A CATEGORICAL APPROACH TO PROBABILITY THEORY
by Michéle GIRY ( Amiens )

The aim of this paper is to give a categorical definition of random processes and provide
tools for their study.

A process is meant to describe something evolving in time, the history before time ¢
«probabilistically » determining what will happen later on. For instance, it may represent a mov=

; the problem is then

ing point x, being at time ¢ in a space Q, endowed with a o-algebra B, ;

the exact position of x in (.

In the very particular example of a Markov process, time is running through N and the
position of x in Q_ ; only depends on where it was in Q. So, for each n, a map [, from
Q, % 53”+] to [0,1] is given: [, (w,, B, ;) is the probability for x to be in B, ,; at time
n+l] if it was on o, attime n. f, is thus asked to satisfy the two following properties:
for each w,, f,(w,,./) is a probability measure on (Q,,;, %n+1 ), and for each B, ;,
fo(+s> B4 ) is measurable. f, is called a transition probability (4], or a probabilistic map-
ping {3] from (Q, ,8,) to (Qp 41 93n+] ). The process is then entirely defined by the f,'s.

But if time runs through R, we need a transition probability f° from (2, B,) to
(Q,,8,) for each couple (s, ) with s < ¢. Then, if r< s < t, there are two ways of comput-
ing the probability for x to be in B, knowing it was on o, at time r: forgetting s, which
gives f{(w,, B;); or considering how x behaved at time s , it seems then reasonable to take
the mean value of [} (w,, B, ) (for wg running through Q) relatively to the probability mea-
sure {[(w,,.) on Qg, which yields to [f¢.,B,)df (w,,.). This integral is shown to de-
fine a transition probability from Q, to Q,, called the composite of f7 and f}, which is
asked, in «good» processes, to be the same as f}. This equality is called the Chapman-Kol-
mogoroff relation,

The composition of transition probabilities is associative. This property is equivalent
to Fubini Theorem for bounded functions and its proof, as well as that of stability of transition
probabilities for this law, is rather technical, These results will be consequences of the follow-
ing one: the transition probabilities and their composition form the Kleisli category of a monad
on the category of measurable spaces. A similar monad will be constructed on a category of top-
ological spaces ( generalizing the one defined by Swirszcz [6] on compact spaces).

As F.W.Lawvere already pointed out in an unpublished paper [3] in 1962, most problems
in probability and statistics theory can be translated in terms of diagrams in these Kleisli cat«
egories.

In the sequel we'll mainly study projective limits which will lead us to construct proba«

bility measures on sample sets of processes.
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I. THE PROBABILITY MONADS.

1. Notations, Mos is the category of measurable spaces; an object will be denoted by 0
and its g-algebra by B . The morphisms are the measurable maps. Pal is the category of
Polish spaces (topological spaces underlying a complete metric space ); again, an object is

called @ and B¢ is its Borel g-algebra. The morphisms are the continuous maps.

A monad is going to be constructedon both Mes and Paf ; the definitions being very

much the same, in the sequel H will stand for either of them, unless otherwise notified.

2, Construction,

a) The functor 11 {called P in [3]): If Q is an object of H, T(Q) is the set of pro-
bability measures on Q (i.e., the g-additive maps from 539 to {0,1] sending Q to ]),
endowed ;

. if H =Mea, with the initial g-algebra for the following evaluation maps, where B

runs through 939 :

pp:0(Q) »[0,1): P b P(B);

. if H = Pa, with the initial topology for the maps

ff:H(Q) - R: Pb [fdP,
where f is any bounded continuous map from ( to R; I(Q) is then a Polish space (its
topology is called the weak topology) [51].

If f:Q > Q' isamorphism of K, and P is in I1(Q), the probability measure on
Q' image of P by f is defined by
Wef)P)(B') = P(}J(B')) for every B'in B,

b) The natural transform n: [dy = II: The characteristic function of an element B
of B is denoted by yp. For o in Q, the probability measure concentrated on ¢ is
defined by

UQ(m)(B) = XB(co), foreach B in ﬂﬂ.

c) The natural transform y: 12 = [ : For P* in 12(Q), a probability measure on Q

is defined by :

uQ(P*'J(B) = [pgp dP’, forevery B in 339.
These integrals are well-defined for each pp is measurable from 1(Q) to [0, I], hence
is integrable for P'. The measurability of pp if Q is an object of Paf follows from the

fact that, Q@ being metrizable, we have Bq = UA G, » where 4 is the first uncountable
a<

ordinal and: §, is the set of open sets of Q,



70

=1 Q;Bn | B, ¢ @a { if a is even,
QaJrI . )

={Y 4B, | B, G, } if o isodd,
ga = { L,Z‘*Bn | Bn € Bgagﬁ ; if ¢ 1is limit,

and is proved by induction on the class of R,

The o-additivity of uq(P’) isa consequence of the monotone convergence theorem,
3. Theorem 1. (II,5,p) is a monad on K.

