
BitGourmet: Deterministic Approximation
via Optimized Bit Selection

Saehan Jo
Cornell University

sj683@cornell.edu

Immanuel Trummer
Cornell University

itrummer@cornell.edu

ABSTRACT
The goal of deterministic approximation is to produce guar-
anteed bounds for aggregates in SQL queries (i.e., the exact
value is guaranteed to be contained within those bounds).
We present our ongoing work on BitGourmet, a novel sys-
tem for deterministic approximation, and first experimental
results. BitGourmet reduces processing time, compared to
standard processing, by considering only a subset of bit po-
sitions in every column. It stores the entire database as
a collection of bit vectors. Given user-specified constraints
on approximation precision, BitGourmet selects an optimal
subset of bit vectors to generate a result of the desired pre-
cision with minimal processing overheads. BitGourmet fea-
tures a specialized processing engine with scenario-specific
operators. It uses a multi-objective, cost-based optimizer
that employs cardinality, cost, and error models based on
bit-level data statistics. Furthermore, it uses a proactive
buffer management strategy based on query predictions to
fill its buffer with bit vectors that are likely to be relevant
for future queries. We provide first experimental results,
demonstrating significant speedups over state-of-the-art ex-
act processing engines and increased result precision, com-
pared to sampling-based approximation engines.

1. INTRODUCTION
Approximate query processing (AQP) engines typically

use sampling to generate confidence bounds for query ag-
gregates. This is difficult for certain aggregation functions
(e.g., the minimum and maximum), and confidence bounds
have been shown to be generally difficult to interpret for
users [18]. Also, confidence bounds are often calculated
based on simplifying assumptions about input data, which
do not always hold in practice. Those drawbacks have re-
cently motivated research on deterministic approximate query
processing (DAQ) [18]. Here, the goal is to produce bounds
for query aggregates that are formally guaranteed to contain
exact values.

We present BitGourmet, a novel system for determinis-
tic approximation of SQL queries. Considering row sub-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
CIDR’20 January 2020, Amsterdam, The Netherlands

Bit Gourmet Approximation Engine

Interactive User Interface

SQL Agg. Query Det. Bounds

Optimizer

Predictor

Processing

Bit Buffer

Figure 1: Overview of BitGourmet system.

sets would prevent us from producing guaranteed bounds
(since, e.g., for minima or maxima, one single row can change
the aggregation result arbitrarily). Instead, we divide the
columns of the input database “vertically”by considering bit
vectors representing a subset of their bit positions. While
this principle has been proposed before for single opera-
tors [18], BitGourmet is the first system to realize this prin-
ciple in a full-blown approximate processing engine that is
able to process complex queries under user-defined precision
constraints.

Figure 1 shows the most important components of Bit-
Gourmet and the data flow between them. BitGourmet
allows users to specify queries either via a text console or
via a graphical user interface. BitGourmet is configured via
precision constraints that define the maximum relative dis-
tance between upper and lower bounds on aggregate values.
Given an incoming query and precision constraints, the Bit-
Gourmet optimizer determines an optimal processing plan.
Plans specify a subset of the data to process (defined at the
granularity of bit positions) as well as the sequence of oper-
ations. The cost-based BitGourmet optimizer uses scenario-
specific models to predict error, cost, and intermediate result
cardinality based on bit-level statistics about the input data.
It aims at minimizing estimated processing overheads while
meeting precision constraints.

The processing engine supports different representations
for bit vectors that are generated during processing and
may choose to dynamically convert between different rep-
resentations (to minimize processing overheads). It features
scenario-specific operators that process relations with uncer-
tain rows (i.e., it is unclear, based on the subset of bit po-
sitions considered, whether rows satisfy all applicable pred-
icates). To maximize the chances that disk accesses can be
avoided, BitGourmet uses a buffer pool of bit vectors that is
filled proactively. Based on the history of queries in the cur-
rent analysis session, BitGourmet tries to predict follow-up
queries. Based on those predictions, it generates bit vec-
tors that would be helpful in processing predicted queries

and stores them in the buffer pool. The results of process-
ing are deterministic (lower and upper) bounds for query
aggregates.

In the following, we give an overview of the BitGourmet
system, show first experimental results, discuss our ongoing
research and relations to prior work.

2. SYSTEM OVERVIEW
We give an overview over different aspects of the Bit-

Gourmet system in the following.

