
Proc. of the 31st International Florida Artificial Intelligence Research Society Conference (FLAIRS-31), pages 2-7, AAAI Press, May 2018.

Impact of Random Number Generation on Parallel Genetic Algorithms

Vincent A. Cicirello
Computer Science and Information Systems

School of Business, Stockton University
101 Vera King Farris Drive

Galloway, NJ 08205
https://www.cicirello.org/

Abstract

In this paper, we present a parallel genetic algorithm (pGA)
with adaptive control parameters and permutation repre-
sentation for weighted tardiness scheduling with sequence-
dependent setups, an NP-Hard problem. This pGA provides
a linear to slightly superlinear speedup relative to its sequen-
tial counterpart. As part of our research, we explore the ef-
fects of different random number generation algorithms on
the runtimes of both sequential and parallel GAs. GAs and
other forms of evolutionary computation rely so heavily on
random number generation that our results show that we can
obtain a 20% increase in the speed of a pGA, and an over
25% increase in the speed of a sequential GA, simply by care-
ful choice of random number generator—both the underlying
generator as well as algorithms for specific number types such
as Gaussian often needed for mutating real-valued genes.

1 Introduction
A genetic algorithm (GA) solves problems through simu-
lated evolution, evolving a population of candidate solu-
tions, usually represented as bitstrings, over many gener-
ations using crossover to recombine genes of parent solu-
tions, and mutation to randomly perturb population mem-
bers (Mitchell 1998). GAs are naturally parallelized. Luque
and Alba provide an excellent introduction and survey of
parallel GA (pGA) implementation (Luque and Alba 2011).
Some pGA maintain a single large population, dividing work
of a generation among multiple processors; while others use
multiple subpopulations, one per processor, with periodic
migration of a few individuals among the subpopulations.

GAs rely heavily on random numbers. For example, the
crossover rate is the probability of applying the crossover
operator (and likewise the mutation rate). Implementation of
this behavior requires uniform random floating-point num-
bers. Many crossover operators require uniform random
integers for index selection. The most common mutation
operator for real-valued representations, Gaussian muta-
tion (Hinterding 1995), requires implementation of a Gaus-
sian random variable. The pseudorandom number generator
(PRNG) found in most programming languages is the lin-
ear congruential method (Knuth 1998), and if the language
provides built-in support for Gaussians at all, it is usually

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

via the polar method (Knuth 1998). Both are slow compared
to alternatives, such as SplitMix/DotMix (Steele, Lea, and
Flood 2014; Leiserson, Schardl, and Sukha 2012) instead of
linear congruential, and the ziggurat method (Marsaglia and
Tsang 2000) instead of the polar method. In this paper, we
show that a GA’s speed can vary by as much as 25%, and a
pGA by as much as 20%, simply through choice of PRNG.

While investigating the effects of PRNGs on GA perfor-
mance, we developed a pGA for weighted tardiness sched-
uling with sequence-dependent setups, an NP-Hard problem
without setups (Morton and Pentico 1993) whose difficulty
is greatly magnified by the sequence-dependent setups (Sen
and Bagchi 1996). Many algorithms exist for this schedul-
ing problem (Cicirello 2017; Xu, Lü, and Cheng 2014;
Tanaka and Araki 2013; Liao, Tsou, and Huang 2012;
Liao and Juan 2007; Cicirello and Smith 2005). We adapt
two prior GAs (Cicirello 2015; 2006) into multi-population
pGAs, one with adaptive control parameters and one with
static control parameters. Our results show that the pGA
with adaptive parameters provides a linear to slightly super-
linear speedup relative to its sequential counterpart.

We first describe the existing GAs, and then present our
multi-population pGA variations of those GAs. Next, we ex-
plore different PRNGs in isolation from the pGA on a simple
computational task, and then with the pGAs showing the ex-
treme effects that PRNG choice has on GA/pGA runtimes.
Finally, we present results on the problem solving effective-
ness of our new pGA on an NP-Hard scheduling problem.

