl is its Borel o-algebra. The morphisms are the continuous maps. 

A monad is going to be constructedon both ~lI~ and ~,~ ; the definitions being very 

much the same, in the sequel }( will stand for either of them, unless otherwise notified. 

2�9 Construction. 

a) Thefunctor 1I (called P i n  [3 ] ) :  If ~ is an object of J{, 11(~) is the set of pro- 

bability measures on ~2 ( i . e . ,  the o-additive maps from ~ to [0, 1] sending ~ to 1 ), 

endowed : 

�9 if J{ = ~ ,  with the initial  a-algebra for the following evaluation maps, where B 

runs through ~ : 

PB:[1(f~)  -~ [0,11:  P ~ P ( B ) ;  

�9 if 3"( = ~,~e, with the initial  topology for the maps 

Q : n ( a )  -~ R :  P b f l a P ,  

where f is any bounded continuous map from [1 to R ; II ( a )  is then a Polish space ( i ts  

topology is called the weak topology) [5]. 

If f: f~ -, f~' is a morphism of }(, and P is in I1 ([1),  the probability measure on 

a '  image of P by f i s  defined by 

I I ( [ ) ( P ) ( B ' )  = P ( ' ~ ( B ' ) )  forevery B ' i n  S O "  

b) The natural trans[orm 71: ld}( * 11: The characteristic function of an element B 

of ~[1 is denoted by XB" For ~o in a ,  the probability measure concentrated on o is 

defined by 

71~(co)(B) = XB(CO), foreach B in ~ .  

e) The natural transform g: [12--> 11: For P~ in f l2(~) ,  a probability measure on 

is defined by: 

I ~ ( P ' ) ( B )  = fPB dP',  for every B in ~ .  

These integrals are well-defined for each PB is measurable from II ( ~ )  to [ O, 1 ], hence 

is  integrable for P ' .  The measurability of PB if fl is an object of ~,~s follows from the 

fact that, ~ being metrizable, we have ~ = u ~a , where A is the first uncountable 
ce<A 

ordinal and: ~o is the set of open sets of ~ ,  
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~a +1 

=[nn~Bn I Bn E ~r I if a is even, 

= {Wn}Bn I Bn ~ ~a I if a is odd, 

~*B~ I B n e / ~ a O e / 3  I if a i s l i m i t ,  

and is  proved by induction on the c l a s s  of B. 

The aoadditivity of g f~ (P ' )  i s  a consequence of the monotone convergence theorem. 

3. Theorem 1. ( lI ,r l ,~L) is amonadon }{. 

A . F i r s t  let us prove the following properties, valid for any morphism f..~ -, ~ ' of }(, 

any P in I I ( ~ ) ,  P '  in [I2(f~),  co in f~, 0 : f ~ R  and O': f~ ' - ,R bounded measurable 

functions : 

a) fo, dn(f)(P) = f O ' o f d P ,  
b) fO dq~(o)) = O(co), 
c) if ~:0 is  def inedby Co(P)  = fO dP,  CO is measurable from lI(f~)  to R, 

d) fO dtzf~(P')  = f ~ o d P  '. 

In the case where 0 is  of the form XB, this follows from the def ini t ions;  by l i nea r i t yo f  f 

this is  s t i l l  true if 0 i s a  simple function. The general case is  a consequence of the mono- 

tone convergence theorem and the fact that 0 is the increasing pointwise limit of a sequen- 

ce of simple functions. 

If / :  f~ -, f~ ' i s  in }(, s o i s  11([): When }( ~ l l~ ,measurab i l i ty  of I I ( f )  isobvious;  
when } ( = ~ g ,  continuity of 11([) follows from formula a .  Now gl is a functor because,  if 

g: ~2'-~ f l "  is  another morphism of }( , 
-1 -1 -1 

( g o f )  ( B " )  = f (g ( B " ) )  for B ' E ~ a . .  

qfZ is clearly in }( (by definition in ~1l.~,~ and by formula b in ~ g  ). So is g ~  : 

- i f } ( = ~ l ~ ,  this will follow from property c a bove ,  app l i ed to  I I ( f~) ,  0 = PB and P'; 
- if }( = ~ J ,  it is a consequence of formulad . 

The diagramms 

f , a '  n 2 ( f t )  . r I2( f )  . _ n 2 ( a  ' )  

r / ~  lr/f~, and , a [  [ , f l ,  

n ( a )  n c f )  ~ n ( a ' ~  n ( a )  n c [ )  , n ( n ' ~  

commute: Only the second one requires some work: if P '  is  in II2(f~) and B '  in ~f~, ,  

( I I ( f )  o t z f~(P ' ) )  ( B ' )  = g f ~ ( P ' ) ( ' f l ( B ' ) )  = f pTI ( B , ) d P '  
and 

( g f ~ , o I I 2 ( f ) ( P ' ) ) ( B  ') = f P B , d l I 2 ( f ) ( P ' )  = f P B , O l I ( f )  dP '  

from a .  But since P-fl (B ' )  = p B,o 11I ( f ) ,  the commutativity follows. 

Uni tar i tyof  7/ is  easy.  L e t ' s p r o v e  the assoc ia t iv i ty  of # .  If P"  is  in II3(f~) and B 

is  in Sf~ , 
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(Izl2 oII (t,~2 ) ( P ' ) ) ( B  ) = f pBo l~a  dP"  = f ( p B d P  " 

from a and defini t ion of ~ ,  and 

(gf~ ~  = f P B d # H ( f ~ ) ( P " ) .  

Equal i ty  fol lows from d. A 

4. The Kleisli category of ( H , r / , g ) .  

The Kle i s l i  ca tegory a s s o c i a t e d  to ( 1I, r I , t~ ) i s  ca l l ed  9~-. If ]', g are  morphisms 

in 93", we write 

gKf 
The canonical  functor from J{ to 9~q- sends 

~2 h , - a '  to ~ ~ a ' ,  where ,~= 

A Kle i s l i  morphism f : f t  ~ f t '  is  a t ransi t ion probabi l i ty  in the fol lowing way:  le t  

us def ine  

F:a• by F ( c o , B ' ) = f ( c o ) ( B ' ) .  

Then F ( c o , . )  i s  a probabil i ty  measure on [~' and F ( . , B ' )  = p B , o f  is measurable ,  so F 

is  a t ransi t ion probabil i ty.  

If J{ = N ~ - ,  the transformation f ~ F is  a one-to-one cor respondence  between 93- 

and the c l a s s  of t ransi t ion probabi l i t ies .  