2.1 User Interfaces
BitGourmet features two different user interfaces. First,

BitGourmet allows users to enter SQL queries via a stan-
dard console. Second, BitGourmet features a graphical user
interface. The graphical interface allows users to formulate
grouped aggregation queries (with a single aggregate) with
equality and inequality predicates. Users select the aggrega-
tion function, the aggregation column, conditioned columns,
and columns characterizing groups via a drop down menu.
Query results are shown as plots. For each group, the plot
shows the upper and lower bound on the aggregate value (de-
rived via deterministic approximation). Beyond the query
interfaces, users can configure the behavior of BitGourmet
(e.g., the precision constraints used for approximation) via
several configuration files.

2.2 Data Representation
BitGourmet stores the database as a collection of bit vec-

tors on disk. Bit vectors either represent the values of spe-
cific bit positions in a certain column or the position of
specific values within a specific column. Decomposing the
database into bit vectors allows BitGourmet to reduce the
amount of data processed (by reading only those bit vectors
that contribute most towards approximation precision).

BitGourmet stores bit vectors either in raw or in a com-
pressed format (for sparse bit vectors). Furthermore, dur-
ing processing, BitGourmet may choose to recompose dif-
ferent bit vectors of the same column into a standard rep-
resentation again (which makes certain operations faster).
BitGourmet may generally convert between different data
representations during query processing. Its cost-based op-
timizer dynamically inserts conversion operations into query
plans if they are deemed to reduce execution time.

2.3 Processing Engine
BitGourmet’s processing engine generally supports select-

join-group by-aggregate queries. We assume that the in-
put database has a star schema. Furthermore, joins are
restricted to equijoins between columns connected via key-
foreign key constraints.

Queries are executed as follows. We treat one dimension
table after the other one (following an order decided by the
query optimizer, discussed later). For each dimension table,
we approximately evaluate all applicable unary predicates
and join with the fact table. Finally, we calculate groups for
all relevant rows and calculate lower and upper deterministic
bounds for the associated aggregates.

Evaluating a predicate approximately on a row, based on a
subset of bits of the involved columns (this subset is selected
by the optimizer), may either result in a clear decision (i.e.,
the row is guaranteed to satisfy or violate the predicate) or
not (i.e., we cannot decide whether the row satisfies the pred-

icate). Hence, intermediate results are generally represented
by a pair of bit vectors in BitGourmet: the first vector rep-
resents rows that certainly satisfy all applicable predicates
while the second vector captures rows that possibly satisfy
all applicable predicates. While treating a dimension table,
we maintain such a vector pair for the rows of the dimension
table. During the entire query evaluation process, we main-
tain such a vector pair for rows in the fact table (capturing
which rows in the fact table certainly or possible join with
qualifying rows in the dimension tables).

2.4 Specialized Operators
BitGourmet uses specialized processing operators. Those

operators differ from standard operators in multiple ways.
First, they must handle input data columns that are only
partially specified (i.e., values for specific bit positions are
known while values for other bit positions are unknown).
Second, they must handle uncertain input rows (i.e., for
some input rows we are unsure whether they would be part
of the input in exact processing). Third, their outputs are
deterministic bounds instead of exact values (e.g., lower and
upper bounds on the result multiplicity of a row for a filter
operation or lower and upper bounds on aggregate values
for an aggregation operation).

For certain logical operations, BitGourmet features mul-
tiple operator implementations for different input data for-
mats (e.g., compressed versus non-compressed bit vector
representation). The optimizer selects among different im-
plementations based on a cost model. As an example, we
give an informal description of one of BitGourmet’s join op-
erator implementations.

The input are bit vectors representing a subset of bit
positions for the join columns. As BitGourmet only sup-
ports joins along key-foreign key constraints, one of those
two columns is the key column (typically a column of a di-
mension table) and the other one is the foreign key column
(typically a column in the fact table). In addition, the input
contains a pair of bit vectors specifying which rows in the
dimension table (i.e., the key column table) certainly or pos-
sibly remain after prior filtering steps. The join algorithm
executes the following steps.

1. We determine bit positions in the join columns for
which we have the associated bit vectors in the key
and in the foreign key column. We set all other bit
positions to zero in the foreign key and the key col-
umn and call the result the “partial foreign key” and
”partial key” in the following.

2. We iterate over all rows in the dimension table. We
associate each partial key with a status value. Possible
status values are “All Rows In”, “Some Rows In”, and
“No Rows In”, indicating whether rows associated with
the partial keys satisfy the predicate.