2 Sequential Genetic Algorithms
2.1 Scheduling with Sequence-Dependent Setups
Weighted tardiness scheduling with sequence-dependent se-
tups is an NP-Hard single-machine scheduling problem. The
current best exact solver, which uses dynamic programming,
can optimally solve all available benchmarks, but requires
over two weeks of memory-intensive CPU time to solve the
harder instances (Tanaka and Araki 2013). Thus, alternatives
are desirable, such as GAs and other metaheuristics, which
can more efficiently find sufficiently-optimal solutions.

We use the standard benchmark set (Cicirello 2003a;
2003b), which has been used by many researchers for a va-
riety of algorithms, such as dynamic programming (Tanaka
and Araki 2013), neighborhood search (Liao, Tsou, and

Huang 2012), iterated local search (Xu, Lü, and Cheng
2014), stochastic sampling (Cicirello and Smith 2005), ant
colony optimization (Liao and Juan 2007), simulated an-
nealing (Cicirello 2017; 2007), etc.

The problem consists of N jobs, J = {j1, j2, . . . , jN},
each with weight wk, duedate dk, process time pk, and setup
time si,k prior to processing jk if it follows ji. Setup times
are asymmetric, si,k 6= sk,i, and s0,k is the initial setup time
if jk is first. The jobs must be sequenced to minimize:

T =

N∑
k=1

wk max(ck − dk, 0). (1)

π(k) is the position of jk. The completion time ck is the sum
of the process and setup times of jk and all preceding jobs:

ck =
∑

π(x)≤π(k),π(x)=π(y)+1

(px + sy,x). (2)

2.2 Shared Features of the Genetic Algorithms
The two existing sequential GAs (Cicirello 2006; 2015),
which are the basis for our pGA, share several features.

Preprocessing: To minimize the impact of setup times on
performance, we increase the process time of each job by its
minimum setup time, reducing all setup times accordingly:

smin
k = min

0≤i≤N,i6=k
si,k, (3)

pk = pk + smin
k , (4)

si,k = si,k − smin
k ,∀i, i 6= k, 0 ≤ i ≤ N. (5)

We eliminate all jk, if wk = 0 and ∀x∀y, x 6= y, sx,k+pk+
sk,y ≥ sx,y (Tanaka and Araki 2013).

Representation and Fitness: Both GAs use the permuta-
tion representation, which offers a direct mapping between
internal GA representation and solutions to the scheduling
problem at hand. Let T (Pi) be the weighted tardiness (Equa-
tion 1) for permutation Pi; and define fitness as follows:

fitness(Pi) = 1− T (Pi) + max
1≤k≤PopSize

T (Pk), (6)

where PopSize is the population size. Higher fitness values
correspond to better schedules (lower values of T (Pi)), and
the least fit individual has fitness equal to 1.

Selection: Elitism selects the E most fit unique permuta-
tions, which do not undergo crossover or mutation, ensuring
that the population always contains the best solution thus
far, and preventing convergence to a single solution since the
population always contains at least E unique permutations.
Stochastic Universal Sampling (SUS) (Baker 1987) selects
the remaining PopSize−E from the entire population includ-
ing the elite. SUS selects Pi with probability proportional
to fitness(Pi) like fitness proportionate selection. However,
SUS is like spinning a wheel with k equidistant pointers
once to select k members simultaneously, whereas fitness
proportionate spins a 1-pointer k times. SUS reduces selec-
tion bias (Baker 1987), and it is also more efficient (e.g.,
only 1 random number required to select entire population).

Non-Wrapping Order Crossover (NWOX): NWOX (Ci-
cirello 2006), a variation of Order Crossover (OX) (Davis

Figure 1: The NWOX operator.

