
VIVA: An End-to-End System for Interactive Video Analytics
Daniel Kang

∗

ddkang@cs.stanford.edu

Stanford University

Francisco Romero
∗

faromero@stanford.edu

Stanford University

Peter Bailis

pbailis@cs.stanford.edu

Stanford University

Christos Kozyrakis

christos@cs.stanford.edu

Stanford University

Matei Zaharia

matei@cs.stanford.edu

Stanford University and Databricks

ABSTRACT

The growth of video volumes and increased DNN capabilities has

led to a growing desire for video analytics. In response, the data

analytics community has proposed multiple systems that optimize

specific query types (e.g., selection queries) or a particular step in

query execution (e.g., video retrieval from storage). However, none

of these systems provide end-to-end, practical video analytics for

users to iteratively and interactively engage with queries, as is the

case with analytics systems for structured data.

In response, we are building VIVA: an end-to-end system for

interactive video analytics. VIVA contains five novel components.

First, VIVA uses relational hints, which allow users to express rela-

tionships between columns that are difficult to automatically infer

(e.g., mentions of a person in a transcript can be used as a proxy

for the person appearing in the video). Second, VIVA introduces

a mixed-data query optimizer that optimizes queries across both

structured and unstructured data. Third, VIVA features an embed-
ding cache that decides which results/embeddings to store for future

queries. Finally, VIVA co-optimizes storage and query execution

with its video file manager and accelerator-based execution engine.
The former decides how to pre-fetch/manage video, while the latter

selects and manages heterogeneous hardware backends spanning

the growing number of DNN accelerators. We describe the chal-

lenges and design requirements for VIVA’s development and outline

ongoing and future work for realizing VIVA.

1 INTRODUCTION

Video volumes are growing tremendously in scale: 500 hours of

video are uploaded to YouTube every minute [36]. At the same time,

deep neural networks (DNNs) have increased in capabilities, e.g.,

allowing for detection of objects in videos [17]. These two trends

havemade automatic andmeaningful analyses of video increasingly

feasible, allowing users to answer queries such as “how many birds

of a particular species visit a feeder per day” or “do any cars that

passed an intersection match an AMBER alert.”

To date, research systems for DNN-based video analytics focus

on optimizing a specific query type (e.g., selecting a frame with a

specific criteria) or a single step in query execution. They range

from reducing query costs via approximations [21], efficient use

∗
Denotes equal contribution.

This article is published under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/). 12th Annual Conference on Innovative
Data Systems Research (CIDR ’22), January 9–12, 2022, Chaminade, USA.

VIVA

Structured tableQuery language

Parser

Mixed-data optimizer

Accelerator-based
execution engine Embedding cache

Video metadata

DNN metadata

UI

Inputs

Relational hint explorer

Model (re)-training End-to-end
Outputs

Query analysis

Results

Serverless GPU
Video file manager

Materialized results

Model

(re)-training

service

SELECT time_window FROM news_analysis

 WHERE tapper_angry_sanders = TRUE

 USING HINT transcript_frame_equals

Analysis (lat, cost, acc)
Plan 1 1hr, $30, 80%
Plan 2 20s, $20, 60%
Plan 3 1min, $8, 75%

Final query results

Video 1

Video 2

Serverless *PU
Video file manager

Figure 1: VIVA’s architecture diagram. Blue components/interfaces

are typically found in analytic systems for structured data that re-

quire rethinking. Orange components/interfaces are novel to VIVA.

of hardware [26], indexing video data [24], to video query pro-

gramming models [13]. However, users must manually decide how

to combine and manage these systems to answer desired queries.

Consider an analyst studying political news coverage from the “big

three” cable news channels [19]. The analyst may issue several

ad-hoc (i.e., exploratory) queries to understand the dataset, such as

finding instances of Bernie Sanders (a politician) reacting angrily to

Jake Tapper (a TV news host). To answer this query efficiently, the

analyst needs to consider several choices, such as: should they train

a specialized proxy model for Jake Tapper, Bernie Sanders, or both

(e.g., using NoScope [22])? Is it best to filter for Bernie Sanders

and Jake Tapper using the video transcripts first before searching

frames [13]? Have enough labels (e.g., angry face detections) been

materialized to leverage a video event specification system [13]?

Today, end-to-end systems for terabyte-scale structured data

analytics (e.g., data warehouses) alleviate the burden on users from

having to manually optimize queries over structured data. These

systems efficiently automate query planning because structured

1

CIDR’22, January 9-12, 2022, Chaminade, CA, USA Daniel Kang, Francisco Romero, Peter Bailis, Christos Kozyrakis, and Matei Zaharia

data is in a predictable schema, and the number of query types

is limited. We believe similar end-to-end systems will emerge for

video analytics. However, designing systems for interactive video

analytics (IVA), i.e., ad-hoc queries over large volumes of video data,

presents several challenges:

C1: Specifying domain knowledge. To optimize queries, data

warehouse systems collect statistics about fields in the tables they

store. However, since state-of-the-art DNNs are expensive to exe-

cute— as slow as 3 frames per second (fps) — video analytics systems

need mechanisms for users to express relationships between un-

structured data (i.e., domain knowledge) to optimizers. BlazeIt [21]

allows users to query information about videos through virtual re-

lations that trigger the execution of a DNN to materialize the view

(e.g., object detection DNN to materialize the label). This allows

BlazeIt to lazily optimize the number of DNN invocations. How-

ever, since the values of virtual columns are not known until they

are materialized, relationships between columns cannot be auto-

matically inferred without guidance from the user.