3. We iterate over the rows in the fact table. For each
row, we compare the partial foreign key against the
key status values in the previously created table. The
fact table row is certainly in the join output if the
associated partial key has status “All Rows In”, is pos-
sibly in the join result if the associated status is “Some
Rows In”, and is certainly not in the join result if the
associated status is “No Rows In”.

2.5 Cost-Based Optimizer
BitGourmet features a cost-based query optimizer. The

task of the optimizer is to select which bit vectors to read
from the database, to determine the order of processing
steps, and to select the physical operator implementations.
Furthermore, the optimizer dynamically inserts data con-
version operators (e.g., conversion from raw to compressed
bit vectors) into the query plan if it makes processing steps
cheaper.

Optimization considers two metrics: the estimated ap-
proximation error of the result (i.e., how far lower and up-
per deterministic bounds are apart) and estimated process-
ing time. Approximation error only depends on which set
of bits is used for processing. The more bits are used, the
higher precision can be (assuming that the optimal bits are
selected). Processing time is influenced by the set of se-
lected bit vectors as well as by other planning choices. The
BitGourmet optimizer uses models for predicting approxi-
mation error and processing time for specific plan choices.
Those models are discussed in the next subsection. The
goal of optimization is to minimize processing time under
constraints on the maximal approximation error.

To make optimization fast, we use several heuristics to re-
strict the search space. First, we use heuristics for the order
in which we consider different bit vectors from the same col-
umn (i.e., instead of considering all subsets of bit positions
with a given cardinality for a column, we only consider one
subset per cardinality by selecting higher-priority bit posi-
tions first). Bit vector priorities are based on the role of
the column in the query: for aggregation columns, for in-
stance, we consider bits in decreasing order of weight. For
columns used in equality predicates, we consider bit vectors
in decreasing order of entropy (i.e., starting with bit po-
sitions where fixing a value reduces column entropy more)
instead. Second, we only consider one-way data transfor-
mations (i.e., we do not consider transforming intermediate
results back and forth between two data representations).
Within that search space, we use a relatively simple enu-
meration strategy that is fast enough for typical query sizes.
We are currently extending the optimizer to use a dynamic
programming-based algorithm instead.

2.6 Cost and Error Models
The BitGourmet query optimizer uses a model for pre-

dicting approximation error and a model for predicting pro-
cessing costs. The approximation error model only depends
on the subset of bit positions selected from the database
but not on the query plan. The processing cost model de-
pends however on both, the selected bits as well as on the
processing plan (e.g., order of operations).

Cost and error model are both based on a scenario-specific
cardinality model. The cardinality model estimates the sizes
of intermediate results. More precisely, it estimates for each
intermediate result the number of rows possibly and cer-
tainly satisfying all applicable predicates (whereas standard
cardinality models only estimate one single value). To esti-
mate cardinality, we make several simplifying assumptions
(e.g., uncorrelated query predicates and uniform data dis-
tribution) that are not uncommon in the area of query op-
timization.

Cardinality and error estimates are based on statistics
about the input database. Typically, data statistics cover
the value distribution in specific columns. Such statistics are

not sufficiently fine-grained for our scenario as our goal is to
select specific bit positions of specific input data columns.
Hence, we maintain data statistics that describe specific bit
positions of specific input columns. Here, we maintain sim-
ple statistics such as the ratio of 1s or the compressed size
but also the entropy (i.e., how much fixing a value for this
bit position decreases column value entropy).

2.7 Proactive Buffer Management
BitGourmet stores bit vectors in memory in the buffer

pool. The buffer pool contains data loaded from hard disk
as well as intermediate result vectors, generated during data
processing. It allows to reuse both types of buffer content
across consecutive queries.

Deterministic approximation is most helpful if it allows
answering queries from main memory for which exact pro-
cessing requires disk access (since the entire data set does not
fit into main memory). To increase the chances of answering
queries from memory, BitGourmet exploits pauses between
consecutive queries in an analysis session to proactively fill
empty buffer pool slots. For that, it uses a simple query
prediction model, assuming that the next query will refer to
similar columns as the previous one. Currently based on a
few simple rules, it identifies bit vectors that have the poten-
tial to reduce processing overheads significantly for the next
query. For instance, assuming that the next query uses spe-
cific grouping and aggregation columns, BitGourmet would
proactively intersect the highest value bits of the aggregation
column with bit vectors indicating positions of specific val-
ues in the grouping column (and store the intersection result
in memory). Hence, if the next query uses those columns as
predicted, BitGourmet can avoid accessing aggregation and
grouping columns separately and instead access only the in-
tersection result in memory.