1985), enables child permutations to inherit edges from par-
ents, while minimizing positional deviation relative to the
parents, unlike OX which displaces elements large distances
from locations in parents. Due to the sequence-dependent se-
tups, edges directly impact fitness; and due to the weighted
tardiness objective, general element position impacts due-
date achievement, which in turn impacts fitness. NWOX bal-
ances these properties. Figure 1 shows how it works. Given
parents, (Pi, Pj), choose two random cross points. Child Ci
inherits the cross region elements’ positions from parent Pj ,
and the relative order of the remaining elements from Pi,
filling in Ci left to right, skipping the cross region (likewise
for Cj). The original OX began filling in the remaining ele-
ments after the cross region, wrapping to the left.

Mutation: Insertion mutation removes a random element,
and reinserts it at a different randomly chosen location, shift-
ing all elements between the removal and reinsertion points.
Prior research on permutation search landscapes (Cicirello
2016) shows that insertion mutation is ideally suited to
problems with directed edges (e.g., asymmetric, sequence-
dependent setups), and when positions impact fitness (e.g.,
general position within permutation affects job tardiness).

2.3 Static Versus Adaptive Control Parameters
The fundamental difference between the two GAs is how
control parameters are set. The first uses static control pa-
rameters that were tuned manually using a set of training
problem instances (Cicirello 2006): PopSize = 100, E = 3,
crossover rate C = 0.95, and mutation rate M = 0.65. A
mutation rate of 0.65 would be unusually high for a bitstring
GA where it is a per-bit rate. However, the mutation rate for a
permutation-based GA is per population member (i.e., prob-
ability that one mutation is applied to a population member),
so mutation rates tend to be higher than for bitstrings.

The second GA dynamically adapts the control parame-
ters using search feedback (Cicirello 2015). Each population
member is defined as: Popi =< Pi, Ci,Mi, σi >. Pi is a
permutation.Ci andMi are the crossover and mutation rates
for Popi; and σi is used in mutatingCi andMi. The non-elite
Popi are paired randomly. The Ci of an arbitrary member of
each pair determines if crossover occurs. Crossover is not
applied to the control parameters of Popi. The permutation
of each non-elite Popi is mutated with probability Mi.

We initialize Ci and Mi uniformly at random from
[0.1, 1.0), and σi uniformly from [0.05, 0.15). In each gen-
eration, Gaussian mutation (Hinterding 1995) is applied to
the control parameters of the non-elite members as follows:

Ci = Ci +N(0, σi), (7)

Mi = Mi +N(0, σi), (8)

σi = σi +N(0, 0.01), (9)

where N(0, σ) is a Gaussian random variable with mean 0
and standard deviation σ. If Ci > 1, it is set to 1 to ensure
valid probabilities. If Ci < 0.1, it is set to 0.1. Likewise, Mi

varies within [0.1, 1] and σi within [0.01, 0.2]. PopSize and
E were tuned manually (PopSize = 100, E = 5).

3 Parallel Genetic Algorithms
In this paper, we explore parallel versions of the two existing
GAs. Our pGA is a multi-population model that executes k
instances of a GA in parallel. This is a common approach
to pGA implementation (Luque and Alba 2011). Typically,
multi-population pGAs use migration, where members peri-
odically migrate between subpopulations. Some approaches
involve migration to any other subpopulation, while others
define a migration topology. The migration rate is critical
to performance (Lässig and Sudholt 2010). If it is too low,
the subpopulations remain isolated which can lead to lower
quality solutions compared to a single large population GA.
The migration interval also plays an important role: if mi-
gration is too infrequent, convergence is slow, while too fre-
quent migration leads to a loss of diversity (Skolicki and
De Jong 2005). There are also approaches that adapt the mi-
gration interval dynamically (Mambrini and Sudholt 2014).

Since one of our objectives is exploring the effects of dif-
ferent PRNGs on pGA performance, our pGA uses k iso-
lated subpopulations to eliminate communication overhead
of migration. Small GA random initial populations tend to
lie in different basins of attraction, leading isolated subpop-
ulations to converge upon different local optima. Thus, this
is like a restart strategy common for other forms of local
search, though rarely used by GAs. We consider two pGAs.