Moreover, the composi t ion in 93- is the usual  composi t ion of transi t ion p robab i l i -  

t i es ,  s ince  : 

(gK f)r ) ( B )  = f P B  o g df(oo ) = f g( .  ) , fB)  df(o.> ) 

= f g ( . , B ) d F ( o o , . )  

with the above nota t ions .  So, Chapman-Kolmogoroff relat ion means that a <,good,> p rocess  

( cf. the introduct ion)  is  defined by a functor from the ordered set  R to 9~ .  

II. PROBLEMS OF PROJECTIVE LIMITS IN 9,'~. 

In the study of  a p rocess ,  an important problem i s  to find a probabil i ty measure on 

the sample se t ,  compatible with the given transi t ion probabi l i t ies .  This  sample se t  being 

the projec t ive  limit of the se ts  of <,histories before a time t,>, the ex i s t ence  of a l imit  for 

a pro jec t ive  system of probabil i ty measures  soon a r i ses ,  which can be t ransla ted in terms 

of  preservat ion by K of p ro jec t ive  l imits  in }( (which s t i l l  represents  ~li,~,~ or 9 ,~  ). Let  

us recal l  that ~ , ~  admits all  l imits and 9 ,~  all countable  l imits .  

In the sequel ,  we cons ider  the following s i tuat ion : f~ is  the projec t ive  limit of a 

functor F from a fi l tered se t  ( I , > )  to }{ , and is  charac te r ized  by the commutat ive diao 

grams,  for i > j :  
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we want to know how .K preserves  the limit,  that i s :  when and how can the dotted arrow of 

the following diagram be f i l led up ? 

g' ,~ 

i. 
( D )  ~t ~ ! jl 

Notice  that commutat ivi ty of  the outer  diagram means that H (fS.)(gi(a~')) = gj(a)')  for 

each  co ' ,  so that the famil ies  (gi (a)'))i are projec t ive  sys tems  of probabil i ty measures .  

Hence,  the first  problem will be the ex i s t ence  of a limit g(~o') for such a sys tem,  and the 

second one the fact that the so defined g i s  a morphism of ~ .  The  resul t s  will be of a 

different nature in ~R~ and in ~og. 

1. Theorem 1. l[ }{ = ~I~ and the qi's are onto: (qi)iE 1 is universal among the cones 
(gi) iel  with basis w F such that: 

(*)  For all increasing sequence ( in)  n of 1 and each (Bin)n in [In ~{1in such that 

c~ }qil n (Bi ) = ~ '  the sequence pB i o gi pointwisely converges to O. 
n n 

n 

A.  Le t  ~o' be in {1'. (g i (  ~176 b e i n g a  pro jec t ive  sys tem of probabil i ty measures  

one can define an appl ica t ion g(co ' )  from the algebra ~ '  = u q~l(${1 ) generat ing 

Sf~ to [0,1] by iEl " 

g(~o' -1 )(qi ( B i ) )  = gi (~  

Thanks to condit ion ( * ) ,  g(~o') i s  a probabil i ty  measure  on ~ '  and can subsequent ly  

be uniquely extended to ~{1 (cf .  [4 ] ) .  It remains to show that g is  measurable  from 

{1' to H({1) ,  which is  equivalent  to the measurabi l i ty  of all  the PB o g  for B in ~{1.  

But the se t  of B~s for which PB o g is measurable  conta ins  ~ '  and is  a monotone 

c l a s s ,  so that i t ' s  ~ i t s e l f .  A 

Remark. Condition ( * )  was n e c e s s a r y  for the ex i s t ence  of the g ( o o ' ) ~ s .  MeasurabiLity 

of g did not require any further hypothes is .  

2. Theorem 1 bis.  If }( = ~ J ,  ( l , 2 )  = (N,> ) and the qn 's are onto, {1 is the projec- 
tive limit of K F. 

h .  The  {1n'S and f~ being Polish~ a probabil i ty measure in the s ense  we use  i s  

a l so  a measure in the Bourbaki sense ,  Hence all the sys tems  (gn(oj '))neN have a 

limit g(co ' )  [1].  (Th i s  would be true even if I had only a cofinal  countable  subset ,  ) 

Now we must show that g is continuous from {1' to I I ({1) .  We*ll use the fol lowing 

result  [5] : 

A subse t  X of 11 ({1) is r e la t ive ly  compact iff it is uniformly tight,  which means 

that, for all e> 0 there i s a c o m p a c t  K E in {1 such that P(K e)> 1-e for al l  P in X. 
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Le t  (con)n converge  to co' in fl ' : we only need  to show tha t ,  for a n y  c o n t i n u o u s  map 0 to 

R ,  bounded by 1, fO dg(co n) converge  to fO dg(co'), We'II use  the fo l lowing n o t a t i o n s :  

gp(con)=PPn, gp(co')= PP, g(con)=Pn and g(co')= P. 

1 o We get tha t  the s e t  { PP I nEN I is uniformly tight s i n c e  i t  i s  the  image by the  con t i -  

nuous  map gp of  the r e l a t ive ly  compact  s e t  { con I n E N 1. 

2o The set { Pn I n e N I is also uniformly tight : l e t ' s  fix e in R ~_, There  i s  a compac t  

s u b s e t  K 1 of [21 such  that  PI n(K 1)> 1 - L  for each  n .  Suppose  K 1 . . . . .  Kp are c o n s t r u c t e d  
2 

such  tha t ,  for e ach  k < p ,  K k i s a c o m p a c t  s u b s e t  of a k , c o n t a i n e d i n  ( ~ . l ? l ( K k )  ( f o r  

k > 1 ) and s a t i s f y i n g :  

Pkn(Kk)> 1 - ( ~ + . . .  +~-~) 

for each  n ; there  i s  a compact  K~+ 1 in f~p+l  with 

in fPP+l(K~+l)> 1- e . 
n 2P+1 

The  compact  Kp +1 = K~ + I n (f~ + l,rl ( Kp ) s a t i s f i e s  

inf pp+l (e. ~ ). n (KP+I) > 1- +... + 
2 2 p+l 

So a s e q u e n c e  (Kp)p can  be i n d u c t i v e l y  c o n s t r u c t e d ,  such  tha t  Kn i s  a compact  s u b s e t  of 
�9 . /  t" 

a p  c o n t a i n e d  in (fPp-1) (Kp-1) s a t i s f y i n g  inf PP (Kp) > 1-e. The  ( d e c r e a s i n g )  i n t e r s e c -  

t ion K of the  @I(Kp) is  such  that  infPn(K)> 1-e. It i s  enough now to prove tha t  K i s  
r t  

compact  : i f  ~1 i s  an u l t r a f i l t e r  on K, qp (~1) i s  an  u l t r a f i I t e r  on Kp (since qp i s  on to )  and 

h e n c e  conve rges  to a cop in Kp. T h e  fP  be ing  c o n t i n u o u s  

fPq(cop) =coq f o r e a c h  P2 q; 

the re fore  there  i s  an co in f~ s a t i s f y i n g  qp (co) = cop for e a c h  p ,  which means  that  co i s  

in  fact  in K .  As f~ i s  the topo log ica l  p ro i ec t ive  l imit  of the  f~p Is ,  i t ' s  then easy  to prove 

t ha t  ~1 c o n v e r g e s  to th i s  co ; c o m p a c t n e s s  of  K follows.  