3. FIRST EXPERIMENTAL RESULTS
The purpose of our experimental evaluation is fourfold.

First, we examine specific components of our systems, e.g.
the cost and quality model, to validate their effectiveness
(Section 3.1). Second, in an end-to-end evaluation with
an exact query processing system, MonetDB, we show that
BitGourmet realizes attractive tradeoffs between processing
time and quality (Section 3.2). Third, we compare Bit-
Gourmet against a sampling-based AQP system, BlinkDB
(Section 3.3). For the above experiments, We use the Star
Schema Benchmark [13], a simplified version of the TPC-H
benchmark. Last, we show how BitGourmet performs on a
real-world, exploratory data analysis workload (Section 3.4).

3.1 Model Validation
Setting. We use the Star Schema Benchmark (SSB) with

scaling factor 100. We run SSB queries on a denormalized
version of the database by joining all dimension tables with
the fact table according to primary key-foreign key relation-
ships. All experiments are executed on a laptop with 16GB
main memory and a 2.5GHz Intel i5-7200U CPU. We use a
Toshiba HDTB310AK3AA disk with up to 5GB/s transfer
rate. We use a relative approximation error below 10% as
our target precision. Given a lower bound l and a upper
bound u, the relative error is calculated as (u− l)/(u + l).

Quality Model. We evaluate our quality model and
compare estimated against actual error. In Figure 2, we
compare actual errors of the plans with lowest and second

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

0

0.5

1
A

ct
u
a
l

E
rr

o
r

Lowest Estimate 2nd Lowest Estimate Average

Figure 2: Quality model on all SSB queries: Actual
errors of bit selections with lowest error estimates.

1.11.21.32.12.22.33.13.23.33.44.14.24.3

0
5,000

10,000
15,000

A
ct
u
a
l
T
im

e
(m

s)

Lowest Estimate 2nd Lowest Estimate Average

Figure 3: Time cost model on all SSB queries: Ac-
tual processing times of execution plans with lowest
cost estimates.

lowest error estimates against the average error (averaging
over all possible bit selections). Figure 2 shows that our
quality model effectively identifies bit selections with small
real errors. Note that the error for average plans is typically
close to one (the theoretical maximum). This demonstrates
the need for optimized bit selections.

Cost Model. We evaluate precision of our time cost
model by comparing estimated and actual processing time
of different processing strategies, given a fixed (and opti-
mal) bit selection. Figure 3 compares execution time of best
and second best plan, according to our model, against the
average execution cost (averaging over all possible plans).
The plan ranked first, according to our model, outperforms
the average in 11 out of 13 cases. We conclude that our
execution cost model is helpful in reducing execution costs.

3.2 Comparison against MonetDB
Setting. We use all SSB queries to measure cold start

(i.e., systems have to fetch data from hard disk) execution
times. Other settings are identical to Section 3.1.

Results. We compare our system against MonetDB with
respect to processing time. Our system shows significant
speedups while providing deterministic bounds within a user-
defined target precision. In Figure 4, BitGourmet is up to
13.2× faster than MonetDB with an average speed up of
6.5× for all SSB queries. Figure 5 compares the number of
bits required for exact and approximate processing. Only a
small number of bit vectors are needed to produce reason-
able bounds. BitGourmet reads significantly fewer bits from
hard disk, compared to MonetDB, and therefore achieves
significant speed ups (see Figure 6 for correlations between
amount of data read and speedups). For BitGourmet, we
use the number of bits read for a query as a measure for
associated data size. For MonetDB, we compute the sum of
storage byte sizes of columns that appear in a query.

3.3 Comparison against Sampling-based AQP
Setting. For BlinkDB, we follow instructions provided in

the BlinkDB documentation ‘Running BlinkDB Locally’ and
use 99% confidence error bounds (i.e., its default configura-
tion). We use a denormalized version of the SSB database

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3
104

105

T
im

e
(m

s)

BitGourmet Monet

Figure 4: Execution time on all SSB queries.

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

0
100
200
300

#
o
f

B
it

s

BitGourmet Exact Processing

Figure 5: Number of bits used for deterministic ap-
proximation and exact processing.

with scaling factor 10. If a query result has multiple groups,
we present the average of errors. Other settings are identical
to Section 3.1.

