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Summary

Permutations can represent a wide variety of ordered data. For example, a permutation
may represent an individual’s preferences (or ranking) of a collection of products such
as books or music. Or perhaps a permutation may represent a route for delivering a set
of packages. Permutations can also represent one-to-one mappings between sets (e.g.,
instructors to courses at a fixed time). There are applications where measuring the dis-
tance between a pair of permutations is necessary. For example, a recommender system
may assess the similarity of two individuals’ preferences for music to make song recom-
mendations. Depending upon the application, the permutation features most important
to distance calculation may be the absolute positions of the elements (e.g., one-to-one
mappings), the adjacency of elements (e.g., the routing example), or general precedence
of pairs of elements (e.g., music preferences). Thus, it is no surprise that there are many
permutation metrics in the research literature. Knuth’s seminal books on algorithms
(Knuth, 1997, 1998a, 1998b) cover permutation related algorithms more generally such
as mixed radix representation, permutation inverse computation, etc.

The motivation and origin of this library is our research on fitness landscape analysis
for permutation optimization (Cicirello, 2014, 2016, 2018a; Cicirello & Cernera, 2013).
In a permutation optimization problem, solutions are represented by permutations of
some set, and the objective is to maximize or minimize some function. For example,
a solution to a traveling salesperson problem is the permutation of the set of cities that
corresponds to the minimal cost tour. During our research, we developed a Java library of
permutation distance metrics. Most of the distance metrics in the literature are described
mathematically with no source code available. Thus, our library offers convenient access
to efficient implementations of a variety of metrics with a common programmatic interface.
The library also provides metrics on sequences (strings and arrays of various types); where
unlike a permutation, a sequence may contain multiple copies of the same element.

The source repository (https://github.com/cicirello/JavaPermutationTools) contains
source code of the library, programs that provide example usage of key functionality,
as well as programs that reproduce results from papers that have used the library. API
documentation is hosted on the web (https://jpt.cicirello.org/).

Statement of Need

The target audience of this library are those conducting computational research where
the similarity of permutations or sequences must be assessed, or for which other computa-
tion on permutations is required (e.g., includes functionality for generating and mutating
permutations in various ways). Permutation distance is important to those developing
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recommender systems, and also important to those applying evolutionary computation to
the solution of permutation optimization problems.

Evolutionary computation, such as genetic algorithms, solve problems through simulated
evolution (Mitchell, 1998). They maintain a population of solutions to the problem,
and this population evolves over many generations using operators such as mutation and
crossover. Just as in natural evolution, a diverse gene pool is important. In later gener-
ations, if variation within the population declines, then search can stagnate. Population
management (Sevaux & Sörensen, 2005), such as in scatter search (Campos, Laguna, &
Martí, 2005), attempts to maintain population diversity, requiring a measure of distance.

In search landscape analysis, one must often compute the distance between points on the
landscape. A fitness (or search) landscape (Mitchell, 1998) is the space of possible solu-
tions to an optimization problem spatially organized on a landscape with similar solutions
as neighbors, and where elevation corresponds to fitness (or solution quality). Peaks (max-
imization problems) and valleys (minimization problems) correspond to locally optimal
solutions. The problem is to find an optimal point on that landscape. Search landscape
analysis deals with the theoretical and practical techniques for studying what character-
istics of a problem make it hard, how different search operators affect fitness landscape
topology, among others. There has been much work on fitness landscape analysis, includ-
ing for permutation landscapes (Cicirello, 2014, 2016, 2018a; Cicirello & Cernera, 2013;
Hernando, Mendiburu, & Lozano, 2016; Schiavinotto & Stützle, 2007; Sörensen, 2007;
Tayarani-N & Prugel-Bennett, 2014). Fitness landscape analysis techniques, such as fit-
ness distance correlation (FDC) (Jones & Forrest, 1995) and search landscape calculus
(Cicirello, 2016) require distance metrics for the type of structure you are optimizing.

The Metrics of the Library

The following table summarizes the permutation distances in the library, their runtimes
(n is permutation length), and whether they satisfy the metric requirements.

Distance Runtime Metric? Citations
acyclic edge distance O(n) pseudo (Ronald, 1995, 1997)
cyclic edge distance O(n) pseudo (Ronald, 1995, 1997)
cyclic r-type distance O(n) pseudo (Cicirello, 2016)
deviation distance O(n) yes (Campos et al., 2005;

Cicirello, 2016)
deviation distance
normalized

O(n) yes (Ronald, 1998; Sörensen,
2007)

edit distance O(n2) yes (Sörensen, 2007; Wagner &
Fischer, 1974)

exact match distance O(n) yes (Ronald, 1998)
interchange distance O(n) yes (Cicirello & Cernera, 2013)
Kendall tau distance O(n lg n) yes (Fagin, Kumar, &

Sivakumar, 2003; Kendall,
1938; Meilă & Bao, 2010)

Lee distance O(n) yes (Lee, 1958)
r-type distance O(n) yes (Campos et al., 2005; Martí,

Laguna, & Campos, 2005)
reinsertion distance O(n lg n) yes (Cicirello, 2016; Cicirello &

Cernera, 2013)
reversal distance Init: O(n!n3)

Calc: O(n2)
yes (Caprara, 1997; Cicirello,

2016)
squared deviation distance O(n) yes (Sevaux & Sörensen, 2005)
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The next table summarizes the metrics on sequences (n ≤ m are the lengths of the
compared sequences).

Distance Runtime Metric? Citations
edit distance O(n ∗m) yes (Wagner & Fischer, 1974)
exact match distance O(n) yes (Ronald, 1998)
Kendall tau sequence
distance

O(n lg n) yes (Cicirello, 2018b; Kendall,
1938)

longest common
subsequence distance

O(n ∗m) yes (Wagner & Fischer, 1974)
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