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Abstract—Matrix-vector multiplication, as a key computing
operation, has been largely adopted in applications and hence
greatly affects the execution efficiency. A common technique
to enhance the performance of matrix-vector multiplication is
increasing execution parallelism, which results in higher design
cost. In recent years, new devices and structures have been widely
investigated as alternative solutions. Among them, memristor
crossbar demonstrates a great potential for its intrinsic support
of matrix-vector multiplication, high integration density, and
built-in parallel execution. However, the computation accuracy
and speed of such designs are limited and constrained by the
features of crossbar array and peripheral circuitry. In this
work, we propose a new memristor crossbar based computing
engine design by leveraging a current sensing scheme. High
operation parallelism and therefore fast computation can be
achieved by simultaneously supplying analog voltages into a
memristor crossbar and directly detecting weighted currents
through current amplifiers. The performance and effectiveness of
the proposed design were examined through the implementation
of a neural network for pattern recognition based on MNIST
database. Compared to a prior reported design, ours increases
the recognition accuracy 8.1% (to 94.6%).

Keywords—memristor crossbar, current sensing, matrix-vector
computation.

I. INTRODUCTION

The matrix-vector multiplication has been widely used in
many scientific computing and engineering applications. Ex-
amples include the linear system solvers in economic modeling
and control system simulation [1]. It is also the most critical
component of machine learning and deep neural network mod-
els [2]. A common approach for the performance enhancement
of matrix-vector multiplications is to increase the execution
parallelism, which requires a large number of computation
resources and leads to high energy consumption [3][4]. More-
over, in nowadays big data environment, data generation and
collection grow in an exponential rate, which essentially boosts
up the scales of the aforementioned modelings and algorithms.
Thus, finding a new solution of matrix computation with better
computation and energy efficiency becomes crucial.

In addition to continuous efforts on circuit and architecture
development in conventional CMOS domain [5], the use of
new devices has been extensively explored [6]. For instance,
the discovery of memristor devices brought a great opportunity
of new computing engines. Thirty-seven years after Professor
Chua’s theoretical prediction [7], The existence of memristor
device was firstly reported by HP Labs in 2008 [8]. Memristor
features non-volatility, high integration density, and multi-level
(or continuous state) storage, making it a promising device for
data storage [9][10] and computing [11].

As illustrated in Fig. 1, a high similarity exists between a
mathematical matrix and a memristor crossbar array. Thus, the
matrix-vector multiplication can be naturally realized through
a high-density memristor crossbar array, by representing each
matrix element with the conductance of the corresponding
memristor cell. Input signals can be supplied in parallel to
wordlines of the array as an input vector, and the outputs
can be collected at bitlines simultaneously. Such a design con-
cept has been investigated and demonstrated in neuromorphic
systems and approximating computation [12][13][14], offer-
ing a new design scenario with high computation efficiency.
Lately, a neuromorphic system with a transistor-free metal-
oxide memristor crossbar performing 30 synaptic weights was
demonstrated [15].

The accuracy and power consumption of memristor cross-
bar based matrix-vector multiplication are greatly related to
the architecture and circuit selection. For example, Hu et al.
adopted a voltage-based sensing scheme which uses voltage
amplitude to represent input and output data [12]. This de-
sign provides high computation speed but the analog-digital
and digital-analog (AD/DA) signal conversion introduce high
signal distortion and power consumption. In spiking neuro-
morphic system implementation [16], the input information
is supplied in the spiking format. The matrix computation
result is detected by an integrate-and-fire circuit (IFC) and
represented by output spikes. Such an approach demonstrates
very high power efficiency. However, the output of memristor
crossbar will not follow a linear function with the input data,
due to the charge accumulation and release of IFC. Computing
accuracy and speed are constrained by the limited spike
number. Moreover, to better control the memristor conductance
and promise computation accuracy, it is preferable to integrate
a transistor with each memristor device [17]. As such, the
unique 4F 2 unite cell size (where, F is the technology feature
size) cannot be maintained. And a shift in the target memristor
conductance is inevitable, which increase the difficulty and
complexity in matrix mapping [16][18].
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Fig. 1. Mapping a matrix-vector multiplication to a memristor crossbar.
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In this work, we propose a new memristor crossbar based
computing engine which leverages a current-based sensing
scheme for higher computation speed and accuracy. The design
supplies analog voltage signals to wordlines in parallel. A
current buffer amplifier directly senses out bitline current
so the tail voltage of bitline maintains at a constant level.
We developed the matrix-vector computation engine based
on a 144 × 144 memristor-based crossbar and current buffer
amplifier at 130nm technology node. The impact of sneak
path leakage and wire resistance of memristor crossbar were
considered and analyzed. The performance evaluation of the
proposed computing engine was conducted through a three-
layer neural network for MNIST handwritten digit recogni-
tion [19]. Comparing with a latest reported design [16], the
proposed work obtained 8.1% improvement in recognition
accuracy and improve operation speed 40.1%.