A . First let us prove the following properties, valid for any morphism f:Q » Q' of H,
any P in O(Q), P'in M2(Q), o in Q, 0:Q-R and #';: Q’>R bounded measurable
functions :

a) [0 dIl(f)(P) = [0 fdP,

b) [6dyg(w) = 0(w),

) if £, is defined by Eg(P) = [0dP, &, is measurable from [1(Q) to R,

d) [0duq(P') = [£ndP".

In the case where 0 is of the form yp, this follows from the definitions ; by linearity of |

this is still true if 6 is a simple function. The general case is a consequence of the mono-
tone convergence theorem and the fact that 4 is the increasing pointwise limit of a sequen-
ce of simple functions,

If f:Q-Q"isin H,sois M¢f): When K = Mes , measurability of II/f) is obvious;
when H = f.ol, continuity of M (f) follows from formula a. Now [I is a functor because, if
g: Q'> Q" is another morphism of X,

-1 -1 -1
(gof) (B")=1( (g (B") for B"cBgn.
nq is clearly in H (by definition in Mes and by formula bin Pal ). Sois y
- if { = Jlesa, this will follow from property c above, applied to [1(Q), @ = pg and P’;

- if { =%al, it is a consequence of formulad.

The diagramms

o [ a HQ(Q)_QM_,HZ(Q')
70 lm' and #Ql rQ
n) M) ncen nee) —_0f)  rcan

commute : Only the second one requires some work: if P’ is in 112(Q) and B’ in Bae

~1
(W(f)opq(P'))(B') = uq(P')(f (B')) = [p dp’

Fes)
(egroTM2(f)(P'))(B') = [pgedT2(f)(P') = [pgroll(f)dP"
from a. But since p'fl (B =ppgroll(f), the commurativity follows,

and

Unitarity of 7 is easy. Let's prove the associativity of p.If P" isin I3(Q) and B
is in 339 .
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(hqollpQ)(PI)B) = [ppopgdP" = [& dP"
from a and definition of ., and
(hg oug()(P)(B) = fppdug(q)®").
Equality follows fromd. A

4. The Kleisli category of (II,7,u).
The Kleisli category associated to (TI,n, ) is called Pg. 1f {, g are morphisms

! @
0 ’(/V A\g; -
gxf
The canonical functor from H to P sends
/3

o Lo to Qe—"r —»Q', where Z:r]aroh.

in 9, we write

A Kleisli morphism f:Q w— €' is a transition probability in the following way: let
us define

F:Qx8q¢»{0,11 by F(w,B')=f(w)(B’).
Then F(w,.) is a probability measure on Q' and F(.,B')=pgiof is measurable, so F
is a transition probability.
If { = Meo, the transformation f|» F is a one-to-one correspondence between P
and the class of transition probabilities.
Moreover, the composition in $J is the usual composition of transition probabili=
ties, since:
(gxf)w)(B) = [ppogdf(o) = [g(-}B)df(e)
= [G(.,B)dF(w,.)
with the above notations. So, Chapman-Kolmogoroff relation means that a «good» process

( cf. the introduction) is defined by a functor from the ordered set R to 7,

Il. PROBLEMS OF PROJECTIVE LIMITS IN 99 .

In the study of a process, an important problem is to find a probability measure on
the sample set, compatible with the given transition probabilities, This sample set being
the projective limit of the sets of «histories before a time ¢», the existence of a limit for
a projective system of probability measures soon arises, which can be translated in tems
of preservation by & of projective limits in H ( which still represents Mes or Pal ). Let

us recall that Mea admits all limits and Pof all countable limits,

In the sequel, we consider the following situation: Q is the projective limit of a
functor F from a filtered set (/,>) to H, and is characterized by the commutative dia-

grams, for i >j:
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we want to know how ¥ preserves the limit, that is: when and how can the dotted arrow of

the following diagram be filled up?

Q;
8 K
95 .
(D) Qlpe------- ~Q . ¥
g 4 !
i

Notice that commutativity of the outer diagram means that TI (fj-)(gi(w')) = gj(m') for
each ', so that the families (g;(w')); are projective systems of probability measures.
Hence, the first problem will be the existence of a limit g(w’) for such a system, and the
second one the fact that the so defined g is a morphism of 9. The results will be of a

different nature in Mes andin Pof.

1. Theorem 1. /f H = Mes and the q;'s are onto: (2i Ji ¢ 1 is universal among the cones

(8; )i, with basis ©F such that:

(* ) For all increasing sequence (i, ), of I and each (Bin Jp in [r}ggﬂin such that

N h]'il (B; )=@, the sequence Pp. © 8&; pointwisely converges to 0.
n n Ln n

A. Let o' bein Q'. (g;(w')); beinga projective system of probability measures
one can define an application g(w ') from the algebra B’ = U qgl(‘%g.) generating
B to [0,1] by fel ’

g0’ )(GT(B;)) = gi(w')(B;)

Thanks to condition (*), g(w') is a probability measure on B’ and can subsequently
be uniquely extended to fBQ (cf, [4]). It remains to show that g is measurable from
Q' to I(Q), which is equivalent to the measurability of all the pgog for B in 39 .
But the set of B's for which pp o g is measurable contains $’ and is a monotone

class, so that it's B itself, A

Remark. Condition (*) was necessary for the existence of the g(w’)'s.Measurability

of g did not require any further hypothesis.