Static Parameters: This pGA concurrently executes k
GAs with NWOX, insertion mutation, SUS selection with
elitism, and fixed control parameters.

Adaptive Parameters: This pGA uses the same operators,
but with adaptive control parameters.

4 Random Number Generator Comparison
Before exploring how PRNGs affect pGA runtimes, we first
benchmark the available PRNGs in isolation of the GA, us-
ing a simple task, summing a sequence of random numbers,
that involves little computation beyond the PRNG itself.

We use Java 8, the Java HotSpot 64-bit Server VM,
and consider three of Java’s PRNG classes: Random, Split-
tableRandom, and ThreadLocalRandom.

Java’s Random class implements the linear congruential
method (Knuth 1998) with a 48-bit seed. Although thread-
safe, using an AtomicLong for the seed, multiple threads

sharing a single instance encounter contention issues, espe-
cially with frequent random number generation. Thus, in our
experiments, we provide each thread with its own instance.

SplittableRandom implements SplitMix (Steele, Lea, and
Flood 2014), an optimized version of DotMix (Leiserson,
Schardl, and Sukha 2012), that is much faster, and passes
more rigorous statistical testing (e.g., DieHarder (Brown,
Eddelbuettel, and Bauer 2013)), than the linear congruential
method. SplittableRandom is not threadsafe, but provides a
split method that spawns new instances to provide worker
threads with random number generation capability.

ThreadLocalRandom also implements SplitMix, but lacks
the split functionality. A single static instance maintains seed
data local to each thread, managing one PRNG per thread.

We vary the number of threads according to k = 2i where
i ∈ {0, . . . , 8}, each generating and summing 256/k million
numbers, 256 million numbers total. We consider uniform
random 32-bit integers (Java’s int type), uniform random 64-
bit floating-point numbers (Java’s double type), and Gaus-
sian random numbers. All three Java classes generate uni-
form random numbers. Random and ThreadLocalRandom
generate Gaussians with the polar method (Knuth 1998).
SplittableRandom does not provide Gaussian support. Thus,
we use our own polar method implementation; and also a
much faster alternative, the ziggurat method (Marsaglia and
Tsang 2000), which we ported to Java from the GNU Scien-
tific Library’s C implementation (Voss 2005).

For each combination of PRNG, number type, and num-
ber of threads, we compute the average time over 30 runs,
on an Ubuntu 14.04 Server, with 32GB memory and two In-
tel Xeon L5520 Quad-Core CPUs (2.27GHz). The L5520
supports hyper-threading with two threads per core, so our
server has a total of 16 logical cores.

Figure 2 shows lin-log plots of average time as a func-
tion of number of threads. ThreadLocalRandom and Split-
tableRandom perform equivalently for all number types,
and number of threads, except uniform random floating-
point numbers with more than 32 threads, where the dif-
ference is negligible and occurs with multiple threads per
core, or Gaussians with ziggurat and less than four threads,
where the difference is also small and diminishes with few
threads. Both implement the same PRNG, so thread man-
agement is the only real difference. We must maintain one
SplittableRandom instance per thread in our code; while
ThreadLocalRandom’s single static instance maintains local
seed data in each thread, simplifying our code. Both signif-
icantly outperform the Random class, demonstrating Split-
Mix’s efficiency over linear congruential. Ziggurat is also
much faster than the polar method, consistent with prior re-
sults (Marsaglia and Tsang 2000; Voss 2005).

The benefit of increasing the number of threads varies by
number type. The least costly to generate, uniform 32-bit
integers, has the smallest gain (speedup factor of 2.5 for 4
threads, and 2.8 for 8 threads using ThreadLocalRandom).
For random floating-point numbers, speedup is 2.6, 3.2, and
3.3 for 4, 8, and 16 threads, respectively; and for Gaussians
generated with the ziggurat method, speedup is 3.4, 5.1, and
6.5 for 4, 8, and 16 threads. Speedup is greater for the polar
method, however, the ziggurat method is much faster.