3 ~ Le t  A -- { Opoqp I p e N ,  Op:f~p -. R con t inuous  bounded I. A i s  a s u b a l g e b r a  

of  the a lgebra  of con t inuous  bounded maps from ~2 to R ; i t  c o n t a i n s  the  cons t an t  maps  and 

i t  s e p a r a t e s  the  po in t s  of f~ ; so S tone -  Weie rs t rass  Theorem e n s u r e s  tha t  A is  d e n s e  in 

th i s  a lgebra ,  endowed with the  topology of uniform c o n v e r g e n c e  on compact  s u b s e t s .  

4 ~ We are now ab le  to prove the  conve r gence  of ( fO  dPn) n to fO dP. Let  e >  0 

be f ixed;  by 2 there  e x i s t s  a compac t  s u b s e t  K of f~ such  t h a t  

inf({ Pn(K) In ~ N l v {  P(K) I )  > 1 "8 '  
h e n c e  

( 1 )  I f O d P n . f O d P I  < I f y O d e n . f K O d P l + ~  " 
4 

By 3, there  e x i s t s  a con t inuous  map Op : ~p -~ R ( t h a t  can  be c h o s e n  bounded by 1 ) such  

. e . i t  f o l l ows :  t h a t :  s~p I O(co) Op oqp(co) I < 5 '  
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(2) 

But s ince  

I fKOdP n - ~KO dP I <- I f  K Opoqp dPn" fKOp~ dP I +~ 

< t f O p o q p  dPn= f O p o q p  dP [ + ~  + L .  
- 4 4 

PPn = [ I ( q p ) ( P n )  and PP= I I ( q p ) ( P ) ,  

the second member above is 

I fop dp~ - yop dppl + 2 '  

so that, s ince  PPn converges to PP, i t  i s  l e s s  than ~ i f  n is greater than a N i n  N. Hence,  

for n > N ,  I fO  dP n -  fO d P I  i s  l e s s  than e, from i n e q u a l i t i e s ( I )  and (2 ) .  So g is a 

mo~hi sm of ~os f i l l ing up diagram ( D ) ,  and the proof is complete.  A 

3. A general process on discrete  time is described by a sequence  ( f n )  of t rans i t ion  proba- 

b i l i t ies ,  fn being from the set of ~,histories before n ~ ~21 •  • s n to ~2n+ l ,  Welll see that 

this  sequence induces  a functor from (N,_<) to ~.~j- and, us ing  the above theorems, we ' l l  

construct  a t rans i t ion  probabil i ty from each s l •215  to the sample set  f i f th ,  compat ib le  
n 

with the fn ' s .  This  result ,  which conta ins  Ionescu Tulcea  Theorem [4],  is a corollary of 

Theorem 3 below, i t se l f  a consequence  of the following 

Theorem 2. Here }( = ~ . . . .  I f  ( l , > )  is a f i l tered ordered se t  and F a functor ( l ,  >)  -* ~ 

whose project ive  limit is given by the commutative diagrams 

qi ~---'~ ~ i  

with the further property 

( s m )  For any increas ing  sequence  ( i n )  n in l and any (O~in)n in l]~in n such that:  

f i n+  l ~ 
t n" t~~  = Cjtn t h e r e i s  a oj in ~ sa t i s fy ing  qin(CO)=op.tn, 

and i f  G is a functor ( l , < ) - *  ~ ver i fy ing:  
i i f t]~ a i is left  inverse  to 7] a)  For i > ] ,  G ( i , ] ) = g ] :  , 

b) For i> i o . ~io B i t  . ~ f !  ( Bi ) impl ies  g ~ - , ~% E , $ ~ i '  c~ to to ( ~ i o ) ( B i )  = O,  

then for each i o in [ there is  a unique morphism gio : ~io ~ ~ such that 

K i for every i>  i o qi K gio = gio 
and 

gi o (~ o 

Moreover, i f  I is total ly  ordered, the diagrams 

~ i ~ - - . . . . _  gi 

] J 
commute, 

) ( B )  = 0 f o r e v e r y  (o9io , B ) i n  ~io x ~  with ozto. ~ q i o ( B ) .  

] > i  
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A. Le t  us first not ice that property a for G means that  

commutes for i 2  ] '2 io . This ,  together  with the fact that ~ is a lso  the pro jec t ive  limit of  

the res t r ic t ion of F to { i E l I i 2 io I, impl ies  that  the e x i s t e n c e a n d  unici ty  of gio wil l  be 

proved, us ing Theorem 1, as  soon as we have shown that (gioi)i>i ~  has property ( * ) of this  

theorem. Indeed,  if it has  not, there is a cot0. in ftio , an inc reas ing  sequence  ( i n )  n in l 

and se t s  Bin in ~[~in such that :  

1 n in ~ q i  ( B i n ) =  and lira gio (coio ( B i n ) >  O. 

Suppose we have constructed (coio . . . . .  COip) in ~i0 •  i s a t i s fy ing :  
i g 

F o r  q> 1, f!q~q-l(c~ )=coiq  / and lira g n(co i n  ~q q ) ( B i n ) > O "  

i n i n " 
K gl p + I  for n 2 p + l ,  we have Since  gip = gip+ 1 ~P 

i n " i 
g ip(coip)(Bin  ) =  fPBin~ n dg .p+l  (co i ). 

~p+/ ~p P 

Compatibi l i ty  of integral  and pointwise  inc reas ing  limit impl ies  that 

f l inm in dg!  p + l  . ) > 0 ,  
PBin~ gip+ 1 ~p (co~p 

and hence  that 

gi~+l(o~ ,p) ({  co~p+l ~tip+/ I l/rn in B i n ) > O  I ) 0 �9 �9 E gip+l(O>ip+l)(  > . 