2. Theorem 1 bis. If K = Pal, (I1,2)=(N,>) and the q, 's are onto, Q0 is the projec~

tive limit of X F.

A. The Q,'s and Q being Polish, a probability measure in the sense we use is
also a measure in the Bourbaki sense, Hence all the systems (p(@') ), N havea
limit gfw’) [11. (This would be true even if / had only a cofinal countable subset, )
Now we must show that g is continuous from Q' to M(Q). We'll use the following
result {57:

A subset X of JI(Q) is relatively compact iff it is uniformly tight, which means
that, for all ¢ > 0 there is a compact K. in Q such that P(K ) > ]-¢ forall Pin X.
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Let (w, ), converge to o’ in Q': we only need to show that, for any continuous map 6 to

R, bounded by 1, [6 dg(w,) convergeto [0 dg(w’). We'll use the following notations:
gplog) =PE, gp(w')= PP, glos)=P, and glw')=P

1o We gec that the set { PP | ne N} is uniformly tight since it is the image by the conti-

nuous map g, of the relatively compact set {w, | neNi.

20 The set { P, | ne N} is also uniformly tight: let's fix ¢ in R% . There is a compact

subset K; of Q) such that P,]l (Ky)>1 -£2 for each n. Suppose K]""’Kp are constructed

such that, for each k< p, Kj is a compact subset of Q;, , contained in (/k_17](Kk) (for
k> 1) and satisfying:

PE ik, )> 1-(5+ .. +;7)

for each n ; there is a compact K', , in Q p+1 with

p+1
inf PRI (K,

2p+1
The compact Kp v =K +]n(fP+IfI (Ky ) satisfies

PPtk S 1e(& 4o+ ).

So a sequence (Kp)p can be inductively constructed, such that £, is a compact subset of
Qp contained in (fp 1} (Kp P satisfying inf Pp (K )> 1-¢. The (decreasing) intersec-
tion K of the q I(K ) is such that mfP (K)> I-¢. It is enough now to prove that K is
compact: if U isan ultraﬁlter on K, % (‘U} is an ultrafilter on K (since P is onto) and

hence converges to a wp in K, . The fp being continuous

fhlwp) =w, foreach pxg;
therefore there is an » in Q satisfying 9plw)= @ for each p, which means that 4 is

in fact in K. As () is the topological projective limit of the QP 's, it's then easy to prove

that U converges to this « ; compactness of X follows.

30 Let 4 = { bp o 9p | peN, 6p : Qp » R continuous bounded {. 4 is a subalgebra
of the algebra of continuous bounded maps from Q to R ; it contains the constant maps and
it separates the points of Q ; so Stone- Weierstrass Theorem ensures that 4 is dense in
this algebra, endowed with the topology of unifom convergence on compact subsets.

4° We are now able to prove the convergence of (f06dP,), to [6dP.Let ¢>0

be fixed; by 2 there exists a compact subset K of 1 such that

inf({Pn(K)IneN}u{P(K)})>1-§,
hence

(1) | f0dP,-f6dP|<|[ KOPn [0 dP |+ <

By 3, there exists a continuous map 6 QP » R (that can be chosen bounded by ] ) such
that: stIO(w)- oqp(w)[<§ it follows :
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£
(2) | 0dP, - [ 0dP|< lfkepoquPn-fKepoquP|+4

o - o P +£ 4+ £,
<1 [0pogydPy-[0,09,dP [ 2 5
But since
- P _
Pl =M(gy)(P,) and PP=1l(q,)(F),
the second member above is

p . p £
[ f6,dPE - [0, dPP] + 5

so that, since PP converges to PP, it is less than 37; if n is greater than a Nin N, Hence,
forn>N, | [0dP,- 6 dP| islessthan ¢, from inequalities (1) and (2). So g isa
morphism of P4l filling up diagram (D), and the proof is complete, A

3. A general process on discrete time is described by a sequence (f ) of transition proba-
bilities, [, being from the set of «histories before n» Q;x...xQ, to Q ;. We'll see that
this sequence induces a functor from (N,<) to ?J and, using the above theorems, we'll
construct a transition probability from each Q; x... XQP to the sample set 1€, , compatible
with the f 's. This result, which contains Ionescu Tulcea Theorem [4], is a comllary of

Theorem 3 below, itself a consequence of the following

Theorem 2. Here H =Mea. If (1,2 ) is a filtered ordered set and F a functor (1, 2) = Mea

whose projective limit is given by the commutative diagrams

with the further property
(sm ) For any increasing sequence (i, ), in [ and any (win Jp in gﬂin such that:

In+] .

fin (@i s
and if G is a functor (1,<)> FPT verifying:

a)Forixj, G(i,j)= g;.-: Q]K—ﬂ Q; is left inverse to ?; ,

}=w; , thereis a w in Q satisfying ¢; (0 ) =w; ,
n n n

b)For i>4,, w; € QL-D s Bje BQi, w; § f;n (B;) implies g;ﬂ (("iﬂ JB;)=0,
then for each i, inl there is a unique mormphism &, : Qin w«— Q such that
K i S
9k 8, =8 for every i> 1,
and

8, ((uiﬂ J)B)=0 forevery (win,B)in Qiax‘rBQ with miaéqio(B).