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 8 16 32 64 128 256

tim
e

(s
ec

on
ds

)

threads

double (Random)
double (ThreadLocalRandom)

double (SplittableRandom)
int (Random)

int (ThreadLocalRandom)
int (SplittableRandom)

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8 16 32 64 128 256

tim
e

(s
ec

on
ds

)

threads

polar (Random)
polar (ThreadLocalRandom)

polar (SplittableRandom)
ziggurat (Random)

ziggurat (ThreadLocalRandom)
ziggurat (SplittableRandom)

Figure 2: Simple task time: uniform doubles and integers (left), Gaussian with polar and ziggurat algorithms (right).

 1
 2
 3
 4
 5
 6
 7

 1 2 4 8 16 32 64

tim
e

(s
ec

on
ds

)

threads

Random
ThreadLocalRandom

 1
 2
 3
 4
 5
 6
 7

 1 2 4 8 16 32 64

tim
e

(s
ec

on
ds

)

threads

Random
ThreadLocalRandom

(a) static parameters / fixed subpopulation size (b) static parameters / fixed total population size

 1
 2
 3
 4
 5
 6

 1 2 4 8 16 32 64

tim
e

(s
ec

on
ds

)

threads

Random / Ziggurat
ThreadLocalRandom / Ziggurat

Random / Polar
ThreadLocalRandom / Polar

 1
 2
 3
 4
 5
 6

 1 2 4 8 16 32 64

tim
e

(s
ec

on
ds

)

threads

Random / Ziggurat
ThreadLocalRandom / Ziggurat

Random / Polar
ThreadLocalRandom / Polar

(c) adaptive parameters / fixed subpopulation size (d) adaptive parameters / fixed total population size

Figure 3: pGA runtime as function of number of threads.

5 Parallel Genetic Algorithm Runtimes
We now explore the effects on the runtimes of both pGA
variations: static control parameters, and adaptive control
parameters. For each, we run two sets of experiments:

Fixed Subpopulation Size: A constant subpopulation size
of PopSize = 100 (same as the existing sequential GAs)
makes the total population size of the pGA: TotPopSize =
PopSize ∗ k = 100k, where k is the number of parallel in-
stances. The number of generations is Gens = 64000/k,
maintaining an approximately equal amount of total work in
terms of number of applications of the genetic operators.

Fixed Total Population Size: The total population size
and number of generations are held constant (TotPopSize =
1600, Gens = 4000). The subpopulation size varies with
PopSize = TotPopSize/k = 1600/k, such that the total work
is approximately that of the first set of experiments.

The benchmark set has 120 instances with varying de-
grees of duedate tightness and range, and setup severity. We
exclude 22 of the 40 loose duedate instances, whose optimal
weighted tardiness is T = 0 to avoid biasing runtimes, since
once a solution with T = 0 is found, the search terminates.

For each combination of pGA, population size option,
PRNG, and number of parallel instances, we execute 10 runs
on each of the 98 instances. Thus, we report 980 run av-
erages. We vary the number of parallel instances, k = 2i

where i ∈ {0, . . . , 6}. We exclude SplittableRandom since

it exhibits nearly identical performance, and implements the
same PRNG, as ThreadLocalRandom.

Figure 3 shows that using ThreadLocalRandom signifi-
cantly speeds up runtime compared to using Random. For
example, for adaptive parameters and fixed subpopulation
size (Figure 3(c)), using ThreadLocalRandom and the zig-
gurat algorithm is 4%, 6%, and 7% faster than using Ran-
dom and the ziggurat algorithm for 1, 2, and 4 threads, re-
spectively. Similarly, for adaptive parameters and fixed total
population size (Figure 3(d)), the pGA is 6%, 6%, and 5%
faster for 1, 2, and 4 threads, when using ThreadLocalRan-
dom and ziggurat compared to using Random and ziggurat.