II. BACKGROUND

Memristor is a two terminal nonvolatile device that repre-
sents its state as a resistance value (or memristance). By care-
fully controlling the amplitude and duration of a memristor’s
external excitation (e.g., voltage or current), its memristance
can be changed gradually [17].

Memristors are usually organized in crossbar arrays with
extremely high storage density. As illustrated in Fig. 1, the
cross-point of every horizontal wordline (WL) and vertical
bitline (BL) locates a memristor. Instinctively, such an array
structure can be used to realize a matrix-vector multiplication,

e.g.,
−→
Yn

T =
−−→
Xm

T × Mm×n. More specific, we can use a
crossbar array Gm×n to denote Mm×n by making gi,j , the
conductance of the cell at the cross-point of WLi and BLj ,
represent the corresponding data in MM×N . The matrix-vector
multiplication is then transformed to

−→
In

T =
−→
Vm

T ×Gm×n. (1)

Where, the input vector
−→
Vm

T = [v1, v2, · · · , vi, · · · , vm] is
composed of analog voltages to WLs. The output current ij at
the end of BLj produces a dot production, such as

ij =

M∑

i=1

gi,j · vi. (2)

Thus, all the BLs currents form the output vector
−→
In

T =
[i1, i2, · · · , ij , · · · , in]. For the high integration density and
parallel operation, memristor crossbars greatly improve the
efficiency in matrix computation and therefore inspired ex-
tensive studies on the hardware implementation and applica-
tions [12][20][21].

0.0 0.5 1.0
0

10

20

30

40

Pu
lse

 N
um

be
r

LegendT=10 ns
T=30 ns
T=50 ns

(mA)Σi=1gijVi
M 0 20 40 60 80

0

20

40

60

80

100

Computing Period  (ns)

Pu
lse

 N
um

be
r

Input: Voltage Amplitude
Input: Spiking Chain

Fig. 2. (a) The computation accuracy analysis of a spiking-based design [16].
(b) The relations of output spike number vs. computing period when repre-
senting input data by spike chain or by voltage amplitude.

III. MOTIVATION OF OUR WORK

A memristor crossbar based computing engine senses out
BL voltage/current as the computation result. Recently, Liu
et al. implemented a spiking-based design for high power
efficiency [16]. It uses an integrate and fire circuit (IFC)
to detect the BL current and represent it by spike number.
The charging and discharging overhead of IFC results in a
non-linear relationship between the ideal BL current as a

sum of weighted multiplication (
∑M

i=1 gijVi) and the output
spiking number: with BL current increase, the output spike
number will increase first and then start to saturate, as shown
in Fig. 2(a). It can also be observed from the figure that
prolonging the computing period, e.g., increasing it from 10ns
to 50ns, will help produce more output spike number, resulting
in better linearity and higher computation accuracy.

Moreover, the input data in the spiking-based design [16]
is converted to a chain of spikes: the spike frequency (i.e.,
the number of spikes within a constant computing period)
represents the scale of data. Such a digitalized interface
guarantees the good noise immunity and high energy efficiency
in signal transferring. However, it also induce a low utilization
rate at time domain. Thus, the computing period need to be
sufficiently long to satisfy the computation accuracy require-
ment. In contrast, when using voltage amplitude to represent
the strength of input data as [12], the computing period will be
fully utilized and therefore could be a lot shorter. For example,
we compared the relations of the output spike number and
the computing period of two designs and Fig. 2(b) shows the
results when the BL current is set to 0.6mA. To generate the
same amount of output spikes, the computing period of the
design representing input data by voltage amplitude is only
about the half of the version using an input spike chain.