Results. Figure 7 compares BitGourmet against BlinkDB.
We compare in terms of the relative error as well as the
amount of data read (percentage of rows or percentage of
bits). For BlinkDB, we consider different sampling rates,
ranging from 1 to 40%. BitGourmet realizes Pareto-optimal
tradeoffs between error and amount of processed data for
most queries (nine out of 13). Drilling down to results for
single queries reveals the relative strengths and weaknesses
of the two systems. Sampling is prone to errors for small
data subsets. Hence, BitGourmet produces better results,
compared to BlinkDB, for queries with highly selective pred-
icates or small groups (e.g., this applies to queries 3.2, 3.3,
3.4, and 4.3). In exchange, BlinkDB performs very well for
queries with less selective predicates or without grouping
(e.g., this applies to queries 1.1, 1.2, 3.1, and 4.1).

Approximate processing via sampling generates confidence
bounds that may not contain the actual value. Figure 8
reports the number of groups where the actual value falls
outside of the confidence bounds generated by BlinkDB (for
different sampling rates). The figure omits queries for which
the confidence bounds contain the actual value for each
group. BitGourmet, on the other side, generates bounds
that are guaranteed to contain the accurate aggregate value.
Furthermore, for grouped aggregation queries, a result pro-
duced via sampling may miss groups that do not appear in
the sample. For a sampling rate of 1%, for instance, BlinkDB
misses 132, 5, 3, and 743 groups for queries 3.2, 3.3, 3.4, and
4.3, respectively.

3.4 Real-world Data Analysis
Setting. We conducted a user study to collect workloads

that are representative of exploratory data analysis. Partic-

0 200 400 600 8001,000
1x
5x

10x

Ratio of Associated Data Size (MonetDB
BitGourmet

)

S
p
ee
d
U
p

Figure 6: Data size associated with a query versus
speed up against MonetDB (one dot per SSB query).

10−2 10−1
0

0.2

0.4
D
a
ta

S
iz
e
(%

) Query 1.x

10−1 100

Query 2.x

10−1 100
0

0.2

0.4

Relative Error

D
a
ta

S
iz
e
(%

) Query 3.x

x=1(BDB)

x=2(BDB)

x=3(BDB)

x=4(BDB)

x=1(BG)

x=2(BG)

x=3(BG)

x=4(BG)

10−1 100

Relative Error

Query 4.x

Figure 7: Amount of data read versus relative error
of BitGourmet (BG) and BlinkDB (BDB) on all SSB
queries.

2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3

0
20
40
60

#
o
f

G
ro

u
p
s

BDB(1) BDB(10) BDB(20) BDB(30) BDB(40)

Figure 8: Numbers of out-of-bounds for BlinkDB
with different sampling rates (%).

ipants were asked to find interesting trends from a 21.9 GB
data set describing all United States births from 1969 to
20081, using the BitGourmet GUI. We had five participants
and each participant was given 20 minutes to analyze the
data. We collected the queries issued by the participants
along with the timestamps at which each query was issued.
In summary, we gathered a total of five workloads consisting
of analytical queries and their timestamps.

The motivation for collecting a real interactive analysis
workload was in particular to evaluate our buffer manage-
ment strategies in a realistic setting (which is not possible
with SSB). The associated timestamps are required to eval-
uate proactive buffer management strategies (since their ef-
fectiveness may depend on the available time for proactive
pre-processing between consecutive queries).

Results. We evaluate BitGourmet, with and without
proactive buffer management, as well as MonetDB on all
five workloads. Figure 9 reports the results. BitGourmet
with proactive buffer management is up to 16.2% faster than
BitGourmet without proactive buffer management with an
average speed up of 7.1%. Compared to MonetDB, Bit-
Gourmet is in average 28.5× faster for all workloads.

4. ONGOING WORK
In the following, we discuss our ongoing work and future

work plans with regards to BitGourmet and deterministic
approximation in general.