For the adaptive parameters pGA, generating Gaussian
random numbers with the ziggurat algorithm, for Gaussian
mutation, rather than the polar method has a much larger
effect than does the underlying PRNG. For example, using
ThreadLocalRandom, the pGA using the ziggurat algorithm
is 15%, 15%, and 13% faster than using the polar method,
for fixed subpopulation size (Figure 3(c)) and 1, 2, and 4
threads, respectively; and 18%, 17%, and 13% faster for
fixed total population size (Figure 3(d)). The most extreme
performance difference between PRNGs is using ThreadLo-
calRandom and ziggurat compared to Random and the polar
method. The former is 25%, 22%, and 20% faster than the
latter (for 1, 2, and 4 threads) with a fixed subpopulation,
and 28%, 27%, and 22% faster with a fixed total population.

2%

10%

50%

0.1 s 1 s 10 s 100 s

%
∆O

pt
Su

m
 (1

0
ru

n
av

er
ag

es
)

time (seconds)

Static parameters (Sequential)
Adaptive parameters (Sequential)

Static parameters (Parallel)
Adaptive parameters (Parallel)

10%

20%

40%

80%

160%

320%

0.1 s 1 s 10 s 100 s

%
∆O

pt
(9

80
 ru

ns
: 1

0
ru

ns
 *

 9
8

in
st

an
ce

s)

time (seconds)

Static parameters (Sequential)
Adaptive parameters (Sequential)

Static parameters (Parallel)
Adaptive parameters (Parallel)

Figure 4: GA and pGA with adaptive and static parameters: log-log plots of %∆OptSum and %∆Opt vs run time.

Table 1: Comparison of pGA with adaptive (A) and static (S)
control parameters for varying number of generations (G).

G %∆OptSum %∆Opt Runtime
A S p A S p A S

102 40. 43. ∼0 306. 361. 0 0.3 0.3
103 10. 13. ∼0 55. 86. 0 0.6 0.6
104 6.4 6.6 .09 32. 37. ∼0 1.6 1.9
105 4.1 3.9 .01 21. 23. .00 10. 13.
106 2.7 2.4 ∼0 14. 14. .04 96. 118.

6 Parallel GA Problem Solving Effectiveness
Due to the strong runtime advantage established in Sec-
tion 5, we adopt Java’s ThreadLocalRandom as the PRNG
and the ziggurat algorithm for Gaussians. There is a neg-
ligible time advantage (Figure 3) to using more than eight
concurrent instances, and once the number of concurrent in-
stances reaches the number of logical cores of our system
(16) performance degrades (e.g., due to context switching,
etc). Thus, we use 8 parallel populations for all pGA vari-
ations, with subpopulation size PopSize = 100, and total
population size of TotPopSize = 800. The population size of
the sequential GAs is set to 100, as was originally the case.

The benchmark set has 120 instances, 40 each of loose,
medium, and tight duedates. We measure performance in
two ways. The first is average percentage deviation from the
optimals, excluding 22 loose duedate instances with T = 0:

%∆Opt =
100

N

N∑
i=1

(Si −Oi)
Oi

. (10)

Si is the value of the solution found for instance i and Oi
is its optimal solution. Since 22 instances are excluded by
%∆Opt, we also report percentage deviation of the sum
across all instances relative to the sum of the optimals:

%∆OptSum = 100

∑N
i=1 Si −

∑N
i=1Oi∑N

i=1Oi
. (11)

For each run length ({102, 103, 104, 105, 106} genera-
tions) and GA (adaptive vs static parameters, parallel vs se-
quential), we solve each instance 10 times. Thus, reported
runtimes are 1200 run averages, %∆OptSum values are 10
run averages, and %∆Opt values are 980 run averages.

Figure 4 shows log-log plots of %∆OptSum and %∆Opt
as functions of time. The four GA configurations run at dif-
ferent rates due to: (a) impact of thread overhead on short
runs, (b) parameter adaptation overhead, and (c) varying
time per generation due to fluctuating control parameter val-
ues. Thus, the x-axis shows time, rather than generations.