Moreover, if I is totally ordered, the diagrams

commute,
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A. Let us first notice that property a for ¢ means that

commutes for i> j> i, . This, together with the fact that Q is also the projective limit of
the restriction of F to {ie/l | i3z i, }, implies that the existence and unicity of &, will be

proved, using Theorem 1, as soon as we have shown that (gé‘7 has property (*) of this

Ji»i,
theorem, Indeed, if it has not, there is a «; in Q; , an increasing sequence (i, ), in [
0 0
and sets B; in B¢ such that:
n 12
n

i
n*‘fiZ(Bi ):Q and lim gin(wi )(BL )>0.
n n n n 0 0 n
Suppose we have constructed (w; ,.., 0; ) in Q; X...xQ,; satisfying:
. 0 p 0 . p
i i
For ¢>1, 1 (0; )= w; and lim g,n(a)i NB; )>0.
Lgel q q-1 noig q n

i
n Kg‘p+1 for n>p+1, wehave
p+1 p

_ i, i
Since gip =g
In In ip +1
8 (w; J(B; )= (pp 08" dg, (w; )
P p n i, LP+1 Lp P
Compatibility of integral and pointwise increasing limit implies that

A
d ~p+1 [ >0,
;48 ( ‘p)

i
flim Pp. Ogin
n iy pt

and hence that

i [
P I Q. lim g,* . B: }>01%)>0.
g‘p (wzp){ “ipggt §p+11 n g‘p+}(w‘p+f)( ‘n
Condition b then gives a o in Q. such that
p+1 ‘p+1
i i
PHL o, =w; and lm g" : B, )>0.
fip (wlp +]) cL)Lp n g‘p-l—](w‘p +])( Ln)
i
The sequence (w; ), we've just constructed inductively satisfies f,*1! (o; )= w;
n 'n n+l n

for each n ; so condition (sm) provides us with 2 ¢ in Q such that 9, (0)=o; for
. n n

. 13 . -
every n. Now since g;"(w; )(B; )>0, w; isin B;
n n n n n

and o in qZ](BL- ). This is
n n
absurd for gq;-'] ( B; ) was supposed to be empty,
n n

So we have our g;, > to show that g (w; )(B)=0 if w; ¢ 9; (B, remark that the

set of B for which this is true (for a fixed w; )is a monotone class containing the al-
0
bra U, q7f hich .

ge i q; (fBQi), which generates B

It remains to consider the totally ordered case and to show that, for i > i, , we have

&

, S8k gl?o « Fix i»i,. For j>i>k>i,, the following diagrams commute
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Qia > ;s Q Q
i
> g; K
&l ’I « 4;
. lj
Q]
Hence
K : : POK ; K ; k
9;x (g« 8, ) =gl and (72in)'<(gir<g§a)= Gpr(gix g ) =&
so that for every j> i, "(Ij K (g;k gé = g{ ; from uniqueness of gi, » We get the expected
o o

commutativity. A

4. Application to processes.
a) Theorem 3. Let (E, ), ;1 be a family of objects of Mes indexed by a well-ordered set
(1,2), Q, (resp. Q) the product of (EB)B<a (resp. (E ), 1) Given a family (f ), g

where [, : Q. w— E_ 1, there is, for each a, in I, a unique 8a,° an w—> Q) such that:

For g, cQq,» Ba,eBg » (Fo,4ilicica E]Z{IZH%an"Fi,
fa (00 WB) = xp, (a0 My, Sy e 41000, Fay )
“fF dfao +n-1(wao’xa, +170002 %g, t+n-17
a, tn
where B = Ba, X ]gz'[_IgnFao +ixa>l<—zla +nE

A. The projections from Q to Q, and Q@ to QB if « > 8 are respectively denoted
by ¢, and q‘é . The g 's are onto and satisfy (sm).

a) For each 8 in ] and wg in QB’ let us call gg+1(w3) the probability measure
on QB+1 :QBXEBH’ product of qQB(wB) and fB(wB) , given by

+1
gg ((L)B)(BB XFB‘I‘]) = XBB(Q)B).fB((/)ﬁ) (FB+]) fOl'{BﬁS BQ'B and

F B .
B+1 BII°TEgyy

&g is measurable: the set { B« B¢ | ppo ggH is measurable } is a monotone class
and contains the disjoint unions of the sets BB X F,B+I which form an algebra generating
Bg ;s soit's Bg itself.
. B+1 ] B+1
The same techniques prove that &g (mﬁ){86+2) =0 if wg ¢ B {BIS+I)'
b) Let us consider the couples (], Gy ), where / is a beginning section of / and Gy
a functor (/,<)~> PF , such that Gy (B,a) = h% : QB —Q, if B < a satisfies:
g . <o
(1) hB is left inverse to 15
. B+l _ B+l
(ii) hB = gﬁ .