Condit ion b then gives  a , in ft i such that c~ p+l  

f (p+l  ) = �9 and lira i n 
tp (COip+l ~ n g i p + l ( c o i p + l ) ( B i n ) >  O. 

The sequence  (coin)n we 've  just  cons t ruc ted  induct ive ly  sa t i s f i e s  f l  n+l.o (coin+l)  = coin 

for each n"  so c o n d i t i o n ( s i n )  provides  us with a co in a such that qi n(co)  = �9 for 
i n 

every n. Now s ince  g in (co in ) (B in )>  O, ~O~n" is in Bin and co in q~l(Bin ) . , ~  This  i s  

absurd for t3n q~ln (Bin ) was supposed  to be empty, 

So we have our gio �9 to show that  gio (co io) (B)  = 0 if . ~ qi ~ ( B ) ,  remark that the 63 t O 

set  of 8 for which this i s  true ( for  a f ixed COl0 ) is  a monotone c l a s s  conta in ing  the al- 

gebra i>iou q ~ l ( ~ f t i ) "  which genera tes  ~f~ 

It remains to cons ider  the total ly  ordered c a s e  and to show that, for i > i o , we have 

i F ix  i > i  o.  For  ] >  i >  k>  i o,  the fol lowing diagrams commute:  gi o = gi K gio. 
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Hence 

i i 
gio gi gio gi 

~io x -~ f~i x ~ ~ f~io x " ~i  "~ " f~ 

i 
qj ~ (gi ~ gi o 

so that for every ]2  i 

commutativity. A 

'< g! ) gk i , ) = gito and (~ik ~ q i ) ~  (gi ~ gl o) = qk ~ (gi ~ t o = o 

i ) = gio ; from uniqueness of gio , we get the expected , ~ j  K ( g i  ~ gi o 

4. Application to processes. 

a) Theorem 3. Let ( E a jae l  be a family of objects of ~ -  indexed by a well-ordered set 

( l , > ) ,  ~a (resp. ~ )  theproduetof  (E/3)/3< a (resp. ( E a ) a e l ) .  Given a family ( f a ) a e l  

where fa : ~a ~ E a + l ,  there is, for each aa in I, a unique gao : ~ao ~e--'~ ~ such that: 

~ ao l] n ~ a o  , For COao e~ao , Bao e ' (Fao+i)l<-i<-n e l>i> +i 

gao r176 ) ( B )  = XBao (COao) fF alia~ (c~ fF d fa '  +1r176 ' xa" +1)"" 
ao+l ao +2 

"" fFa o +ndfa~ +n'1(~176 'xa~ +l . . . . .  Xa~ +n' l )  

where B = B ao x II F [I E 
l< i<n  ao+i •  a" 

A. The projections from fl to ~a and fla to ~/3 if a .2> fl are respectively denoted 

by qa and q ~ .  The q a ' s a r e o n t o a n d s a t i s f y ( s m ) .  

a) For each ~ in I and 0J/~ in ~/3, let us call g~+l(co/3)  the probability measure 

on ~/~+1 = ~ / 3 •  product of q~/3(oj/~) and [/3(o~/~) , given by 

gfi ( ~ ) ( B f i  •  = )lB ( o ~ f i ) . f [ 3 ( ~ )  (F~+I )  for lB f ie  ~2 f i  and 

t F ~ +  l e  ~ E f l + l .  
~+~ ~+1 

g/3 is measurable : t h e s e t  { B e ~  [ PBog~  is  measurable } is a monotone class  

and contains the disjoint unions of the sets  B~ • F~+ 1 which form an algebra generating 

~ ; so i t ' s  ~f~ i tself .  

The same techniques prove that g~fl+l(o~fl)(B/3+l ) = 0 if  co/3 ~ q ~ + l ( B f l + l ) .  

b) Let us consider the couples ( ] ,  G]) ,  where J is a beginning section of l and G] 

a functor ( ] ,< ) -~  ~ , such that G ] ( ~ , a )  = h ~ : ~ / 3  ~ ' ~ a  if / 3 < a  sa t i s f ies :  

( i )  h~ i s l e f t  inverse to ~ .  

( i i i )  h ~ ( o j ~ ) ( B  a ) =  O if cot~ ~ q ~ ( B  a)  , for ~ / 3 e ~ / 3  and Ba e $f~ a. 
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The obvious order on these couples is  inductive and, from Zorn*s Lemma, there is  a maximal 

element (I 1 ,GII) .  L e t l s d e n o t e  Gil(a , tg)  by g~  ( a > _ / 9 )  and prove that l 1 is I i t se l f .  

If 11 is s t r ic t ly  included in I ,  then a = in[{ y~ I f y ~ l l l  exis t s .  12 will be the set  obtain- 

ed by adding a to 11~ Weql consider the two poss ible  ca se s :  

1. If a has a predecessor  a *, let*s denote 

a = a a ' for each y < a ,  a = gy ga 'K gy ga 71~ 

and denote by GI2 the map send•ng ( / 3 , y ) e 1 2 ,  / 3 < y  to g ~ ,  I t ' s  then easy to prove that 

K 
GI2 is a functor (12, <) --, ~ and that  g~ is left inverse to q~ for /3 <_.y in l 2 . Now we 

want to show that g~(co/3)(Ba) = 0 if w/3 ~ qa~(Ba): Weknowi t  is  true if /3 = a ' .  If 

~ < a '  and 0)/3 ~ q ~ r B a ) ,  

,K g/3 )(~oB)( B a ) = f ga,( .  )( B a) dg~'(cofl) .  
The set 

a X a ' =  [Wa'tf~a'  I ga ' (~  0 } 

a a _%%1 So ' (Xa ,  ) q~{Ba) .  Hence, i s i n c l u d e d i n  qa,(Ba) ,  b y d e f i n i t i o n o f  ga,= Sa . q~ C 

i f  ~ofl ~ q ~ ( B a ) ,  coil ~ q ~ ' ( X a ,  ) and f r o m ( i l l ) ,  g ~ ' ( o j ~ ) ( X a ,  ) = 0 .  It follows that the 

above integral  is zero.  