For very short runs (100 generations), there is no bene-
fit to parallelization due to thread management overhead.
A single small population with adaptive parameters is suf-
ficient. However, for 1000 or more generations, the pGA
quickly overtakes the sequential GA. In 7s, the adaptive
pGA’s %∆OptSum is equivalent to a 69s run of the sequen-
tial adaptive GA, a slightly superlinear speedup factor near
10 given 8 parallel subpopulations. And in 8.8s, the adaptive
pGA’s %∆Opt is equivalent to a 69s run of the sequential
GA, for a linear speedup factor around 8.

Table 1 lists %∆OptSum and %∆Opt for the pGAs (adap-
tive vs static control parameters). Runtimes are reported in
seconds. Significance of %∆OptSum is tested with t-tests,
and that of %∆Opt with the Wilcoxon signed rank test. Be-
cause %∆Opt is an average across multiple instances with
values of varying scale, the t-test normality requirement is
not met. P-values are shown.

For %∆Opt, the adaptive pGA, with high levels of statisti-
cal significance, outperforms the pGA with static parameters
at all run lengths. The degree of statistical significance de-
creases with run length, which is expected since the longer
the run, the nearer both pGAs are to the optimals. The run-
times highlight the relative strength of evolving the param-
eters, as the adaptive pGA requires less time for the same
number of generations. For the sequential GA, the evolved
crossover and mutation rates decline later in the run, leading
to less applications of the genetic operators (Cicirello 2015).
This also explains the speed difference of the two pGAs.

For %∆OptSum, the adaptive pGA very significantly out-
performs the pGA with static parameters for runs of 1000 or
less generations. At 10000 generations, no statistical signif-
icance is seen, although the adaptive pGA is faster. For runs
of 100000 or more generations, results are less clear: static
parameters lead to slightly lower %∆OptSum (with high
statistical significance), but the adaptive pGA is 20% faster.
The apparent inconsistency across the two measures of solu-
tion quality is because %∆Opt ignores the 22 instances with
optimal solution T = 0, while %∆OptSum does not.

7 Conclusions
We introduced a new pGA for weighted tardiness schedul-
ing with sequence-dependent setups. Although other GAs
for the problem exist, this is the first parallel GA that we
are aware of for this NP-Hard problem. Our multipopulation
pGA evolves the control parameters, eliminating the often
tedious and error prone parameter tuning phase of GA devel-
opment. This new pGA exhibits linear to slightly superlinear
speedup relative to its sequential counterpart.

Among our research objectives was the performance im-
pact that choice of PRNG has on both parallel and sequential
GA runtimes. We showed that implementation decisions re-
lated to PRNGs can substantially affect GA efficiency. With
careful selection of PRNG and all other implementation de-
tails equal, a sequential GA can be over 25% faster than one
that relies on the standard built-in language support for ran-
dom number generation; and similarly, a pGA can be up to
20% faster. These results highlight just how much of a GA’s
time is spent generating random numbers. The GA practi-
tioner should not necessarily rely solely on their chosen lan-
guage’s provided PRNG, and may need to employ alterna-
tives from external libraries or their own implementations.