(iii) h%(wﬁ)(ga)=o if w3¢q%(3a), for wBeQB and B e Bq -

a
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The obvious order on these couples is inductive and, from Zorn's Lemma, there is a maximal
element (ly, G, ). Let's denote GI (a,B) by gﬁ (a> B ) and prove that I is I itself,

If I; is stictly mcluded in /[, then a=inflyel | ytI;} exists. [, will be the set obtain-
ed by adding « to I;. We'll consider the two possible cases:

1. If a has a predecessor g', let's denote
a ' -
gy—g‘;,;( g‘; foreach y<gq, gg—nQa

and denote by (;12 the map sending (B,y) ¢ Ig, B<y to gﬁ . It's then easy to prove that

012 is a functor (1,, <) » ?F and that gﬁ is left inverse to qB for B<y in I,. Now we
want to show that g%(wﬁ)(Ba)=0 if m'g&q%(Ba):Weknowu iste if B=4q". If
B<a'and wg {9B(B, ),

ghwp)(By) = (g% g%)Naph B, ) = [8%:( (B, ) dghlag).
The set
Xa"'-—-' {wareﬂ ' | ga:(m I)(B )7’50}
is included in ¢%,( B, ), by definition of g% = g’ alt1l g gﬁ‘ (X e qﬁ(B ). Hence,
if wg ¢ an(Ba), g t q%'(Xa') and from (iii), gB (mB)(Xa:) = 0. It follows that the
above integral is zero.
2.1f q is a limit ordinal, Q, is the projective limit of the (QB )B<a and conditions

(i), (ii), (iii) satisfied by GII allow us to use Theorem 2; for each 8 < a, there is a un-

commute for B<y<a. If 8=y, we get that gB is left i 1nverse to q,B Moreover,

ique gaB such that the diagram

gB(mB)(Ba) =0 if wg ¢ qB(Ba),
and, [; being totally ordered, g% = g;“/ K g% if B<y<a.
So in both cases we have constructed a functor 012 satisfying (i), (ii), (iii). This
contradicts the maximality of (1, Gl ), which proves that [y is I itself.

c) We can apply Theorem 2 to the functor G = GI itself, which gives us, for each 4,

in /, a unique &, such that
lga/' Q
K
;.
\ 0
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commutes for ¢ > a, . To complete the proof, we'll show that g_ has the expected fom, by
induction on n. There is no problem if n = 0. Suppose that g4, satisfies the equality giv-

en in the theorem for B ’s of the form Bao X n r % Hi Ea . Let

Then
8o (@0, J(B') = 652 TP g ) (B

X 11 .
0 ap ]SL'SP+]FQ,+L)

— gaotptl a, +p
gaZJrP KgaZ (wao)(Bao X]gigp+]Faa+i)

= fglo Pt yB  x Fo +i) 4820 Pla, ).

i
agtp o Igigp+l]

The induction hypothesis gives the form of go +P(wa ) on the sets B ><I<[I< Fa,, i
0 0 0 Sisp

From this, we can deduce that, for any characteristic function, hence for any simple function

and finally for any bounded measurable function X from Qa,, +p to R:

+p =
f/\/ dggnﬂ P = fdfaa(mao)...fdfao +P-](wag’xaa+]""’xao+P-])X'

If we apply thisto X = gae J:f;)"'] (-)(By, ><,<£I+]F ) defined by:
L—

a, ti

X(coao +P)= X(("au g 4100000 ¥, +P)

- X Bao (wao) XFaa +1 (xao +])“'XF(1.7 +P(xao +P)f(man +P)(Faa +P+1)

we get

(o) d d (0 eera .
*Ba, ae fFa,,+1 fau (9, fFa,, +p+] fa ol % 17/

This is what we expected and the proof is complete, A

b) Remark. If | = N, the existence of the 8y (w0,
[

) gives back lonescu-Tulcea Theo~
0

rem as stated in [4].
¢) Theorem 3 bis. Theorem 3 is still valid with ol instead of Mea and (N, ) in-
stead of (1,> ).

A. 1o With the notations of Theorem 3, we first show that gr';+1 is a morphism of P9,

that is, is continuous. It will follow from the more general result:
Proposition. Let Q; and Q4 be objects of $ol and define

0: Q7 )xM(Qy) - H(Q;xQ 2): (P, Pg)ls PyxP,
(product probability measure ). Then 6 is continuous.

8. The set

n
A ={f:Q]><QZ—>R1 f(a)],a)2)='§. aif]i(“’])f2i(w2)’ fi]-:QL-%RCOﬂ[iHUOUS
t=1 bounded }
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is an algebra containing the constant maps and separating the points of (; x(, ; hence, by
Stone-Weierstrass Theorem, it is dense in the set of continuous bounded maps from @, %@,
to R, endowed with the topology of unifonn convergence on compact subsets.