2. If a is  a limit ordinal, Oa is  the projective limit of the (~/3)/3<a and condit ions 

( i ) ,  ( i i ) ,  ( i i i )  sa t is f ied by Gll allow us to use Theorem 2; for each /3 < a, there i s  a un- 

ique g~ such that the diagram 

g ~ . . . 1 ~  Ira 

qy 

a 
y 

K~ 
commute for /3 _< y <_ a.  If /3 = y ,  we get that g~  i s  left inverse to q/3 Moreover, 

g} (co /3 ) (Ba)=O if o~/3~iq}(Ba) , 

a and, 11 being totally ordered, g~  = gyK g~ if /3< y_<a .  

So in both cases  we have constructed a functor Gl2 sat isfying ( i ) ,  i i ) ,  ( i i i ) .  This 

contradicts  the maximality of (I 1 , Gll ), which proves that l I is  l i tself .  

c) We can apply Theorem 2 to the functor G = Gll i tself ,  which gives us, for each ao 

in l ,  a unique gao such that 

~ t a ~  ~a 
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commutes for a 2  ao �9 To complete the proof, we ' l l  show that ga  has the expec ted  form, by 

induct ion on n. There i s  no problem if n = 0. Suppose that gao s a t i s f i e s  the equal i ty  giv- 

en in the theorem for B ' s o f t h e  form Bao Xl<_i<_pH Fao+i• a . Let  

B ' = B ao x li F +ix II E �9 
l<i<p+l  ao a>ao+p+l a 

Then 

gao (~176 = ga~ +p+l (COa ~ ) (Ba  ~ • II F +i ) 
l < i < p + l  ao 

= g : :  +P+P+I K ga;+P(coao)(Bao x i<_i~p+lFao+i)  

P + l ( . ) ( B a o  • l] F +i)dga~ +P( ). 
= l < _ i < p + l  ao 

The induction hypothesis  gives  the form of ga 2+p(ooao) on the se t s  Bao • [I F 
l<_i<_p ao+{" 

From this,  we can deduce  that,  for any charac te r i s t i c  function, hence  for any s imple  function 

and f inal ly  for any bounded measurable  function X from aa0 +p to R : 

fX  dga~ +P = f dfao(eOao ). . .  f dfa ~ +p.l(COao ,Xao +l . . . . .  Xao +p-1)X" 

ao + p + l  If we apply this to X = ga0 +p ( ' ) ( B a o  • 11 f +iJdefined by: 
i<_p+l ao 

X(c~ +p) = X(~176 'Xao +1 . . . . .  Xa o +p) 

= X B a  ~ (Oao)X Fa o + l ( x a o + l ) ' ' ' X F a o + p ( x a o + p ) f ( e ~  

we get 

( ) 

~ a  o +1 a o +p+l 
XBao ~176 dfa~ (~176176 fF 

This  is  what we expected  and the proof i s  complete ,  A 

d fa o +p(~ . . . . .  Xao +p )" 

b) Remark. If l = N,  the e x i s t e n c e  of the gao (e~ gives  back I o n e s c u - T u l c e a  Theo-  

rem as  s ta ted  in [d]. 

c) Theorem 3 bis. Theorem 3 is still valid with ~o~ instead of  ~ and ( N , > )  in- 
s t eado f  (1,>_). 

A. 1 ~ With the notat ions of  Theorem 3, we first  show that gn+l is  a morphism of ~ n 
that is ,  i s  cont inuous.  It will  follow from the more general  resu l t :  

Proposition. Let [11 and Q2 be objects of  ~,~ and define 

0 : F I ( ~ l ) X 1 1 ( ~ t 2 ) ' I I ( f t l X ~ 2 ) :  ( P 1 , P 2 ) I * P 1 x P  2 

('product probability measure). Then 0 is continuous. 

3. The set  

* ~ ai f l i (~176 ) f2 i (~176 fi]: fti  ' R cont inuous A ={ f: f~lxf~2 R t f (o l ,CO2)  = i = l  bounded } 
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is  an algebra containing the cons tant  maps and separa t ing  the points  of ~21 • ; hence,  by 

Stone-Weierstrass  Theorem, it i s  dense  in the se t  of cont inuous  bounded maps from f~l • 

to R, endowed with the topology of uniform convergence  on compact  subse ts .  

Now let ((P~,Pn2))n converge  to (P1 ,P2) '  [ be a cont inuous map from ~2 l •  to R 

bounded by 1 and e be a fixed pos i t ive  real  number. For  i = 1, 2, the (Pn) n are uniformly 

t igh t ;  so there i s  a c o m p a c t  K i such that pn(Ki)> 1 "~/16 for al l  n ; if fol lows 

(PT• xK 2) > 1 -~g f o r e a c h  n. 

Choose  a g in et such that 

KlsuP• [ f ( ~ 1 7 6 1 7 6  [ < 8 '  

bounded by 1. Wehave  

(3 )  l f f d ( P  7 •  • < d_~ + I fg  d g P ~ •  d g P l X e 2 ) l .  

But s ince  g has the form ~ a i gli(~Ol )g2i(o2)  , from Fubini  Theorem we get  
i=l 

f g  d(Q 1 xQ2 ) = ~ a i f g l i d Q l f g 2 i  dQ2, i=I 
so that f g d ( P ~ x P  2) converges  to f g  d(P 1 x P 2 ) :  it fo l lows  that there i s  an  N such 

that the second member o f ( 3 )  is  l e s s  than E for n >  N. And 0 is cont inuous .  3 

2 ~ So gn n + l  i s  cont inuous .  Now, if  p > n ,  le t  us def ine  the cont inuous map gPn as the 

composi te  gaP = g ~ - i  ~ "'" ~ ~ +  ~ gn . The commutat iv i ty  o f  all  the diagrams 

(n <_m ~ p ) is straightforward (c f .  Theorem 3). For every  fixed n in N,  a is  the pro jec-  

t ive  limit of  the (f~p)p> n" It fol lows then, from Theorem 1 bis ,  that there ex i s t s  a gn such 

that 
ft 

commutes  for all  P2 N. The  computat ion of ga0 in Theorem 3 s t i l l  app l i e s  here. A 

I I I .  RANDOM TOPOLOGICAL ACTIONS OF CATEGORIES. 

In the above study, p roces se s  were a lways def ined by a functor  from an ordered 

set ,  represent ing  time, to ~ - .  One could a lso  imagine that between two t imes t < t ' ,  

s eve ra l  ac t ions  on the <,moving point~> were poss ib l e ,  in which c a s e  the p rocess  could 

be determined by a functor from a cer ta in  category C to ~ .  This  i s  the reason we now 
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define the random topological actions, which are the ~,non-deterministic~) analogues to 

the topological actions of a category on a topological space E. I t  i s  hoped they lead to ap- 

plications in ~,non-detetministic, optimization problems similar to those studied by A. Ehres- 

mann [2] in the ~detetminist ic ,  case ;  this notion should as well be useful for a probabilistic 

generalization of stochastic automata. 