C2: Optimizing across unstructured and structured data. IVA

query costs can be orders of magnitude higher than structured data

query costs due to executing expensive DNNs. For example, comput-

ing results for a year of video data (60 fps) with a 3fps DNN would

cost ∼$54K on a 2-core Google Cloud Platform (GCP) instance with

NVIDIA T4 [15, 35]. However, IVA systems can reuse query results

across users (e.g., faces materialized for one query can be reused for

the TV news analysis query). Hence, IVA systems should optimize

queries across both structured data (e.g., materialized face labels)

and unstructured data (e.g., video frames). Most existing systems op-

timize either structured [32, 45, 48] or unstructured [6, 21, 33] data,

or assume all unstructured data is in embedding vectors (i.e., do

not need to pass DNNs over frames in real-time) [46]. IVA systems

should also extend video data indexing systems (e.g., TASTI) [24]

to decide which results/embeddings to cache or materialize.

C3: Efficiently utilizing accelerators for large datasets. Users

are interested in analyzing increasingly large volumes of video. For

example, ten years of “big three” US news channels is ∼96TB [3].

Thus, assuming all data will be available in a node’s local storage is

not feasible. Furthermore, efficiently processing these large volumes

with DNNs requires accelerators that are expensive to constantly

run. Hence, IVA workloads need to run on large-scale, distributed

systems with heterogeneous accelerators and data spread through a

distributed filesystem. This requires IVA systems to jointly consider

storage and compute by (a) strategically laying out video data across

distributed storage, and (b) efficiently meeting varying throughput

demands across video retrieval, decoding, and DNN execution [47].

To address these challenges, we are building VIVA (Figure 1), an

end-to-end IVA system. In this work we highlight the key ideas of

our design. In particular, VIVA contains several novel components:

S1: Describing domain-specific relations. VIVA allows users

to express domain knowledge through relational hints. Relational
hints generalize the notion of a proxy model. They are a declara-

tion of how two virtual columns (i.e., columns materialized by a

DNN’s output) are related to each other. For example, a user can

describe that all Bernie Sanders faces are a superset of his angry

Naive (FUSE) Naive (Local) Optimized
100

101

102

103

104

La
te

nc
y

(s
ec

on
ds

) Download (transcript)
Download (video)
Decode
Face detection
Emotion classification

Figure 2: Latency breakdown of three query plans for angry Bernie

Sanders interviews. Y-axis is log-scaled. Naive (FUSE) and Naive
(Local) execute face recognition and emotion classification over

all frames. Optimized filters using the transcript, then executes the

face recognition and emotion classification on filtered frames with

pipelining. The resource-dominant step varies by query plan.

faces. Furthermore, as users explore query strategies based on differ-

ent relational hints, VIVA provides interactive feedback — latency,

accuracy, cost analyses, and samples of resulting frames and video

clips — so users can visually explore their query results and tune

its quality through relational hints.

S2: Blending structured and unstructured data. VIVA’s mixed-
data query optimizer spans both structured records and unstruc-

tured records. The optimizer queries structured tables and an em-
bedding cache to determine operation ordering, what pre-computed

results or embeddings are available, and to provide the user with

exploratory cost estimates for query plans.

S3: Co-optimizing storage and compute. VIVA’s video file man-
ager pre-fetches, caches, and manages video data (e.g., selecting

resolutions or tile layouts [12]). VIVA’s accelerator-based execution
engine selects from andmanages heterogeneous hardware backends

that span the growing number of DNN accelerators, especially as

they become available on serverless offerings.

We explore how the highlighted challenges have guided VIVA’s

design, show preliminary results supporting our design choices,

and outline ongoing and future work for realizing VIVA.

2 FEASIBILITY OF IVA

To understand the feasibility and unresolved challenges for IVA,

consider three query plans for the TV news analysis query: (a)

Naive (FUSE): mounting remote object storage with FUSE [14], di-

rectly decoding frames from the mounted drive, and executing face

recognition followed by emotion classification, (b) Naive (Local):
same as (a), but first downloading the videos from remote stor-

age before decoding the local videos, and (c) Optimized: filtering
frames via the transcript, then executing the remainder of (b) on

the filtered frames and pipelining results across steps.

To compare these three plans, we manually combined existing

techniques as users would do today. Each was run on 100 GCP

n1-standard-16 with one NVIDIA T4 GPU over one year of CNN

videos with results in Figure 2. As shown, Naive (FUSE) would

take ∼4.2 hours and ∼$325, Naive (Local) would take ∼2.5 hours
and ∼$200, and Optimized would take ∼3 minutes and ∼$4. Thus,
IVA systems have the potential to deliver fast and cheap ad-hoc

queries over large collections of videos.

2

VIVA: An End-to-End System for Interactive Video Analytics CIDR’22, January 9-12, 2022, Chaminade, CA, USA

There are several challenges towards achieving or improving on

the performance and cost of Optimized: exploiting domain knowl-

edge (e.g., using transcripts for filtering), automatically selecting

the right optimizations across both structured data and unstruc-

tured data, and managing video data processing across hundreds to

thousands of workers with heterogeneous accelerators (including

optimizing video retrieval). Overcoming these challenges would

benefit several domains including performing large-scale ecolog-

ical science, enabling warehouse-scale robotics deployment and

analysis, and curating data for autonomous vehicles [9, 28].

3 VIVA

To address the challenges in Section 2, we are building VIVA: an

end-to-end IVA system. We first describe the query types supported

by VIVA (Section 3.1). Next, we give a detailed workflow overview

of how an analyst would interact with VIVA (Section 3.2). Finally,

we describe the novel components in VIVA’s architecture that build

on and extend prior work in video analytics (Section 3.3).