We also note that the spiking-based scheme by Liu et al.
adopted one-transistor-one-memristor (1T1M) cell structure.
The use of selective transistor is highly recommended in
data storage structure, to alleviate the sneak path leakage
problem in crossbar [18]. However, it significantly enlarges
the cell size (≥ 6F 2). Very importantly, more than 4% loss in
computing accuracy has been induced by selective transistor
after including its state resistance into consideration [16].

IV. THE PROPOSED CIRCUIT DESIGN

We propose to develop memristor crossbar based comput-
ing engine by integrating a current sensing scheme. Instead of
connecting each BL to an IFC, a current amplifier is used to
detect BL current. Thus, the voltage of BL will be clamped to a
fixed voltage level and the matrix-vector operation can closely
follow the linear function of Eq. (2), without being affected
much by the resistance distribution in memristor crossbar.
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i=1 gi,jvi.
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When implementing the proposed matrix computation en-
gine, the non-ideal effects are mainly contributed by the
memristor crossbar and the current amplifier. We investigated
the computation engine design made of a 144×144 memristor
crossbar and the current amplifier at 130nm technology node.
In this section, we will describe the detailed design consider-
ations and analyze the computation accuracy loss.

A. Memristor Crossbar Array
It has been well known that the sneak path leakage is

a major concern in memristor crossbar design [18][22]. The
sneak path leakage refers to the unexpected parasitic current
leakage caused by those unselected cells. To solve the issue,
one-transistor-one-memristor (1T1M) and one-selector-one-
memristor (1S1M) cell structures have been investigated when
using crossbar arrays for data storage [23][24] and neuromor-
phic systems [16].

Our approach conducts the computation in a parallel mode:
all inputs are represented by analog voltage signals and sent to
WLs of crossbar array simultaneously. The current amplifier
help keep BL at a constant voltage level. In this way, all the
cells are selected and accessed at the same time. The impact
of sneak path leakage is negligible in such a multiple inputs
multiple output (MIMO) operation [25] so the BL current can
follow Eq. (2). Therefore, we are able to adopt the memristor-
only cell structure in this work which offers the minimal cell
size of 4F 2 while assuring computation accuracy.

The series wire resistance could also affect the BL current
and therefor distort the realization of Eq. (2). To quantitatively
evaluate the impact, we compared the relations of BL current

(Io,j) and
∑M

i=1 gi,jvi, with and without including the wire
resistance into considerations. Each configuration conducted
2,000 simulations with randomly generated input data. Fig. 3
summarizes the simulation results, where only a small subset
of data is included for better illustration.

In the simulations, we assumed 3-bit resistance states
of memristor device, that is, eight resistance levels from
Ron = 50KΩ to Roff = 1MΩ. The resistance patterns of cross-
bar were randomly picked which cover the major portion of

the range of
∑M

i=1 gi,jvi. For the 130nm technology adopted
in the work, the wire resistance per cell is about 0.52Ω. The
simulation results show that when the wire resistance is not
included, all the output currents strictly follow the theoretical
analysis in Eq. (2) which is not affected by data patterns.
A small shift occurs after including the wire resistance into
the simulation. Even though, the linearity between the output

current and
∑M

i=1 gi,jvi can still maintain because of the large
resistance value of memristor. The fitting curve obtained in our
implementation is

Ĩo,j = γIo,j , (3)

where γ = 0.973. Note that our result is consistent to [26],
where the largest reading error is less than 5%. It was obtained
at the farthest cell in the crossbar when all the remaining cells
have the lowest resistance value of Ron.

B. Current Amplifier
Fig. 4 depicts the schematic of our current amplifier design.

It is used to detect the output current from crossbar array. Since
the conductance of memristor can represent a positive value,
we can subtract the results from two crossbar arrays to obtain
the computation with negative matrix elements [12]. To support
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Fig. 4. The current amplifier design.

the feature, we designed a bi-lateral current buffer amplifier
with two input ports Ij+ and Ij−, denoting the BL currents
from the crossbars for the positive and negative elements,
respectively. A system-level illustration is demonstrated in
Fig. 6, which shall be explained in Section V.