Now let ((P7?, P’2”))n converge to (P;,Pq), { be a continuous map from Q,xQ, to R
bounded by 7 and ¢ be a fixed positive real number. For i = I, 2, the (P} ), are unifomly

tight; so there is a compact K; such that P?(K;)> 1-¢/16 forall n ; if follows
n
(P}’XP2)(K]><K2)>1-§8— foreach n.
Choose a g in A such that

K§u§K2 l f(w]:wQ)'g(w])w2) [ <%’

bounded by 1. We have
(3) | [/ d(PFxPy)-[fd(PyxPy)| < 3L+ | [gd(PFxPY)-[gd(PyxPy)|,

But since g has the fom 'El a;g1;(w])ggi(wo), from Fubini Theorem we get
1=

fgd(Q;xQy) = igl a; [ 8§7:40; 89 405,
so that [ g d(P'j ><P§) converges to [gd(P;xXP,): it follows that there is an N such
that the second member of (3) is less than ¢ for n> N. And @ is continuous. §
20 So €Z+I is continuous. Now, if p > n, let us define the continuous map gP as the

n+l
n

composite gb = 6’5-1 K vio k gn T4, The commutativity of all the diagrams

Q

% P
K
p
Qn\ qm
g
Qm

m
D
(n<mgp )is straightforward (cf. Theorem 3). For every fixed n in N,  isthe projec-
tive limit of the (Qp )PZ n- [t follows then, from Theorem 1 bis, that there exists 2 g, such
that
% 2
0 q

commutes forall p> N. The computation of g4 1in Theorem 3 still applies here. A
o

{i. RANDOM TOPOLOGICAL ACTIONS OF CATEGORIES.

In the above study, processes were always defined by a functor from an ordered
set, representing time, to PF. One could also imagine that between two times < ¢,
several actions on the «moving point» were possible, in which case the process could

be detemined by a functor from a certain category C to PF, This is the reason we now
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define the random topological actions, which are the «non~deterministic» analogues to
the topological actions of a category on a topological space E. It is hoped they lead to ap-
plications in «non-deteministic» optimization problems similar to those studied by A, Ehres-
mann [2] in the «deteministic» case; this notion should as well be useful for a probabilistic
generalization of stochastic automata,

Throughour this Part 11, C is a category object in Pof, that is, a category € endow-

ed with a Polish topology for which

dom
Coy —L2Mmp. ., ¢ ——— —>(
2 1 codom 0

are continuous,

1. Definitions, Let £ be an object of Paf.
a) A random topological action (abbreviated in rta) (resp. a topological action (ta)) of
C on E isa functor 7 from C to PJ (resp, to Pal) satisfying:
(i) There is a continuous map p- from £ onto C, with & = pl{e} = E, forany ec C,.
(ii) If C*E is defined by the pullback

C*E ——————F

| I

C dom C,
in Paf then, in P9, the map(f,x) |» j-'(x) defines a morphism from C*E to E.

b) Remarks. 1° A topological action is equivalent to an intemal diagram in Paf,
2° [n the case of a rta, ?(x) is in fact in H(Ecodf)’ but this space is homeomorphic
to, and identified with, the subspace of [I(F ) of those probability measures with support

the fibre Ecodf’

c) Examples, 1o If 7 isa ta, its composite with ¥, Pal » PF is a rta (of C on E ).

2° A Markov process given by the morphisms fo: Qe Q, ,; isara of the order
(N,>) onthe coproduct E of the state spaces @, ; indeed, T maps (n,n+1) on f .
More generally, if several actions were possible between time n and n+1, the category act-
ing on E would still have N as set of its objects but there would be several morphisms

between integers m and n, m > n (cf. [2] foran example of such a category),

2. Topological action associated to a random topological action.
The domain of the intemal diagram (or «catégorie d'hypemorphismes») associated

toataon £ is C*E with composition

(fsx)(gy)=(fg,y) iff x=g(y).
Looking for the comresponding notion in the case of a rta naturally leads to make C act on
probability measures on £, which is possible thanks to the canonical functor:

T,PT - Pal, (@b b (n(mwn(m ).

a) In this section, we suppose given a rta 7 of C on E, and we denote by p the as-



81

sociated surjection p~; E » C, , by E’ the subspace U H(ﬁl{ el)= v, T(E,) of
ecC, ee C,

M ¢E ). This union being pairwise disjoint, one can define a map p’ from E’ onto C, by:
p'(P)=e iff PeW(E,) (iff P(E,)=1).
b) Proposition 1. E' is closed in II(E) (hence is polish) and p' is continuous from
E' o C,.
A. Let (P, ), be a sequence of E' convergingto P in II(E) and e, =p'(P ).
1o The set { P, | ne NIl P} is compact, hence uniformly tight; in particular there
is a compact K such that P(K)>]/2 and P, (K)> 1/2 foreach n.If we choose an x

n
in each KNE, , the sequence (x, ), has a subsequence (xnk );, which converges to an
n

x in K ; then e=p(x)= l’ilm €n - If P”k is denoted by @ and €n; by e}, the sequen-

ces (@ ), and (el ), respectively converge to P and e. We'll now prove that P(E,) =1

which will imply that P ¢ I(E,) c E’. If this was not true, there would be an ¢ > 0 such
that P(E,) < 1-¢. E, being closed in E metrizable, it has an open neighborhood U sat-
isfying P(U )< 1-¢. But U itself being a Gg in E nomal, its chamcterstic map Xg
is the pointwise decreasing limit of a sequence of continuous maps from E to [0, 1]. Hence
there is such a map ¢ with value ] on [ such that [¢ dP < ]-¢, But, since (Qp )y con-
verges to (), there is an m in N such that [ ¢ dP, < 1-¢ forevery k>m.