3.1 Query Types Supported by VIVA

VIVA supports five common classes of data analytics queries: selec-

tion, aggregation, limit, similarity, and join. A significant difference

in processing these classes of queries for IVA workloads is the cost

of materialization due to executing expensive DNNs. This cost can

be orders of magnitude more expensive than materializing views

for a standard database [21]. We describe each query type from a

video analytics perspective and discuss its implications for VIVA.

Selection queries. Users are interested in selecting particular

objects or events of interest. Analysts may search for instances of

Bernie Sanders reacting angrily to Jake Tapper or diving header

goals in soccer games. These are often used for downstream, manual

analysis. As such, they are relatively rare (<5% prevalence) [23].

Aggregation queries. Users are interested in computing some

statistic over the video frames. A city planner may compute the av-

erage number of cars per frame or count the number of pedestrians

that cross in front of a doorbell camera. Since many applications

tolerate approximations, VIVA can apply sampling techniques.

Limit queries. Users are interested in finding a cardinality-limited

number of events for manual inspection or for correctness tests. A

city planner may search for 10 instances of buses at stop signs or

an analyst may search for two instances of diving header goals.

Similarity queries. Users are interested in searching for portions

of the video similar to an input frame or video clip. For example, a

football analyst may input a frame or video clip of an offensive for-

mation scheme they wish to search for. Such queries often involve

iterative, ad-hoc analysis to arrive at the final query.

Join queries. Users are interested in performing a join and sub-

sequently performing a selection, aggregation, or limit query. An

AMBER Alert application may join extracted license plates with

an external data source. Often, extracting the join column is ex-

pensive. While VIVA can naively answer such queries, we defer

optimizations to future work.

3.2 Workflow Example

In this section, we describe how an analyst would use VIVA for a

selection query (Section 3.1) to search for interview scenes with Jake

Tapper and angry Bernie Sanders. Table 1 shows an abbreviated

schema for a TV news analysis table, news_analysis.
With VIVA, the analyst can begin by defining a column, face_label,

produced by calling a user-defined function (UDF) that passes a

face detection DNN over a frame:

ALTER TABLE news_analysis ADD face_label
AS face_detection (frame)

Similarly, the analyst can define a column, sentence_segment,
produced by a UDF that gets to get sentence segments correspond-

ing to a frame:

ALTER TABLE news_analysis ADD sentence_segment
AS get_sentence_segment (frame)

Next, the analyst can define columns specific to their query. To

produce the column sanders_frame, the analyst would input:

ALTER TABLE news_analysis ADD sanders_frame
AS face_label = ' Sanders '

A similar expression would produce tapper_frame. To capture

emotions, the analyst defines a column, emotion_label, produced
by a UDF that passes an emotion detection DNN over a frame:

ALTER TABLE news_analysis ADD emotion_label
AS emotion_detection (frame)

Similar to sanders_frame, the analyst can define a column,

sanders_angry:

ALTER TABLE news_analysis ADD sanders_angry
AS sanders_frame = TRUE AND emotion_label = ' angry '

Finally, the analyst can define a column, tapper_angry_sanders,
corresponding to their end query for finding interview scenes with

Jake Tapper and angry Bernie Sanders:

ALTER TABLE news_analysis ADD tapper_angry_sanders
AS sanders_frame = TRUE

AND tapper_frame = TRUE
AND sanders_angry = TRUE

The analyst would then specify the end query as:

SELECT time_window FROM news_analysis
WHERE tapper_angry_sanders = TRUE

They can then optionally receive query cost insights by augmenting

their query with the EXPLAIN statement.

The analyst will notice it is slow and cost-inefficient to pass

DNNs over all frames to detect Bernie Sanders. Thus, they can

explore an alternative way of detecting Bernie Sanders by using

transcripts. To create the column sanders_transcript, the analyst
would input:

ALTER TABLE news_analysis ADD sanders_transcript
AS sentence_segment LIKE '% Sanders %'

Next, the analyst would explore the results of searching for

“Sanders” in transcripts (sanders_transcript) by inputting:

SELECT time_window FROM news_analysis
WHERE sanders_transcript = TRUE

3

CIDR’22, January 9-12, 2022, Chaminade, CA, USA Daniel Kang, Francisco Romero, Peter Bailis, Christos Kozyrakis, and Matei Zaharia

Field Type How field is generated

channel string Video metadata

time_window (float,float) Video metadata, DNN

face_label string Object detection DNN

emotion_label string Emotion detection DNN

sentence_segment string Sentence from transcript

sanders_frame bool Computed column for Sanders in frame

tapper_frame bool Computed column for Tapper in frame

sanders_transcript bool Computed column for Sanders in transcript

sanders_angry bool Computed column for Sanders being angry

tapper_angry_sanders bool Computed column for interview scenes

with Tapper and angry Sanders

Table 1: Table schema for TV news analysis table, news_analysis.
A query for Bernie Sanders scenes would use sanders_frame, while

Section 2’s TV news analysis would use tapper_angry_sanders.