Throughout this Part III, C is a category object in ~ d ,  that i s ,  a category C endow- 

ed with a Polish topology for which 

C2 comp. ,. C1 

are continuous. 

1. Definitions. Let E be an object of ~,ff. 

dora 

codom ~" CO 

a) A random topological action (abbreviated in rta) (resp. a topological action ( t a ) )  of 

C on E i s a  functor " from C to ~ (resp. to ~ o f ) s a t i s f y i n g :  

( i )  There i s  a continuous map p .  from E onto Co with ~ = ~ / [ e l  = E e forany e~ Co. 

( i i )  If C*E is defined by the pullback 

C*E ,. E 

1 l 
C '  dora ~ Co 

in ~,~ then, in ~ ,  the m a p ( f , x )  1-" 7(x) defines a morphism from C*E to E. 

b) Remarks. 1 o A topological action is equivalent to an intemal diagram in ~of ,  

2 ~ In the c a s e o f a r t a ,  [ (x )  is in fact in l I (Ecodf ) ,  but this space ishomeomorphic 

to, and identified with, the subspace of  1I (E)  of those probability measures with support 

the fibre Ecodf. 

c) Examples. lo If ." i s  a ta, its composite with .K ~ d - ,  ~ is a rta (o f  C on E ). 

2 ~ A Markov process given by the morphisms fn: t2n ~ f~n+l is a r t a  of the order 

( N , > )  on thecoproduct  E of the state spaces f~n ; indeed, ." maps ( n , n + l )  on fn" 

More generally, if several  actions were possible between time n and n+l,  the category act- 

ing on E would still have N as set of i ts  objects but there would be several  morphisms 

between integers m and n, m> n (cf.  [2] for an example of sucha  category), 

2. Topological action associated to a random topological action. 

The domain of the internal diagram (or ~,cat~gofie d'hypermorphismes ,~) associa ted  

to a t a o n  E is C*E with composition 

( f , x ) ( g , y ) = ( f g ,  y) iff x = ~ ( y ) .  

Looking for the corresponding notion in the case  of a r t a  naturally leads to make C act on 

probability measures on E ,  which is  possible thanks to the canonical functor: 

- ,  ~ - - ,  ~ , e , ( n , ,  0 ~ a ' )  ~ ( n ( a )  g a ' ~ 1 7 6  [ [ ( ~ , )  ) .  

a) In this section, we suppose given a rta 7 of C on E,  and we denote by p the as- 
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s o c i a t e d  s u r j e c t i o n  p-: E-~ Co , by E '  t h e s u b s p a c e  u I I ( ~ l { e ] )  = W I I ( E e )  of 
eE Co e�9 Co 

H ( E ) .  Thi s  union be ing  pa i rw i se  d i s jo in t ,  one c a n  def ine  a map p ' from E '  onto C o by: 

p ' ( P )  = e iff  P E [ I ( E e )  ( i f f  P ( E e )  =1 ). 

b) Propos i t ion  l .  E '  is closed in II ( E ) (hence is pol ish)  and p" is continuous from 

E ' to Co �9 

A. Le t  (Pn)n  be a s e q u e n c e  of E '  converg ing  to P in I I ( E )  and e n = p ' ( P n ) .  

1 ~ The  s e t  { Pn I n �9 N I w[ P } i s  compact ,  h e n c e  uniformly t ight  ; in p a r t i c u l a r  there  

i s  a c o m p a c t  K such  tha t  P ( K ) >  1 / 2  and P n ( K ) >  1 / 2  for e ach  n .  If we c h o o s e  an  x n 

in  each  K c~ Een , the  s e q u e n c e  ( x  n)n has  a s u b s e q u e n c e  (Xnk)k  which c o n v e r g e s  to an 

x in K ;  then e = p ( x )  = lirnn enk.  I f  Pnk i s  deno ted  by Qk and enk by e~ ,  the  s equen-  

c e s  (Qk)k  and ( e ~ )  k r e s p e c t i v e l y  converge  to P and e .  Welll now prove tha t  P ( E e ) =  1 

which  will  imply tha t  P �9 I I ( E e )  c E ' .  If th i s  w as  not t rue ,  there  would b e a n  �9 > 0 such  

t ha t  P ( E e )  < 1- E. E e being c l o s e d  in E me t r i zab l e ,  i t  has  an  open ne ighborhood  U sa t -  

i s fy ing  P ( U )  < l - e .  But U i t s e l f  b e i n g a G  8 in E nounal ,  i t s  c h a r a c t e r i s t i c  map XU 

i s  the  p o i n t w i s e  d e c r e a s i n g  l imit  of  a s e q u e n c e  o f  con t inuous  maps  from E to [ 0 ,  1 ] .  Hence  

t h e r e i s  such  a m a p  r with va lue  1 on U such that  f(o dP < 1 - e .  But, s ince  (Qk)k  con-  

v e r g e s  to Q,  t h e r e i s  an ra in  N such  tha t  fq5 dP k < 1-e  for every k > m .  

Let  K '  b e a c o m p a c t  s u b s p a c e o f  E s a t i s f y i n g  Q k ( K ' ) > l - e  for every  k, and  K k i t s  

i n t e r s e c t i o n  with E e l .  If none  of t h e s e t s  K k (k > ra ) was c o n t a i n e d  in U ,  we could f ind an 

Yk e K k ,  Yk ~ U, for e ach  k ,  and  the  s e q u e n c e  (Yk )k  would h a v e  a s u b s e q u e n c e  conve rg ing  

to an  y in K with p ( y )  = e.  So y would be in Ee,  and h e n c e  in  U ,  which  i s  a b s u r d  s i n c e  

(Yk)k  i s  a s e q u e n c e  of the c l o s e d  complement  of U. Therefore  there  is  a K k ( k > ra ) con- 

t a i n e d  in U ; i t  fo l lows  tha t  

1 . � 9  < Q k ( K k )  <_ Q k ( U )  ~ f r  dQk < 1 - e .  

We have  r e a c h e d  a con t rad ic t ion ,  which means  tha t  P ( E e )  = 1. 