4.1 Online Aggregation with DAQ
Online aggregation [8] continuously updates an aggrega-

tion result as more data is being processed. This approach
frees users from having to specify a desired approximation
precision a-priori (which can be difficult before seeing initial

1https://www.kaggle.com/bigquery/samples

1 2 3 4 5

102

103

T
im

e
(s

)

BitGourmet(Proactive) BitGourmet MonetDB

Figure 9: Overall execution time on each workload.

results). Prior work [8] has shown that nontrivial extensions
in query optimization and execution are required for the
database systems to support online aggregation. The same
is true in our scenario. Our goal is to extend the graphi-
cal user interface of BitGourmet for deterministic online ap-
proximation. During each refinement step, we want to avoid
redundant work and reuse intermediate results generated in
previous refinement steps as much as possible. Hence, an op-
timal query plan should aim at minimizing processing cost
not only of the current but also of future refinement steps.
This motivates a holistic planning approach that optimizes
sequences of refinement steps.

4.2 Optimal Physical Design for DAQ
In our current implementation, we vertically divide a col-

umn as is and store these bit vectors on disk. Even though
this representation works reasonably well, there are several
directions in which we can improve the physical mapping
from a database to bit vectors. One approach for better
performance is to order data so that processing only a sub-
set of tuples (and a subset of bit vectors) gives us reason-
able bounds. One intuitive example is when we calculate a
lower bound of a summation over a column. If the values
in the column are sorted in a decreasing order, the lower
bound will narrow down faster as we process the first few
tuples compared to a random order. Another approach is
to encode values in a column to a fixed-length bit represen-
tation which produces narrower deterministic bounds. The
approximation error is determined by the amount of remain-
ing uncertainty after reading a subset of bit vectors. Thus,
the question is to find an encoding that maximizes the in-
formation gain from a bit subset (usually depends on value
distributions).

4.3 Smarter Proactive Buffer Management
Currently, BitGourmet uses a relatively simple model for

predicting future queries. Based on those predictions, empty
slots in the buffer pool are proactively filled with bit vectors
that are likely to be useful. Our experimental results show
that this simple model is already beneficial and improves
performance. For the future, we are considering two exten-
sions of the proactive buffer management approach. First,
we are working on extending our current, rule-based predic-
tion model towards a more precise probabilistic model. For
instance, we plan to take into account not only occurrence
frequencies of single columns in past queries but also correla-
tions between the occurrence of different columns. Second,
we plan to exploit query predictions more systematically.
Currently, we apply a set of relatively simple rules to de-
termine useful bit vectors based on query predictions. In
the future, we plan to use our cost-based optimizer to pre-
dict execution cost for expected queries, based on different
buffer contents. Filling the buffer with an optimal combina-
tion of bit vectors for the expected query workload can then
be formalized as a global optimization problem.

5. RELATED WORK
Potti and Patel [18] introduce approximate processing via

deterministic approximation. They also reduce the number
of processed bits to obtain speedups. In that, their work is
similar to BitGourmet. However, the approaches proposed
by Potti and Patel are only applicable to simple queries on
a single table, referring to a single aggregate or predicate.
BitGourmet supports a much broader range of queries, fea-
turing for instance joins and supporting multiple predicates,
aggregates, and grouping. It is a full-blown processing en-
gine that handles issues such as dynamic data conversions,
automated bit selections, and query optimization. Note that
challenges, such as the selection of optimal subsets of bits
for processing, do not arise unless complex queries are con-
sidered. To support optimization, we introduce cardinality,
cost, and result quality models that are specific to the do-
main of deterministic approximation.

Beyond the area of deterministic approximation, our use
of bit vectors to represent intermediate results (as a subset of
rows satisfying predicates) bears some resemblance to prior
work in the area of bit-sliced indexing for efficient processing
of OLAP-style workloads [16]. However, our goal is different,
as we exploit bit vectors for fast approximate processing
while the prior work is focused on exact processing.

Beyond the initial work by Potti and Patel, there has
been follow-up work on deterministic approximation which
is however specific to time series [4, 3]. BitGourmet is fo-
cused on relational data instead. Our work also relates to
prior work on generating partial results in the face of incom-
plete data [11, 20, 22]. Here, the motivation is however not
in increasing processing efficiency but rather to account for
missing values.

BitGourmet is generally situated in the area of approxi-
mate processing for which a large body of work is already
available [15, 8, 7, 2, 6, 1, 9, 10, 12, 14, 19, 23, 17, 21].
A complete survey of this area is beyond the scope of this
publication while we refer to prior work [5]. Overall, prior
work on approximate processing has focused on sampling
which does not result in deterministic bounds. BitGourmet
differs from most prior work as it produces bounds that are
guaranteed to contain accurate values.