From the results, the analyst will notice detecting Bernie Sanders

through transcripts is orders of magnitude faster than detecting him

in frames. However, it is also less accurate. Using this knowledge,

they can express a relational hint to VIVA that transcript segments

in which Bernie Sanders speaks are a proxy for frames he appears

in (i.e., a general hint, see Section 4.2):

CREATE GENERAL HINT transcript_frame_proxy
FOR news_analysis
AS sanders_transcript PROXY sanders_frame

After inspecting the results, the analyst will further note that

for interview queries, transcript segments in which Bernie Sanders

speaks are equivalent to frames he appears in. Thus, the analyst

can specify a relational hint that only holds for their query (i.e., an

explicit hint, see Section 4.2) as follows:

CREATE EXPLICIT HINT transcript_frame_equals
FOR news_analysis
AS sanders_transcript EQUALS sanders_frame

Once the hints are defined, the analyst can specify the end query

to the end-to-end interface with the relational hint specific to this

query (transcript_frame_equals). VIVA will efficiently execute

the query over the entirety of the video corpus, and will automati-

cally leverage the general relational hint, transcript_frame_proxy:

SELECT time_window FROM news_analysis
WHERE tapper_angry_sanders = TRUE
USING HINT transcript_frame_equals

During the exploration VIVAmaterializes and caches results (e.g.,

Bernie Sander’s faces) to speed up subsequent queries (Section 5.4).

Furthermore, since query cost can be data-dependent (e.g., the cost

can depend on howmany faces are present in a frame), VIVA collects

statistics (e.g., average number of objects per frame) as queries

execute. VIVA incorporates these statistics into its query planning

and cost estimation similar to existing systems that sample based

on a user-inputted accuracy target, e.g., systems that use statistics

to decide how to allocate samples for stratified sampling [25].

3.3 Key VIVA Components

We now discuss the key components of VIVA’s architecture —

shown in Figure 1 — that enables it to address the challenges de-

scribed in Section 2. Orange components are novel, while blue

components are typically found in analytics systems (e.g., RDBM-

Ses) that require redesigning.

Describing domain-specific relations. VIVA’s relational hints
explorer allows users to explore their video corpus and express

domain-specific relationships through relational hints. To aid users

in their exploration, VIVA provides interactive feedback (similar to

SQL’s EXPLAIN) — expected cost, latency, and accuracy of a query,

or a sample of the resulting frames and video clips for the user

to visually assess (e.g., over a subset of the dataset). By providing

this interactive feedback, users can explore variations of queries

that achieve the same end goal. For example, a user might explore

the results of finding Bernie Sanders in different ways: (a) using

transcripts, (b) using a general face recognition DNN, or (c) using a

specialized model trained to detect Bernie Sanders.

Blending structured and unstructured data. The mixed-data
query optimizer (Sections 4.1 and 5.2) optimizes query plans by con-

sidering both unstructured records (e.g., video frames) and struc-

tured records (e.g., structured table in Figure 1). For unstructured

records, VIVA extends and builds upon existing work on reducing

query cost (e.g., approximations and object tracking). VIVA also

features an embedding cache that extends existing work on video

indexing (e.g., TASTI [24]) to decide which results/embeddings to

store for future queries (Section 5.4).

Co-optimizing storage and compute. Each compute instance

has a video file manager that fetches video files from remote storage

(e.g., low-cost systems like Google Cloud Storage) or distributed

nodes. VIVA’s video file manager is motivated by work like TASM

and VStore, which focus on optimizing how locally-available video

data is formatted (e.g., resolution) or tiled. However, the video file

manager also decides whether frames or chunks should be cached

or pre-fetched. VIVA’s accelerator-based execution engine manages

the heterogeneous compute instances for executing queries. Based

on the DNN and underlying accelerator selected by the mixed-data

query optimizer, the accelerator-based execution engine makes

scheduling and resource allocation decisions for decoding and com-

pute. We describe both components in Section 5.3.

4 SPECIFYING RELATIONAL HINTS

To optimize queries, systems must understand the relationships

between columns. Some relationships can be inferred using existing

functional dependency techniques [20, 29]. Unfortunately, many

relationships cannot automatically be inferred, e.g., it is difficult to

automatically infer that searching for Bernie Sanders interviews

with Jake Tapper should not involve cooking shows. Existing work

on functional dependencies is limited to structured data, while IVA

workloads span both structured data and unstructured data.

Similar to how relational databases support foreign keys to link

structured data between two tables, we propose relational hints

for virtual columns. Relational hints generalize the notion of a

proxy model [21, 22]: they are a declaration of how two virtual

columns are related to each other. They allow users to specify

domain knowledge to VIVA. Implicit in all of the hints is a time

window for which the hints apply over (omitted for brevity in the

description of the relational hints).

4

VIVA: An End-to-End System for Interactive Video Analytics CIDR’22, January 9-12, 2022, Chaminade, CA, USA

4.1 Relational Hints Operators

VIVA currently supports four relational hints operators that cover

queries across a wide range of use cases (see Section 2); other hints

can be added for future use cases: SUPERSET, EQUALS, EXCLUDES,

and PROXY. Throughout, A and B refer to columns, some of which

may be virtual and some of which may be materialized. A column

can either correspond to a single frame, or a group of frames (e.g.,

a time window over which a label is true).

SUPERSET. A SUPERSET B denotes that A is a superset of B. For
example, Bernie Sanders present in a frame (sanders_frame) is
a superset of Jake Tapper interviewing an angry Bernie Sanders

(tapper_angry_sanders).
Given A SUPERSET B and a query for B, VIVA will produce a

query plan where B only processes data that correspond to columns

predicated on A. If A is not materialized, VIVA will produce a query

plan to first process A. Subsequent cost modeling will determine

which plan to execute.

EQUALS. A EQUALS B denotes that A and B are equivalent. For ex-

ample, an analyst may express that Bernie Sanders in the transcript

(sanders_transcript) is equivalent to Bernie Sanders present in

a frame for a query searching for Bernie Sanders being interviewed.

Given A EQUALS B and a query for A or B, VIVA will produce

two query plans using the other column. Similar to SUPERSET,

VIVA will produce a query plan materializing A if it is not already.