In this current amplifier design, Vref is a reference voltage
providing DC operating point. Three high-gain operational
impedance amplifiers (OTAs) are used to clamp the voltage
level of the two input ports Ij+ and Ij− at Vref during
operation. OTAs also assist the function of the associated
current mirrors, e.g., keeping the same Vds for N1 ∼ N4.

The input current Ij+ injected into N2 is duplicated to N3.
The subtraction of Ij+−Ij− can be compensated by the branch
of P9 ∼ P10. A cascode structure is adopted at the output
stage to improve the accuracy of current mirror (P9 ∼ P12).
For the design requiring only unilateral current input, the
current amplifier corresponding to Ij− can be trimmed by
removing the part within the red dashed box in Fig. 4.

Compared to other current amplifiers such as [27], our
approach tends to minimize the output voltage variation under
different amount of BL currents. Recall that in the spik-
ing based design, a BL is directly connected to IFC, and
the integration/firing operations are realized through charg-
ing/discharging a capacitor inside IFC [16]. A stable charging
voltage at the capacitor is necessary in order to maintaining a
fixed charging rate and therefore a constant spiking generation
frequency. Our current amplifier was designed for the purpose.
We evaluated the performance of Iout of current amplifier by
fixing Ij− = 0 and sweeping Ij+. Here, Vref is set to 200mV.
The result in Fig. 5 shows that Iout follows well with Iin.

C. Overall Performance
After combining the non-ideal factors of the memristor

crossbar and the current amplifier design, the output signals
can be fitted by a first-order function such as
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Fig. 5. The characteristic of the current amplifier: Iin vs. Iout.
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I∗out = γ
M∑

i=1

gi,jvi. (4)

The root mean square errors of I∗out is 2.7% .

The slight error of our design can be mitigated by many
system-level designs. For example, in developing neural net-
work models, this error can be included by substituting Eq. (4)
into the training procedure so the computation accuracy at
system level will not be affected much. In Section V, we will
use a simple neural network to evaluate the performance of
the proposed computing engine.

V. APPLICATION AND EVALUATION

We designed a neuromorphic system by using memristor
crossbar with the proposed current sensing scheme. For each
memristor crossbar, analog voltage signals are used as input
data. The current generated at BL will go through a current
amplifier and an IFC in sequence to produce output spikes. The
performance and accuracy were evaluated through a three-layer
neural network for MNIST handwritten digit recognition [19].

A. Neuromorphic System Implementation
As discussed in Section IV-B, the proposed current ampli-

fier is used to sense out the BL current (Iout) with a close to
ideal linearity, representing the sum of weighted multiplication.
In real applications, a current output need to be transformed
into a voltage signal. The spiking based architecture by Liu et
al. [16] demonstrated a high power efficiency by eliminating
the use of analog components like analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs). By lever-
aging the integrate-and-fire design concept, an approach of
feeding Iout of the current amplifier to an IFC and therefore
transferring the computation results into a digitalized format
has been adopted in our design.

Fig. 6 demonstrates the system-level approach for neural
network implementation. Instead of using a chain of spikes
as the data input, analog voltage signals generated by DAC
will be simultaneously supplied to the wordlines of crossbar to
represent input vector. As discussed previously, this approach
can produce more output spikes within the given computing
period, offering better computation accuracy, compared to the
original spike-based design. For the analog voltage inputs with
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Fig. 6. The system architecture used for neural network implementation.

different voltage amplitudes, the current amplifiers performs
like buffers that isolate the crossbar array from IFCs. It helps
eliminate sneak-path leakage and grantee good computing
accuracy as discussed in IV-C.

As shown in Fig. 6, two memristor crossbars are used in
each layer, in order to realize both the positive and negative
matrices terms without modifying original neural network
models. The two crossbars are respectively denoted as M+

and M− [12]. To conduct a subtraction operation and match
the mathematical algorithm in training and recall processes,
the current outputs from two corresponding BLs of the two
crossbars will be connected to the two input ports of an current
amplifier. The computation output will be then transferred to
the output of the current amplifier Iout, which is the input
of IFC for output spike generation. The output spikes can be
encoded to digital signals by digital circuitry and gives out
digital voltage signal [16]. When implementing a multi-layer
neural network system, the output digital signals of one layer
are transferred to analog format and fed to the following layer.