2 ~ Suppose  e n = p ' ( P n )  does not  conve rge  to e = p ' ( P )  : there  i s  a ne ighborhood  V 

of  e which c o n t a i n s  no point  of a s u b s e q u e n c e  ( e n k ) k  of ( e n )  n. p be ing  c o n t i n u o u s ,  there  

i s ,  f o r e a c h  x in Ee,  an open  ne ighborhood  F x in E which i n t e r s e c t s  no Een k ( c h o o s e  F x 

such  that  P ( V x )  C V ) .  The un ion  U of the V x i s  an open  ne ighborhood  of Ee,  so that  there  

i s  a c o n t i n u o u s  map r from E to [ 0 , 1 ]  with va lue  1 on  E e and 0 on  the  complement  of  U. 

U c~ be ing  empty,  we have  Eenk 

f r dPnk = 0 and f r dP = 1 ,  

which i s  absurd  s i n c e  ( P n k ) k  c o n v e r g e s  to P .  Hence  p ' ( P n )  c o n v e r g e s  to p ' ( P ) ,  and p '  

i s  con t i nuous .  A 
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c) Theorem 1. If  " is a random toQological action on E, its composite with the functor 

7: ~ ~ ~,~ is a topological action . on E' .  

A . Def in ing  p ' as  in  a ,  cond i t ion  ( i )  of Def in i t ion  1 is  s a t i s f i e d  from P r o p o s i t i o n  1 . It 

r emains  to show that  ( f , P )  ~ f ( P )  i s  con t inuous  from C * E '  ( d e f i n e d  as  the obv ious  pul l -  

back)  to [ I ( E ) .  I r i s  enough to prove that ,  for each con t inuous  map 0: E - * [ O , 1 ] ,  the  map 

T: C * E ' + [ O ' , J ] :  ( f , P )  i+ fO J [ ( P )  

i s  con t inuous .  Indeed,  from Formula  a of the proof of Theorem 1 ( I - 3 )  : 

fO d r ( P )  = f E e ~ O O ~ d P  = f E e [ f O d T ( . ) ]  d P ,  

with e = doN( f ) .  The map ( f , z )  ~ fO d ' f ( z )  being con t inuous  from the  c l o s e d  s u b s e t  

C * E  of C •  to [ 0 , 1 ] , i t  c an  be ex t ended  to a con t inuous  map 0 ' :  C •  Now 

O: C x H ( E  ) + [ 0 , 1 ] :  ( f , P  ) ~. f O ' ( f , .  J dP 

i s  an  e x t e n s i o n  of T to C x 1 1 ( E ) .  Hence  it i s  enough to show i t  i s  con t inuous  on  C * E ' -  

L e t  (( fn,Pn)Jn converge  to ( f , P )  and e be a f ixed real  pos i t i ve  number ;  for e ach  n ,  

t O ( f n ,  P n J - O ( f , P ) l  <_ I f O ( f n , P n ) - O ( f ,  Pn)l  + IO( f ,  P n J ' O ( f , P ) l .  

Since  • ( f , . )  is  con t inuous  ( fo r  0 ' ( f , . )  i s ) ,  there i s  an  N such  tha t  

[ O ( f ,  P n ) - |  < ~  for n > N .  
2 

The  se t  of Pn ' s  be ing  uniformly t ight ,  there  i s  a compac t  K in E such tha t  

inf  P n ( K )  > 1 r 
n 8 

Then ,  0' be ing  bounded by 1, 

IOcfn'PnJ'O(f'Pn)] -< fK t~ dPn +~'4 
0 '  i s  uniformly con t inuous  on the compact  K '  = ({fn I n ~ N l u l f i )  • which imp l i e s  

that  O'( fn , . )  uniformly c o n v e r g e s  to O'( f , . )  on K ; s o t h e r e i s  N '  such that  

She I o ' ( f n , ~ ) - O ' ( f , z ) l  < ~- for n > m ' .  
z~K 4 

Then  

t O ( f n , P n ) ' ~ ) ( f , P ) l  < e for n> s u p ( N , N ' ) .  

I t  fol lows tha t  0 i s  con t inuous .  A 

d )  Remark. The functor  " of Theorem 1 t akes  i t s  va lues  in the  ca t ego ry  5 of f ree  
e a l g e b r a s  of (11 ,7 / , /x ) ,  so t h a t  not any t a o n a  se t  E '  such  tha t  E e = 1I(E e ) ,  with 

(Ee )e  ~ Co a pa r t i t ion  in c l o s e d  s u b - s p a c e s  of a P o l i s h  s p a c e  E ,  a c t u a l l y  comes  from 

a rta. In fact ,  it can  be shown that  only  t h o s e  ta ~ which fac to r ize  through ~ do, t h a n k s  

to the  i somorph i sm be tween  ~ and 2~-.  

3. The category of random topological actions of C.  

a) Nota t ions .  1 o T he  o b j e c t s o f t h e c a t e g o r y  ~ are the coup l e s  ( E , p )  where E i s  a 

P o l i s h  s p a c e  and  p a map from E onto Co �9 A morphism ~ : ( E ,  p)-, ( F ,  q) i s  a morphism 

qS: E*e , F such  that  
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E ,r & -~F 

Co 

commutes~ Composi t ion is  deduced  from ~ g .  

2 ~ ~l,~,,a has  for o b j e c t s  the random topologica l  a c t i o n s  of  C ,  If " is a rta on E and " 

a r t a o n  F, amorph i sm ~b: " ~ " i s  a morphism ~:  ( E , p - ) ~  ( F , p - )  in ~ such that  the 

family (v5 e)e~Co ' where Ce: EeK .., F e is the  res t r i c t ion  of  r to the f ibers  on  e, con- 

s ide red  with values  in l l ( F e )  , def ines  a natural  t ransformat ion " => ? .  This  l a s t  condi t ion 

means  that  r commutes with the ac t ions .  Composit ion i s  again deduced  from ~ .  

b) Theorem 2. The forgetful functorfrom ~ d  to ~ has a left adjoint. The free object 

over ( E , p )  is the rta o.p on the topologicalsubspaee C*E of C x E  defined by the pullback 

C*E , E 

l l 
C dom , Co 

0 

given by g P ( f , x  ) = ~ C , E ( g f ,  x )  fff domg = codomf. 