EXCLUDES. A EXCLUDES B denotes that if A is true, B is false. For

example, Jake Tapper interviewing Bernie Sanders will not happen

on a cooking show.

Given A EXCLUDES B and a query for B, VIVA will produce

a query plan that does not process any data for which A is true.

Similar to EQUALS and SUPERSET, if A is not materialized, VIVA

will produce a query plan to first process A.

PROXY. A PROXY B denotes that A can be used to approximate

predicates for B. For example, Bernie Sanders in the transcript is a

proxy for Bernie Sanders present in a frame.

GivenA PROXY B, and a user query for Bwith an accuracy target,

VIVA will apply techniques for approximation (e.g., BlazeIt). Since

proxies are inherently noisy, they are used in approximate queries.

VIVA currently supports existing techniques such as approximate

selection, aggregation, and track processing [6, 21–23, 25].

4.2 Relational Hints Scope

As shown in Section 3.2, an analyst may find that (a) relationships

between columns hold for any query over a schema, or (b) relation-

ships are only valid for certain queries. To allow the expression of

both types of relationships in queries, VIVA supports two types of

hints: general and explicit hints.

General hints. These hints can be reused across queries and hold

for any query over the schema. For example, the relational hint

specifying Bernie Sanders in the transcript is a PROXY for Bernie

Sanders present in a frame in Section 3.2 is a general hint. General

hints can be registered by any user and can be reused across queries.

VIVA automatically uses registered relational hints when applicable.

We envision general relational hints being useful in a collaborative

Technique Result

Decode Read video into uncompressed raw format [40]

Encode Compress raw video into a target format [40]

Frame pre-processing Apply frame manipulations (e.g., cropping) [26]

Face detector Label frames with faces [1]

People detector Label frames with people [1]

Vehicle detector Label frames with vehicles [1]

OCR Identify text in frame [39]

Labeling model Use high accuracy general model to label

and train a domain specific model [21]

ASR Transcribe video audio to text [39]

Table 2: Examples of techniques VIVA applies at video ingestion.

setting, where users with domain knowledge can specify relational

hints that teammates can leverage without having to redefine them.

Explicit hints. Explicit hints are not applied unless requested.

For example, the hint specifying Bernie Sanders in the transcript

EQUALS Bernie Sanders being present in a frame in Section 3.2 is an

explicit hint. While true for interviews, it does not generally hold.

Thus, explicit hints are not automatically reused across queries.

5 END-TO-END IVA QUERY EXECUTION

During query execution, VIVA not only optimizes over structured

and unstructured data, but also decides when to materialize results.

In this section, we explain how VIVA processes video data by first

describing the data VIVA materializes at ingest to enable interactive

video queries (Section 5.1). At query time, VIVA’s mixed-data query

optimizer considers both structured and unstructured data and

incorporates relational hints (Section 5.2). During execution, VIVA

co-optimizes storage and compute across heterogeneous compute

backends (Section 5.3). Once the query completes, VIVA decides

what results/embeddings to cache (Section 5.4).

5.1 Materializing Results at Video Ingest

During ingestion, videos are transcoded and stored for later

viewing across various types of devices [40]. Since transcoding

requires touching each frame of a video [30], VIVA can materialize

commonly-used views at ingestion time. In particular, the cost of

executing certain DNNs combined with sampling, e.g., detecting

a sample of faces across ten years of “big three” news coverage, is

marginally low compared to the cost of transcoding.

To reduce the number of frames processed at query time, VIVA

leverages ingest techniques developed in prior work and deployed

in various academic and industry systems (examples shown in Ta-

ble 2). These state-of-the-art techniques trade-off performance and

accuracy (e.g., Smol [26]). VIVA uses occupancy (prevalence of a

given object class in a video [21]) to determine which frames to pro-

cess at ingest. While materializing views at ingest generally benefits

all query types (see Section 3.1), there may be additional consider-

ations in some cases. For example, similarity queries may require

more temporal information (i.e., frames to process) to establish a

relationship (see Section 7).

We consider a selection query to find all occurrences of a given

object in a video under two scenarios: Cheap ingest, which runs all

techniques from Table 2 except ASR and OCR, and Expensive in-
gest, which runs all the techniques. Running ASR and OCR extracts

5

CIDR’22, January 9-12, 2022, Chaminade, CA, USA Daniel Kang, Francisco Romero, Peter Bailis, Christos Kozyrakis, and Matei Zaharia

Cheap Expensive Cheap Expensive
1x

2x

3x

4x

5x
In

ge
st

 in
cr

ea
se

 b
y

(fa
ct

or
)

Low Occupancy High Occupancy

(a) Ingest latency increase

Cheap Expensive Cheap Expensive
1x

5x

10x

15x

Q
ue

ry
 re

du
ct

io
n

by
 (f

ac
to

r)

Low Occupancy High Occupancy

(b) Query latency reduction

Figure 3: Normalized ingest and query latencies of VIVA. We con-

sider two scenarios. Cheap ingestion: run all techniques from Table 2

except ASR and OCR. Expensive ingestion: run all techniques from

Table 2. VIVA trades off the time and cost spent extracting results at

video ingest to make interactive video queries feasible.

more information at ingest and can further reduce query latency

while incurring higher ingest latency. We consider two types of

video settings: low occupancy where object occurrence in frames

is low and high occupancy where object occurrence is high (e.g.,

traffic cams at rural and urban intersections, respectively).