In this work, we evaluated the proposed new design
denoted as AnalogV in the following context and compare
it with spiking based design in [16], which is denoted as
Spiking. Comparing the two type of system implementations,
AnalogV offers an analog-digital flow, while Spiking provides
a completed digitalized data transmission. The computation
accuracy of Spiking is affected by the non-linearity effect
shown in Fig. 2(a) and the selective transistor resistance in
the 1T1M cell structure. The low output spiking rate in a
certain computing period due to the non-linearity resulted
by IFC charging and discharging described in [16] and the
spiking input with 50% utilization rate are also major concerns.
While, the system AnalogV proposed in this work can provide
a higher output spiking rate because of the parallel analog
voltage signal adopted in this design. Meanwhile, the crossbar
of AnalogV is denser for it composed of only memristors.
However, the design requires extra components, including
current amplifier and DACs. The induced overheads have been
carefully considered in the following evaluations.

B. Application of Digital Pattern Recognition
We tested and compared the two system designs on a

three-layer feed-forward neural network. Here, 60,000 digital
patterns from MNIST [19] were used for training, and a test
set of 10,000 examples was selected randomly. During the
training and testing, we resized digital patterns in 28 × 28
pixels from MNIST database to smaller patterns in 12 × 12
pixels to match the maximal allowable 144 × 144 memristor
crossbar in this work. Each memristor represents a 3-bit data (8
resistance levels). Traditional back-propagation and delta rule
were used for training and then each memristor cell in the
crossbar was programmed to a target resistance [25]. Fig. 7

Fig. 7. An example of patterns 0 ∼ 9 with 4-bit gray scale in testing.
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Fig. 8. The MNIST recognition failure rates of AnalogV and Spiking system designs when applying different (a) input widths, (b) input bits, and (c) resistance
value variations.

shows an example of patterns 0 ∼ 9 with 4-bit gray-scale
used in our training and testing.

The crossbar sizes of layer 1 ∼ 3 are 144× 128, 64× 128
and 64 × 20, respectively. The numbers were determined
for the best recognition accuracy obtained at software level.
We evaluated and compared the performance of AnalogV
and Spiking systems under different design considerations,
including the input width, input bits, and resistance value
variance. The impacts of matrix-vector computation accuracy
on these systems were measured by the failure rates in pattern
recognition testing.

C. Design Parameter Considerations
In both system implementations, integrate-and-fire circuits

are adopted to transform the current computation results to
readable digital voltage signals. As such, the computing accu-
racy of the integrate-and-fire circuits that is mainly affected by
the computation period is a major concern in the failure rate
of the two systems in pattern recognition. The computation
period of the IFC will be determined by both input signal
width and input bits. Therefore, the input signal width and
input bits will be two important design parameters needed
to be consideration. As discussed above, DACs are used in
our proposed system AnalogV and its resolution will affect
the computation accuracy of the system. In the hardware
design, DAC with half-bit resolution error was implemented
and the induced computation accuracy loss was considered
in the following evaluation. Moreover, during programming
memristor with multiple value, variations in resistance value
cannot be ignored and will be considered.

1) Input Width Dependence: We first tested the pattern
recognizing failure rated under different input signal widths.
Inputs were set to 4-bit value in this evaluation. Fig. 8(a)
demonstrates the result when varying the input width from
10ns to 100ns. The failure rate under the ideal condition is
2.66%, which was obtained from software simulation without
including any real implementation consideration. The simula-
tion results showed that both AnalogV and Spiking systems
are sensitive to the input width, and the new scheme AnalogV
has the higher computation accuracy. More specific, the failure
rate of AnalogV is 5.43% at the input width of 100ns, which
is 8.11% less than that of Spiking design (13.54%).

The large input width dependency is mainly caused by
IFC design so computation accuracy improves as the input
width increases. Accordingly, the failure rate decrease as the
input width grows up, especially when it is smaller than 60ns.
Spiking demonstrates a much higher failure rate (38.43%) than
AnalogV (14.75%) under the input width of 60ns. This is

because sparse input pulses are given as input for Spiking and
the real computation time is decrease by half. More output
spikes will be generated in system AnalogV in a certain input
width as analog signals are applied to crossbar with 100%
of utilization. The failure rate fluctuation of Spiking at small
input width indicate the high instability of the system and high
randomness of the testing results. The accuracy loss caused by
the non-linearity of IFC in AnalogV is much smaller than the
accuracy decrease in Spiking in the same computation speed.
In the other words, our proposed system AnalogV could obtain
much higher computing speed (about twice) than Spiking when
they target at the same computation accuracy.