A.  Let  us f i rs t  prove that  op. ( deno ted  here .~ ) i s a r t a o n  C * E . T h e m a p  

po : C*E * Co : ( f , x ) - ,  eodom(f) 

i s  onto and cont inuous ,  and for each e of C o, we have o = P~ 1 { e} = ( C ' E )  e. So con- 
0 

d i t i o n ( i )  of Defini t ion 1 i s  s a t i s f i ed .  For  any g: e-, e' in C, we  can s e e  g as a m o r -  
0 

p h i s m i n  ~ ' ,  from ( C * E ) e  to ( C * E ) e , .  It is easy  then to show that . : C- .  ~ Y  i s  a 

functor.  At las t ,  the map 

0 
C * ( C * E )  , C ' E :  ( g , ( f , x ) )  ~ g ( f , ~ )  

i s  cont inuous  s ince  composi t ion  in C and OC*E are.  

We now def ine  

np: ( E , p ) - '  ( C * E , p o  ): x [~ ~ C . E ( P ( X ) , X ) .  

Let  " b e a  rta on F, and r  ( E , p )  -, ( F , p  ^) anymorph i sm if 2 .  If a morphism 

from .o to " in ~,~.~a i s  such that 

( E , p ) -  np , ( C * E , p o )  

(F ,  p -) 

commutes ,  i t  s a t i s f i e s  n e c e s s a r i l y  ~ ( p ( x ) ,  x )  = cb(x) ,  and, from the def in i t ion o f  ~,~,~a, 

�9 ( f , ~ )  = (~, , o f ) r  = ( / , ,  r  = (} , ,  ~ ) ( ~ ) ,  

for every ( f ,  x )  in C*E. So d) i s  unique i f  it e x i s t s ,  To show tha t  the above  def ined 

f i t s ,  it remains to check  i t  i s  cont inuous .  But s i n c e  

~ ( f , x )  = [#FeodfO~(} ) ] (~ (x ) ) ,  
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continuity of �9 follows from continuity of ( f , x )  I-+ (f ,  qS(xJ) and of 

Of, P) I--> VFcodfOII( f ) (P)  = fCP) 

(cf.  2 - c ,  Theorem 1). A 

C) Remark. Let ~d be the subcategory of ~ with the same objects but with morphisms 

only the deterministic ones (of the form ~ with 0 in Y d ) ,  and g , ~ t  the subcategoryof 

~,~,~a with objects the ta (Example 1, c, lo ) and morphisms the deterministic maps between 

those. Then, by restriction, op is still the free object over ( E , p )  for the forgetful functor 

from ~ , ~  to ~d ; this is already known. 

At last,  we prove the following result, similar to the one obtained in the case of top- 

ological actions : 

d) Theorem 2. ~,~,~d is (isomorphic to)the Eilenberg-Moore category of the monad gene- 
rated by the above adjunction. 

A. Let us call this monad ( P , n , m ) .  For any 6: ( F , q ) - ~ ( E , g ) ,  P(q~) is the only 

morphism in ~ ,~a  such that np • ~5 = P(~b) K nq. Via the comparison functor from ~o~,t 

every rta " on E becomes an algebra: the structural arrow is given by 

h ( f , x )  = "[(x) forany ( f , x ) e  C*E. 

In particular, mp is defined by 

m p ( g , ( f , x ) )  = q C . E ( g f ,  x) for ( g , ( f , x ) ) ~  C*(C*E) .  

Every morphism in ~,~-,a becomes a morphism of algebras as well. We now wanna prove the 

converse. Let us consider 

~ : ( F , q ) - , ( E , p ) ,  k : ( C * F ,  p o q ) - , ( F , q ) ,  h : ( C * E , p o p ) - , ( E , p ) ,  

a moThism of algebras; we denote k ( f , y )  by f ( y )  for ( f , y )  ~ C*F and h(f ,  x) by 7(x) 
for ( f , x ) r  C*E. Using the notations of Theorem 3 his ( I I - 4 ,  c) ,  we get the 

Lemma. For ( f , y )  in C*F such that q (y )  = e, we have: 

a) (np K ~) (y )  = r l c ( e ) x ~ ( y ) .  

b) P ( E ) ( f , Y )  = ~ c ( f )  xE(Y) .  
c) (~,~ k ) ( f , y )  = (~ ,~ ~ ) ( y ) .  

d) (hK P ( ~ ) ) ( f , y )  = ( 7 ~ 5 ) ( Y ) .  

3. C*E being a closed subset of C x E ,  every element of I I ( C * E )  can be seen as an 

element of II (C x E),  hence is  determined by its values on the subsets B C x B E ' where 

BC r $C and BEe B E. For such a subset :  

a) (np K ~C)(y)(Bc•  f n p ( . ) ( B c X B E ) d E ( y )  

= f r l C . E ( e , . ) ( B c X B E  ) d E ( y  ) (for ~(y )  is concentrated 
o n E  ) 

e 

= 71c(e ) ( B c ) .  ~ ( y ) ( B E ) .  

b) P ( E ) ( f ,  yJ(B C x B E ) =  f T P ( . , . ) ( B c X B E ) d ( n p K E ) ( y )  



85 

= f ~  ) ( B c •  d~C(y) from a and Fubini Theorem 

= f r l C * E ( f , ' ) ( B c •  = r l C ( f ) ( B c ) ' ~ ( Y ) ( B E ) "  

c) (~K k ) ( f , y )  = ( g E o I l ( ~ } ) ( k ( f , y ) )  = ( g E ~  = (~ K f ) ( Y ) .  

d) (hK P ( r  = f h ( . , . ) ( B E ) d P ( r  = f h ( f , . ) ( B E ) d r  

= f f ( . ) ( B E )  d ~ ( y )  = ( T e : ~ ) ( y ) ( B E ) .  8 

Applying c and d of this Lemma to an algebra ( ( E , p ) , h )  with 

we get 

( F , q )  = ( C * E , p o p ) ,  ~ = h, k = mp , 

(h K m p ) ( f , ( g , x ) )  = ( h t ( ~  = h ( fg ,  x )  = ~ g ( x )  

and 

(hK P ( h ) ) ( f , ( g , x ) )  = (7:< h ) ( g , x )  = ( g E o l l ( 7 ) ) ( ~ ( x ) )  = (~K ~ ) ( x ) ,  

so that 7 is a functor to ~ -  (the fact that i t  sends units to units follows from the equality 

hK np= r 1E) ,  and hence a r taon  E. 

To prove that any morphism of algebras comes from a morphism in ~o~4, we use c and d 

of the Lemma again, applied this time to such amorphism ~ between algebras ( ( F , q ) , k )  

and ( ( E , p ) , h ) ,  considered as rta ." and ? respectively. Fromc a ndd ,  ~ commutes with 

the actions and so is a morphism in ~,~,~a. A 
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