Figure 3 shows the results of this evaluation. Ingest and query

latencies are normalized to a baseline of no materialized results. In

the low occupancy scenario, we can reduce the query latency by

12.7× (Figure 3b) for a small ingest increase of 6% (Figure 3a). This

is expected because the fast people, vehicle, and face detectors filter

a large amount of frames at ingest (over a 5× reduction in frames to

process over the baseline). The Expensive ingest further reduces
query latency, but the ingest cost is noticeably higher compared

to Cheap. In the high occupancy scenario, the savings are not as

significant. Interestingly, the ingest latency for the Expensive in-
gest is significantly higher than the low occupancy scenario. In this

case, the more expensive models (ASR and OCR) need to run over a

larger number of frames at ingest, but the query latency reduction

over Cheap is minimal because the expected savings from these

models is relatively small. Thus, materializing results at ingest can

reduce query latency.

5.2 Blending Structured and Unstructured Data

Given a user query and its relational hints, VIVA produces one or

more candidate query plans. VIVA’s mixed-data optimizer estimates

the cost of these candidates, and selects the most cost-effective one

(e.g., best performance/$). The mixed-data optimizer considers exe-

cution cost over both structured records and unstructured records

(e.g., executing a DNN over a frame). For structured records, the

mixed-data optimizer considers execution cost similar to existing

database optimizers. For unstructured records, the mixed-data opti-

mizer considers the cost of executing DNNs.

All Cached
10

0

10
2

10
4

La
te

nc
y

(s
ec

on
ds

) Download (video)
Decode
Score change (OCR)

Figure 4: Latency breakdown of two query plans for field goals in

NFL games. Y-axis is log-scaled. All uses OCR to detect score changes

on all frames, then filters by changes of three points. Cached uses

cached score changes, then uses OCR to detect score changes of three

points. VIVA improves performance by 72×.

Similar to existing heterogeneous-aware DNN scheduling sys-

tems (e.g., Llama [42], INFaaS [41], Gavel [34]), the mixed-data

optimizer uses the most up-to-date backend resource availability to

select between candidate query plans. For example, for A SUPERSET
B, if neither A nor B is materialized VIVA will use backend resource

availability to decide which is cheaper to execute. When multiple

DNN candidates are available to run for a given UDF (e.g., multiple

face recognition models), the mixed-data optimizer analyzes cost,

latency, and accuracy given the available hardware platforms.

5.3 Co-optimizing Execution & Video Fetch

Since IVA workloads are ad-hoc and require variable amounts of

compute and memory resources, the serverless computing model

(i.e., fine-grained billing for the duration of a query plan’s exe-

cution) is a good fit [37]. However, IVA workloads require het-

erogeneous accelerators to efficiently run DNNs. At the time of

writing, commercial serverless offerings (e.g., AWS Lambda and

Azure Functions) do not support accelerators. Thus, VIVA manages

its own serverless workers across heterogeneous accelerators, and

leverages optimizations for jointly optimizing pre-processing and

inference like Smol [26].

The time to fetch video chunks can be a limit to achieving in-

teractive performance (Figure 2): to complete the angry Sanders

query in under ten seconds, we estimate the sustained bandwidth

between each compute node (n1-standard-16 with one NVIDIA

T4 GPU) and remote storage would need to be ∼2.5 GB/s (20 Gbps).
This is the peak bandwidth of an SSD or about 4 hard disks [5]. In

addition, depending on their storage format, video decoding and

transcoding can also be performance limiters. Thus, intelligently

deciding what videos to pre-fetch and cache on a compute node is

important for both performance and resource efficiency. To do so,

each workers’ video file manager manages video file accesses and

storage formatting. For example, based on exploratory TV news

analysis queries, VIVA pre-fetches video data from CNN, decodes

the videos, and even tiles frames if labels are available. When the

analyst submits the end query over a year of CNN videos, VIVA

will have already optimized video downloading and decoding, and

materialized some or all of the columns needed (possibly during

video ingestion, see Section 5.1).

6

VIVA: An End-to-End System for Interactive Video Analytics CIDR’22, January 9-12, 2022, Chaminade, CA, USA

5.4 Caching and Materializing Results

After a query executes, VIVA caches the outputs and adds any ma-

terialized results to the structured table. The mixed-data optimizer

uses cached results to accelerate future queries. Storingmaterialized

views is cheap compared to the cost of storing video: face labels for

10 years of TV news is ∼5GB, compared to 32TB of storage for the

videos (<0.01% overhead). Thus, VIVA exhaustively caches results.

Caching materialized results can result in large query speedups.

We use a prototype of VIVA with the embedding cache to query for

all made field goals (three-point kicks) over an NFL season. Similar

to the example from Section 2, we use 100 GCP n1-standard-16
each with one NVIDIA T4 GPU. Figure 4 shows the latency of

executing this query over video data of one NFL season in two

different ways: (a) All: uses optical character recognition (OCR)

over all frames to detect score changes, then filter by changes of

three points, and (b) Cached: starting with cached results of when

score changes occur, uses OCR to detect the amount by which score

changed, then filter by changes of three points. By caching results,

VIVA improves query performance by 72×.
TASTI [24] proposes methods for training video indexes that

can be cached for reuse across queries. VIVA extends this work

by managing and tracking the DNN version (and its associated

accuracy) that produce the results. This allows VIVA to leverage

the cached results even if the DNN is updated or changed. For

example, together with the stored DNN metadata, VIVA can use

previously-cached results as a proxy for the updated DNN.

6 RELATEDWORK

While recent work has looked at specific aspects to improve cost

for IVA queries, VIVA is the first to combine them end-to-end.

Proxies. Recent work uses cheap approximations to accelerate spe-

cific classes of queries, ranging from selection [22, 23], aggregation

[21], and aggregation with predicates [25]. While these systems

can accelerate individual queries, they are focused on the batch

setting and only accelerate individual queries. We leverage this line

of work for accelerating certain classes of queries in VIVA.