References
Baker, J. 1987. Reducing bias and inefficiency in the selec-
tion algorithm. In Proc ICGA. Lawrence Erlbaum. 14–21.
Brown, R. G.; Eddelbuettel, D.; and Bauer, D. 2013.
Dieharder: A random number test suite. https://www.
phy.duke.edu/˜rgb/General/dieharder.php.
Cicirello, V. A., and Smith, S. F. 2005. Enhancing stochas-
tic search performance by value-biased randomization of
heuristics. Journal of Heuristics 11(1):5–34.
Cicirello, V. A. 2003a. Boosting Stochastic Problem Solvers
Through Online Self-Analysis of Performance. Ph.D. Dis-
sertation, Robotics, Carnegie Mellon University.
Cicirello, V. A. 2003b. Weighted tardiness scheduling with
sequence-dependent setups: A benchmark library. Tech. re-
port, ICL Lab, CMU.
Cicirello, V. A. 2006. Non-wrapping order crossover: An or-
der preserving crossover operator that respects absolute po-
sition. In Proc. GECCO’06, volume 2. ACM. 1125–1131.
Cicirello, V. A. 2007. On the design of an adaptive simulated
annealing algorithm. In Proc. CP 2007 First Workshop on
Autonomous Search. AAAI Press.
Cicirello, V. A. 2015. Genetic algorithm parameter con-
trol: Application to scheduling with sequence-dependent se-
tups. In Proc. 9th Int. Conf. on Bio-inspired Information and
Communications Technologies. ICST. 136–143.
Cicirello, V. A. 2016. The permutation in a haystack prob-
lem and the calculus of search landscapes. IEEE Transac-
tions on Evolutionary Computation 20(3):434–446.
Cicirello, V. A. 2017. Variable annealing length and paral-
lelism in simulated annealing. In Proc 10th Int Symposium
on Combinatorial Search, 2–10. AAAI Press.
Davis, L. 1985. Applying adaptive algorithms to epistatic
domains. In Proc. IJCAI. Morgan Kaufmann. 162–164.

Hinterding, R. 1995. Gaussian mutation and self-adaption
for numeric genetic algorithms. In IEEE CEC. IEEE Press.
384–389.
Knuth, D. E. 1998. The Art of Computer Programming,
Volume 2, Seminumerical Algorithms. Addison Wesley.
Lässig, J., and Sudholt, D. 2010. The benefit of migration
in parallel evolutionary algorithms. In Proc. 12th GECCO.
ACM. 1105–1112.
Leiserson, C. E.; Schardl, T. B.; and Sukha, J. 2012. De-
terministic parallel random-number generation for dynamic-
multithreading platforms. In Proc PPoPP. ACM. 193–204.
Liao, C.-J., and Juan, H.-C. 2007. An ant colony optimiza-
tion for single-machine tardiness scheduling with sequence-
dependent setups. Computers and Operations Research
34(7):1899–1909.
Liao, C.-J.; Tsou, H.-H.; and Huang, K.-L. 2012. Neigh-
borhood search procedures for single machine tardiness
scheduling with sequence-dependent setups. Theoretical
Computer Science 434:45–52.
Luque, G., and Alba, E. 2011. Parallel Genetic Algorithms:
Theory and Real World Applications. Springer.
Mambrini, A., and Sudholt, D. 2014. Design and analysis
of adaptive migration intervals in parallel evolutionary algo-
rithms. In Proc. GECCO. ACM. 1047–1054.
Marsaglia, G., and Tsang, W. W. 2000. The ziggurat method
for generating random variables. J. Stat. Softw. 5(1):1–7.
Mitchell, M. 1998. An Introduction to Genetic Algorithms.
MIT Press.
Morton, T. E., and Pentico, D. W. 1993. Heuristic Schedul-
ing Systems. John Wiley and Sons.
Sen, A. K., and Bagchi, A. 1996. Graph search methods for
non-order-preserving evaluation functions. AIJ 86:43–73.
Skolicki, Z., and De Jong, K. 2005. The influence of mi-
gration sizes and intervals on island models. In Proc. 7th
GECCO. ACM. 1295–1302.
Steele, Jr., G. L.; Lea, D.; and Flood, C. H. 2014. Fast
splittable pseudorandom number generators. In Proc. ACM
OOPSLA. ACM. 453–472.
Tanaka, S., and Araki, M. 2013. An exact algorithm for
the single-machine total weighted tardiness problem with
sequence-dependent setup times. Computers and Opera-
tions Research 40(1):344–352.
Voss, J. 2005. The Ziggurat Method for Generating Gaus-
sian Random Numbers. GSL: GNU Scientific Library,
http://www.seehuhn.de/pages/ziggurat.
Xu, H.; Lü, Z.; and Cheng, T. C. 2014. Iterated lo-
cal search for single-machine scheduling with sequence-
dependent setup times to minimize total weighted tardiness.
J. of Scheduling 17(3):271–287.