Another concern on AnalogV design is the frequency of
DACs that generate discrete analog signals as crossbar inputs.
In our implementation, DAC was designed with a maximum
frequency of 100MHz, corresponding to 10ns analog input
width. The maximum frequency can be increased in real design
but power and area will be scarified. The result in Fig. 8(a)
indicates that the input width must be longer than 60ns in
order to achieve a reasonable failure rate. Therefore, the DAC
with 100MHz frequency is large enough and will not be a
constraint in the system design.

2) Input Bits Dependence: Fig. 8(b) shows the impact of
pattern input bits, reflecting the pattern color depth on the
system failure rate. Based on the above analysis, we evaluated
the input bits dependence by using 60ns input width. The two
systems were first tuned till they can obtain similar accuracy.
Comparing with prior design Spiking, AnalogV obtained lower
failure rate when the input pixel has more than 2 bits It matches
well with the simulation results discussed above. As can be
seen from the ideal curve, there is a valley value. This is
because more input bits per pixel of input images indicates
higher complexity of neuromorphic system should afford, and
the computation accuracy is limited by the available resistance
states of memristors. Practically, we observed that the values of∑M

i=1 gi,j ·vi drops statistically, leading to higher quantification
error in IFC. These two opposite factors together influence the
trend shown in Fig. 8(b). We chose 4-bit color-depth to obtain
a relatively high accuracy in difference systems.

3) Impact of Resistance Value Variation: The impact of
the resistance value variation in computation failure rate was
evaluated too. The failure rates of both systems with 0%, 10%,
and 20% resistance variation are summarized in Fig. 8(c). The
systems failure rate increases with the increasing of resistance
value variation. System Spiking is more vulnerable to the
resistance value variation because of the lower output spike
number in it. We observe a large failure rate increase when
increasing the resistance value variation from 10% to 20%.
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TABLE I. SYSTEM PERFORMANCE COMPARISON

Area Power Speed Energy

AnalogV (This work) 0.426mm2 100.6mW 16.7MHz 6.04nJ

Spiking [16] 0.476mm2 82.93mW 10MHz 8.29nJ

Difference -10.5% +17.6% +40.1% -27.1%

The results show that the failure rate of our proposed design
AnalogV is under 20% when the variation is 10%, while the
failure rate of Spiking increases to more than 45%.

D. Design Comparison
The area, power, speed and energy consumption of the two

systems were compared and summarized in Table I. Area and
power data are based on the systems implementation at 130nm
technology node. The DACs and the current amplifiers used in
AnalogV induce more area and power consumption. However,
less IFCs and digital circuits are needed in AnalogV as the
subtraction of computing result from the positive and negative
crossbars can be executed by current amplifier. The 1T1M
crossbar structure of Spiking induces more area cost.

Comparing to Spiking, AnalogV obtains 10.5% decrease in
area while increases power consumption 17.6%. This is caused
by the extra power consumed by the current amplifier and
DACs. When testing the speed of AnalogV and Spiking, we
selected 60ns and 100ns as input pulse widths respectively
to maintain an approximate similar failure rate 15%. AnalogV
executes much faster than Spiking, obtaining 40.1% speed im-
provement. Overall, AnalogV lowers the energy consumption
27.1% comparing with Spiking.

VI. CONCLUSIONS

In this work, a memristor crossbar based computing engine
using current sensing was proposed for matrix-vector compu-
tation. The parallel exaction was realized by applying analog
voltages to every wordline of memristor crossbar. A current
amplifier circuit was designed which mirrors the current from
the crossbar with a slight accuracy degradation. To evaluate
the computation accuracy of the scheme, we implemented a
three-layer feed-forward neural network and plugged different
memristor crossbar based computing engines for comparison.
We thoroughly analyzed the newly proposed system and a
prior reported design from perspectives of accuracy, speed,
area, and energy. The results show that our system has lower
area and energy consumption with a higher speed than prior
spiking based design. The computation accuracy of the new
system based on our computing engine can reach 94.6%.
Overall, it demonstrates a good computation accuracy in matrix
computation with a lower energy consumption.
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