Execution engines. Other work optimizes execution of DNNs [38,

41, 49]. These systems aim to efficiently use hardware resources for

already-specified execution plans. However, they do not optimize

queries end-to-end and are not typically built for interactive video

analytics. Several ideas from these systems can be used in VIVA’s

accelerator-based execution engine, as described in Section 3.3.

Storage and decoding. Classical (e.g., multimedia databases [2])

and recent work [12, 16, 26, 47] have focused on the storage and

decoding of video data, which is increasingly becoming the bot-

tleneck for certain queries via optimized analytics systems. This

work aims to optimize storage costs and DNN execution, including

preprocessing video data. We leverage ideas from these systems

with VIVA’s video file manager.

Specifying video queries. Recent work focuses on specifying

video queries, either with fixed schemas [21] or for ad-hoc queries

[13]. Much of this work focuses on specifying query languages for

fixed schemas, such as finding/counting specific object types [21] or

tracks [6]. Other work allows users to specify ad-hoc queries [13],

but assumes the expensive DNNs have been exhaustively executed

over the data, which is infeasible for many organizations.

Interactive analytics. Classical and recent work aims to enable

interactive analytics (e.g., online aggregation gives increasingly

accurate answers to aggregation queries as queries execute [18]).

More recent work focuses on interactive “web-scale” tabular data

[32], tabular ML pipelines [11], and live queries [7]. While these

techniques do not directly apply to unstructured data, VIVA uses

scale-out, data layout, and other structured data optimizations.

Functional dependencies. Existing work on functional depen-

dencies [20, 29] helps database designers automatically determine

the relation of one attribute to another. However, existing work is

limited to structured data; IVA workloads need to interact with both

structured records and unstructured records. VIVA can leverage

this work to automatically infer hints for structured data.

7 DISCUSSION AND RESEARCH DIRECTIONS

While our preliminary prototype and results with VIVA have been

promising, we have come across the following open questions for

the design of end-to-end IVA systems.

Inferring and proposing relational hints. Automatically infer-

ring relational hints (Section 4) is not always possible, especially if

they are explicit hints. Furthermore, since virtual columns are not

always materialized, standard techniques for detecting functional

dependencies cannot directly be applied.

If relational hints are not specified, VIVAwarns the user if a query

is estimated to be expensive based on the amount of unstructured

data that needs to be processed and the required DNNs. We are

investigating how query- or domain-specific knowledge can be

used to suggest or distill hints.

Supporting cost and latency targets. VIVA allows users to ex-

plore their queries and receive insights into cost, latency, and accu-

racy. However, users may wish to limit a query’s execution time

or cost. Llama [42] give users the ability to input a cost or latency

target for their statically-declared pipeline. However, Llama’s op-

timizations to meet a user’s target only span unstructured data

and rely on the user to specify the end-to-end pipeline prior to

execution. We are investigating how to extend Llama to include

structured data, which can bound how many frames to process.

Model (re)-training. Prior work [21, 22] has shown that proxy

models can be trained and used to accelerate certain types of queries

(e.g., aggregate and limit). However, it is currently left to users to

(a) decide when these models should be trained (or re-trained), and

(b) select training data to use.

Ideally, VIVA will be able to propose when a DNN should be (re)-

trained based on the input query’s requirements and the available

labels. In particular, VIVA should be able to detect when new data

may have changed (e.g., using model assertions [27] or ensemble

learning [10]). However, giving a model a “new capability” requires

further investigation. First, how can domain knowledge be com-

municated to the model re-training system? Second, how can the

system collect contrastive positive and negative examples from a

dataset, especially in the cases that events are rarely occurring?

Adding interactivity to model training [8] and label selection may

7

CIDR’22, January 9-12, 2022, Chaminade, CA, USA Daniel Kang, Francisco Romero, Peter Bailis, Christos Kozyrakis, and Matei Zaharia

help to create new detectors for challenging queries (e.g., searching

for autonomous vehicle interactions at stop signs [31]). If not done

efficiently, however, the human can become the bottleneck.

Understanding the cost of materializing at video ingest. Sec-

tion 5.1 showed there are tradeoffs in the techniques run at ingest,

with higher ingest costs resulting in lower query times. Extracting

potentially meaningful information many require several models

to be run, which can result in a high ingest cost. Naively running

detectors at ingest may result in materialized results that do not

contribute to interactive latencies. Thus, choosing the right in-

gest techniques and DNNs to minimize query latency and cost for

providers and users is an open research question.

Infrastructure for high throughput demands. VIVA has vary-

ing and occasional high demands for throughput across storage,

decoding, and compute (Figure 4). This makes building scalable

and balanced datacenter infrastructure to support IVA workloads

difficult. Thus, researchers should explore options to support this

high demand, including video transcoding accelerators [40, 44],

accelerators close to storage [4], and hardware disaggregation [43].

Supporting other unstructured data types. For unstructured

data, VIVA currently supports video-related records such as frames,

transcripts, and audio. However, there are other forms of telemetry

data (e.g., LIDAR sensors on autonomous vehicles) that can aid in

more efficiently processing video analytics queries. For example,

understanding the depth of objects may be expensive or infeasible to

determine using only video data. Given the growing pervasiveness

of these sources of telemetry data, it makes sense to explore how

VIVA can incorporate them into its workflow.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful feedback. We

also thank Johann Hauswald for his contributions to VIVA’s work

on materializing results at ingest time, and Kostis Kaffes, Pratik-

sha Thaker, and Deepak Narayanan for their insightful discussions

to improve this work. This work was supported by the Stanford

Platform Lab and its industrial affiliates (Cisco, Facebook, Google,

Nasdaq, NEC, VMware, and Wells Fargo). It was also supported

in part by affiliate members and other supporters of the Stanford

DAWN project — Ant Financial, Facebook, Google, and VMware

— as well as Cisco, SAP, and the NSF under CAREER grant CNS-

1651570. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

Francisco Romero is supported by a Stanford DARE Fellowship,

and Daniel Kang is supported by a Google PhD Fellowship.