6. CONCLUSION
We give an overview of our work towards a novel sys-

tem for deterministic approximation, BitGourmet, which
processes carefully selected subsets of bits to obtain near-
optimal tradeoffs between processing time and result preci-
sion. BitGourmet features a specialized optimizer, based on
custom cardinality, cost, and error models, as well as spe-
cialized processing operators. We presented experimental
results for an early version of BitGourmet. Those results
demonstrate that deterministic approximation can result in
significant speedups compared to exact processing. Also,
our results indicate that deterministic approximation can
lead to better result quality than sampling.

7. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. The Aqua Approximate Query
Answering System. In SIGMOD, pages 574–576, 1999.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries with

bounded errors and bounded response times on very
large data. In EuroSys, pages 29–42, 2013.

[3] E. Boursier, J. J. Brito, C. Lin, and
Y. Papakonstantinou. Plato: Approximate Analytics
over Compressed Time Series with Tight Deterministic
Error Guarantees. CoRR, abs/1808.04876, 2018.

[4] J. J. Brito, K. Demirkaya, E. Boursier, Y. Katsis,
C. Lin, and Y. Papakonstantinou. Efficient
Approximate Query Answering over Sensor Data with
Deterministic Error Guarantees. CoRR,
abs/1707.01414, 2017.

[5] S. Chaudhuri, B. Ding, and S. Kandula. Approximate
Query Processing: No Silver Bullet. In SIGMOD,
pages 511–519, 2017.

[6] A. Cuzzocrea. Providing Probabilistically-bounded
Approximate Answers to Non-holistic Aggregate
Range Queries in OLAP. In DOLAP, pages 97–106,
2005.

[7] A. Dobra, C. Jermaine, F. Rusu, and F. Xu.
Turbo-Charging Estimate Convergence in DBO.
PVLDB, 2(1):419–430, 2009.

[8] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD, pages 171–182, 1997.

[9] S. Joshi and C. Jermaine. Materialized Sample Views
for Database Approximation. TKDE, 20(3):337–351,
2008.

[10] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma,
R. Grandl, S. Chaudhuri, and B. Ding. Quickr: Lazily
Approximating Complex AdHoc Queries in BigData
Clusters. In SIGMOD, pages 631–646, 2016.

[11] W. Lang, R. V. Nehme, E. Robinson, and J. F.
Naughton. Partial results in database systems. In
SIGMOD, pages 1275–1286, 2014.

[12] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander Join:
Online Aggregation via Random Walks. In SIGMOD,
pages 615–629, 2016.

[13] P. O. Neil, B. O. Neil, and X. Chen. Star Schema
Benchmark. 2009.

[14] S. Nirkhiwale, A. Dobra, and C. M. Jermaine. A
Sampling Algebra for Aggregate Estimation. PVLDB,
6(14):1798–1809, 2013.

[15] F. Olken and D. Rotem. Random sampling from
databases: a survey. Statistics and Computing,
5(1):25–42, 1995.

[16] P. E. O’Neil and D. Quass. Improved Query
Performance with Variant Indexes. In SIGMOD, pages
38–49, 1997.

[17] J. Peng, D. Zhang, J. Wang, and J. Pei. AQP++:
Connecting Approximate Query Processing With
Aggregate Precomputation for Interactive Analytics.
In SIGMOD, pages 1477–1492, 2018.

[18] N. Potti and J. M. Patel. DAQ: A New Paradigm for
Approximate Query Processing. PVLDB,
8(9):898–909, 2015.

[19] C. Qin and F. Rusu. PF-OLA: A High-performance
Framework for Parallel Online Aggregation. Distrib.
Parallel Databases, 32(3):337–375, 2014.

[20] S. Razniewski, F. Korn, W. Nutt, and D. Srivastava.
Identifying the Extent of Completeness of Query
Answers over Partially Complete Databases. In
SIGMOD, pages 561–576, 2015.

[21] A. Rudra, R. P. Gopalan, and N. Achuthan. An
Efficient Sampling Scheme for Approximate
Processing of Decision Support Queries. In ICEIS,
pages 16–26, 2012.

[22] B. Sundarmurthy, P. Koutris, W. Lang, J. F.
Naughton, and V. Tannen. m-tables: Representing

Missing Data. In ICDT, pages 21:1–21:20, 2017.

[23] B. M. Yongjoo Park, Ahmad Shahab Tajik, Michael
Cafarella. Database Learning: Toward a Database
that Becomes Smarter Every Time. In SIGMOD,
pages 587–602, 2017.

