
Can Transfer Learning be used to build aQuery Optimizer?
Yunjia Zhang, Yannis Chronis, Jignesh M. Patel, Theodoros Rekatsinas

{yunjia,chronis,jignesh,thodrek}@cs.wisc.edu
University of Wisconsin-Madison

In this paper, we propose the problem of transferring a query opti-
mizer. Our problem statement is: Given a database System A that
has a “good” optimizer, and another database System B that has
a poor or no optimizer, but has a similar set of physical operator
implementations, can we design a query optimization module for
System B that learns optimization patterns from System A and then
use this module to optimize queries for System B? The conceptual
view of this problem statement is depicted in Figure 1.

The key observation driving the above problem statement is that
building query optimizers, especially for new data platforms, is
hard, and traditional database systems that have “good” optimizers
take years if not decades to harden. The first part of our motivation
for studying this problem is purely intellectual – we are simply
curious as to how far we can go with the approach stated above.
The second part of our motivation is to explore if the approach
above can be practically used to improve the query optimization
process for a data platform that does not have a good optimizer.

A subtle but critical aspect of the problem statement above is
that both systems A and B must have a similar set of core physical
operators. We note that basic “good” implementations for the core
relational operators are well known (e.g., hash-join, index nested-
loops join, index-based selection, hash aggregation, etc.), and it
is not too hard to implement these basic operators. Thus, it is
reasonable to require that any modern data platform that wants
to use our approach must have reasonable implementations of
these basic relational operator algorithms. A nuanced but important
point is that even if System A has more finely tuned operator
implementations than System B, the query optimizers task is to
differentiate between these individual operators in a given system.
Hence, what really matters from a query optimizer’s perspective
is the relative performance of the algorithms for a given relational
operator in a given system. In other words, there is the potential for
a transfer-based query optimizer to work even if the two systems
A and B have very differently tuned relational operator evaluation
methods.
Future Directions. Given the potential of transferring query opti-
mizers, we list four directions for future research study as follows.
Generalizing Learned Optimization Models. Although recent ML
methods are proven to be effective in various aspects of query
optimization [1, 2], a common challenge with current learning-
based methods is that their knowledge is defined by their training
data set, limiting their applicability when the data set is frequently
updated, and/or the learning-based methods require retraining to
be effective. In the scenario of transferring query optimizer, this
limitation requires the data on the target System B to be migrated

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

Optimized 
Execution 

Plans
Training 
Queries

System A
(optimizes the plan)

Train Models Os

Predict Using Os

Plan
System B

(runs the plan)

Query
Phase 2 
Predict

Transfer

Phase 1 
Learn

Figure 1: The phases of transferring the optimizer of System
A to System B.

onto System A to train the models, which may cause large training
overheads. Therefore, to accommodate the transferring application,
the ML models need to be applicable or adaptive to different data
sets from the training data.
Characteristic-based Transferring. After decades of development,
there are a decent number of well-performing query optimizers
from systems like PostgreSQL, Microsoft SQL Server, etc. However,
optimizers can be highly tuned specifically for their systems, so
the plans generated by different optimizers can vary significantly.
Therefore, future studies may focus on choosing the the most ap-
propriate source query optimizer for a given target System B.
Adaptive Transferring. The plan generated by a transferred query
optimizer may be the best plan for System A but not for System
B. One reason for this difference could be the different designs
of the two systems. An improved transferring solution would use
the transferred optimizer as a starting point and adapt the models
as more queries are executed on target System B, and their cor-
responding query execution costs are observed (for example [1]).
An open question here is whether we can incrementally adjust the
transferred ML model.
Interpretable Transferring. In the setting of query optimizer trans-
ferring, where the transferred optimizer is not inherently designed
for the system where it is being used, a transferred model does not
provide the same query optimization introspection utilities as a
traditional optimizer. This increases the need of interpreting the
decisions made by the transferred models. A direction for future
work is to explore if interpretable ML methods could be used.

REFERENCES
[1] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh,

and Tim Kraska. 2021. Bao: Making learned query optimization practical. In
Proceedings of the 2021 International Conference on Management of Data. 1275–
1288.

[2] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang
Lehner. 2019. Cardinality estimation with local deep learning models. In Pro-
ceedings of the second international workshop on exploiting artificial intelligence
techniques for data management. 1–8.

1


	References