Let K’ be a compact subspace of E satisfying Q4 (K')>1- ¢ forevery k, and K its

intersection with Eel':' If none of thesets K, (k> m ) was contained in U, we could find an
vy ¢ Ky, y3 4 U, foreach k, and the sequence { v ) would have a subsequence converging

toan y in K with p(y)=e. So ¥ would bein E,, and hence in U, which is absurd since
(y1 )y 1s a sequence of the closed complement of /. Therefore there is a Kp (k>m ) con-
tained in U ; it follows that

T-e < Qp(Kp) < Qp(U) s [ dQp <1-e.
We have reached a contradiction, which means that P(Ee) =7,

20 Suppose e, =p'(P ) does not converge to ¢ =p'(P ) : there is a neighbothood ¥

of ¢ which contains no point of a subsequence (e Jy of (e,),. p being continuous, there

n

k

is, foreach x in E_, an open neighborhood V, in E which intersects no E, (choose V
n

k

such that p(V, ) C V). The union U of the ¥, is an open neighborhood of E,,

is a continuous map ¢ from £ to [0, ]] with value ] on E, and 0 onthe complement of U.

so that there

UnE, being empty, we have
n

[$dP, =0 and [ dP =1,

which is absurd since (Pnk Jy convergesto P. Hence p'(P ) convergesto p'(P), and p'

is continuous. A
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c) Theorem 1. /f 7 is arandom topological action on E, its composite with the functor

T:PF 5 Pl isa topological action [ on E'.

A . Defining p’ as in a, condition (i) of Definition 1 is satisfied from Proposition 1. It
remains to show that (f,P ) |» f:(P) is continuous from C*E ' (defined as the obvious pull-
back) to II(E). It is enough to prove that, for each continuous map 6: E »[0, 1], the map

T:C*E' > 10,11: (f,P) > [0 df(P)

is continuous, Indeed, from Formula a of the proof of Theorem 1 (I-3):

[0 df(p) = I £gofdP = In (fodf()] dP,

e
with ¢ = dom(f). Themap (f,z) > (0 df(z) being continuous from the closed subset
C*E of CXE to [0, 1], it can be extended to a continuous map 0': CXE~[0,1]. Now
©:CxI(E)>10,11: (f,P) b [0°(f,.)dP
is an extensionof T to ¢ xI(E ). Hence it is enough to show it is continuous on C*E';
Let ((f,,P,)), converge to ([, P ) and ¢ be a fixed real positive number; for each n,
1O (fns Pp)=O®Cf,P)l < 1O([s Pu)=0O(f,P )l +|O(f,P,)-0([,P)]

Since ®(f,.) is continuous (for §’(f,.) is), there isan N such that

[@([,Pn)-@)(f,P)l<£2 for n> N.
The set of P, 's being uniformly tight, there is a compact K in E such that

L‘Zf P.(K)>1 'EE'

Then, 6’ being bounded by 7,

1801, Pr)-0(f,P )] < lef)'(fn,.)-e'(f,.)l aP, +£4.

6' is uniformly continuous on the compact K* = ({fn | ne Ntulfl) xK, which implies
that 0'f,,.) uniformly converges to ¢ f,.) on K ; so there is N' such that
észgtpK|0’(fn,z)-9’(f,z)|<EZ- for n>N".
Then
1O(f,,P,)-0(f,P)| <e for n>sup(N,N').

It follows that ® is continuous. A

d) Remark. The functor * of Theorem 1 takes its values in the category ¥ of free
algebras of (II,y,u), so that not any ta on a set £’ such that E; =TI(E,), with
(Egle, c, @ partition in closed sub-spaces of a Polish space E, actually comes from

a rta. In fact, it can be shown that only those ta ; which factorize through ¥ do, thanks

to the isomorphism between ¥ and P75 .

3. The category of random topological actions of C,
a) Notations. 1° The objects of the category R are the couples (E,p) where E is a

Polish space and p a map from £ onto C, . A morphism ¢:(E,p)» (F,q) is a morphism
¢: E w— F such that



commutes, Composition is deduced from 7.

20 Rand has for objects the random topological actions of C.If 7 isarta on E and .*
artaon F, amorphism ¢: 7 » is a morphism ¢:(E,p~)> (F,p-) in R such that the
family (¢, )eeCo » where ¢ E_«— F, isthe restrictionof ¢ to the fibers on e, con-

sidered with values in II(F ), defines a natural transfomation 7 => . This last condition
means that ¢ commutes with the actions, Composition is 2 gain deduced from P
b) Theorem 2. The forgetful functor from Rand to R has a left adjoint, The free object
over (E,p) is the rta ’P on the topological subspace C*E of CXE defined by the pullback
C*E — F

|t

¢ ——dom ¢,

given by ?;p[f,x) =7 (gf, x) iff domg = codomf.

C*E
A. Let us first poove that °P (denoted here ¢ Yisartaon C*¥E . The map
:C*E » Cyp: (f,x) > codom(f)
is onto and continuous, and for each e of C,, we have ¢ = p3l {e} = (C*E),. So con-
dition (i) of Definition 1 is satisfied, Forany g: e~ e’ in C, we can see Z’ as a mor-
phism in ?ff, from (C*E}e to (C*E}e,. It is easy then to show that J:C-P9F isa
functor. At last, the map
CHC*E)» C*E: (g,(f,%)) b &(f,x)
is continuous since composition in € and 3 C*E are.
We now define
np-' (E:P)_) (C*E’PO)-' x l—’ WC*E(P(’C),X)-
Let “bearaon F,and ¢:(E,p)~ (F,p~-) any morphism if R, If a morphism @

[+ P .
from . to | in Rand is such that

(E, P)‘E—>(C E,po)

N

(F,p-)
commutes, it satisfies necessarily ®(p(x),x) = ¢(x), and, from the definition of Rand,
(%)= (O xf)(p(x)x)=(fx ®)p(x)x) =(fx 8)(x),

forevery (f,x} in C*E.So & is uniqueif it exists. To show that the above defined ®

fits, it remains to check it is continuous. But since

®(f,x) = lp Fwdfomfmqsfx)),
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continuity of @ follows from continuity of (f,x)|» (f, ¢(x)) and of

(f,P) |- oN(f)(P)= f(P)
(cf. 2-¢, Theorem 1). A

chodf

c) Remark. Let R, be the subcategory of R with the same objects but with morphisms
only the deteministic ones (of the forn § with ¢ in Pof), and T act the subcategory of
Rand with objects the ta (Example 1, ¢, 1°) and morphisms the deteministic maps between
those. Then, by restriction, F is still the free object over (E,p ) for the forgetful functor
from Jaet to R, ; this is already known.

At last, we prove the following result, similar to the one obtained in the case of top-

ological actions:

d) Theorem 2. Rand is (isomorphic to) the Eilenberg-Moore category of the monad gene-
rated by the above adjunction.

A. Let us call this monad (P,n,m). Forany ¢:(F,q)»(E,p), P(¢) is the only
morphism in Rand suchthat n_« ¢ = P(¢)« ng- Via the comparison functor from Rand
every rta © on E becomes an algebra: the structural arrow is given by

hif,x) = ?(x) forany (f,x)e C*E.

In particular, mp is defined by

my(g:(frx)) =ncxp(gf,x) for (g,(f,x))e C*(C*E).
Every morphism in Rand becomes a morphism of algebras as well. We now wanna prove the

converse, Let us consider

§:(F,q)~>(E,p)s k:(C*F,po )>(F,q), h:(C*E,poy)=(E,p),

a morphism of algebras; we denote k(f,y) by f(y) for (f,y)e C*F and h(f,x) by f(x)
for (f,x)e C*E. Using the notations of Theorem 3 bis (II-4, c), we get the
Lemma, For (f,y) in C*F such that q(y) = e, we have:

a) (nyx E)y) =ngle)xE(y).

b) PAE(Liy) = el fIXE(Y).

c) (k) fiy)=(Exfy).

) (ha PUO)(fry) = (FxE)(y).

8. C*E being a closed subset of C X E, every element of II{ C*E) can be seen as an
element of II(C X E ), hence is determined by its values on the subsets BrXBp , where

Be e fBC and Bpe %E' For such a subset:
a) (npr)(y)(BCXBE)= f”p(»)(BCXBE)df(}’)

=fngxple,. )(BpoxBgp)dé(y) (for £(y) is concentrated
on E )
e

=ncle)(Bg) €(y)(Bg).
b) PCEV(f,y)(BexBg)= [P(.,.)(BexBy)d(n,«E)(y)
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= [P(e,.)(BpxBy)dé(y) froma and Fubini Theorem
= fncwp(fr-J(BexBp)de(y) = no(f)(Bc).E(y)(BE).
) (Ex BV foy)=(ug o N (K(f,y)) = (ugoEN(f(y)) = (£ [)(y).
d) (A P(EY)(f,y)(Bg) = [h(.,.)(Bp)dP(&EV(f,y) = [h(f,.)(Bg)d&(y)
= (. )(Bp)de(y) = (FxE)(y)(Bg). &
Applying c and d of this Lemma to an algebra ((E,p),k) with

— * = =
(F’q)_(c E:POP)’ f"‘h’ k mP’

we get
(hxmy)(f,(8,%)) = (hw{P)(g.x) = h(fg,x) = [&(%)
and
(b POR)I[,(8,%)) = (Txh)(g,5) = (ppoll([))(k(x)) = ([xE)(%),

so that 7 is a functorto P9 (the fact that it sends units to units follows from the equality
kxn.p =np ) and hencea naon E.

To prove that any morphism of algebras comes from a morphism in Rand, we use c and d
of the Lemma again, applied this time to such a morphism ¢ between algebras ((F, q),k)
and ((E,p),h ), considered as rta " and [ respectively, From ¢ and d, ¢ commutes with

the actions and so is a morphism in Rand. A
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