REFERENCES

[1] 2021. NVIDIA DeepStream SDK. https://developer.nvidia.com/deepstream-sdk

[2] Donald A. Adjeroh and Kingsley C. Nwosu. 1997. Multimedia Database Manage-

ment —Requirements and Issues. IEEE MultiMedia (1997).
[3] Internet Archive. 2021. TV News Archive. https://archive.org/details/tv.

[4] AWS. 2021. AQUA (Advanced Query Accelerator) for Amazon Redshift. https:

//aws.amazon.com/redshift/features/aqua/.

[5] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition.

[6] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-

hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam

Madden. 2020. MIRIS: Fast Object Track Queries in Video. In SIGMOD. 1907–1921.

[7] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

JosephM. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred

Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow Processing.

In SIGMOD.
[8] Mayee F. Chen, Daniel Y. Fu, Frederic Sala, Sen Wu, Ravi Teja Mullapudi, Fait

Poms, Kayvon Fatahalian, and Christopher Ré. 2020. Train and You’ll Miss It:

Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings.

arXiv:2006.15168 [stat.ML]

[9] Sandeep P. Chinchali, Evgenya Pergament, Manabu Nakanoya, Eyal Cidon, Ed-

ward Zhang, Dinesh Bharadia, M. Pavone, and S. Katti. 2020. HarvestNet: Mining

Valuable Training Data from High-Volume Robot Sensory Streams. In ICRA.
[10] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-

zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving

System. In NSDI.
[11] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim

Kraska. 2015. Vizdom: Interactive Analytics through Pen and Touch. PVLDB
(2015).

[12] Maureen Daum, Haynes Brandon, Dong He, Amrita Mazumdar, and Magdalena

Balazinska. 2021. TASM: A Tile-Based Storage Manager for Video Analytics. In

ICDE.
[13] Daniel Y Fu,Will Crichton, James Hong, Xinwei Yao, Haotian Zhang, Anh Truong,

Avanika Narayan, Maneesh Agrawala, Christopher Ré, and Kayvon Fatahalian.

2019. Rekall: Specifying video events using compositions of spatiotemporal labels.

arXiv preprint arXiv:1910.02993 (2019).
[14] Google. 2021. gcsfuse: A user-space file system for interacting with Google Cloud

Storage. https://github.com/GoogleCloudPlatform/gcsfuse.

[15] Google. 2021. Google Compute Engine: GPUs Pricing. https://cloud.google.com/

compute/gpus-pricing.

[16] Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena

Balazinska, Alvin Cheung, and Luis Ceze. 2021. VSS: A Storage System for Video

Analytics. In SIGMOD/PODS.
[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.

In ICCV. IEEE, 2980–2988.
[18] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online aggregation.

In Acm Sigmod Record, Vol. 26. ACM, 171–182.

[19] James Hong, Will Crichton, Haotian Zhang, Daniel Y Fu, Jacob Ritchie, Jeremy

Barenholtz, Ben Hannel, Xinwei Yao, Michaela Murray, Geraldine Moriba, et al.

2020. Analyzing Who and What Appears in a Decade of US Cable TV News.

arXiv preprint arXiv:2008.06007 (2020).

[20] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004.

CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.

In SIGMOD.
[21] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-

tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.

PVLDB (2019).

[22] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: optimizing neural network queries over video at scale. PVLDB (2017).

[23] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.

2020. Approximate Selection with Guarantees using Proxies. PVLDB (2020).

[24] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.

2020. Task-agnostic Indexes for Deep Learning-based Queries over Unstructured

Data. arXiv preprint arXiv:2009.04540 (2020).
[25] Daniel Kang, John Guibas, Peter Bailis, Yi Sun, Tatsunori Hashimoto, and Matei

Zaharia. 2021. Accelerating Approximate Aggregation Queries with Expensive

Predicates. PVLDB (2021).

[26] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia.

2021. Jointly optimizing preprocessing and inference for DNN-based visual

analytics. PVLDB (2021).

[27] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model

Assertions for Monitoring and Improving ML Models. 2 (2020).

[28] Fiodar Kazhamiaka, Matei Zaharia, and Peter Bailis. 2021. Challenges and Op-

portunities for Autonomous Vehicle Query Systems. In CIDR.
[29] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate

Dependencies. Proc. VLDB Endow. (2018).
[30] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A. Kim, Parthasarathy Ran-

ganathan, Daniel Stodolsky, and Mark Wachsler. 2018. Vbench: Benchmarking

Video Transcoding in the Cloud. In ASPLOS.
[31] Matroid. 2020. AI for Full-Self Driving at Tesla. https://www.youtube.com/

watch?t=513&v=hx7BXih7zx8&feature=youtu.be.

[32] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of

Web-Scale Datasets. Proc. VLDB Endow. (2010).
[33] Oscar R. Moll, Favyen Bastani, Sam Madden, Mike Stonebraker, Vijay Gadepally,

and Tim Kraska. 2020. ExSample: Efficient Searches on Video Repositories

through Adaptive Sampling. CoRR abs/2005.09141 (2020).

[34] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,

and Matei Zaharia. 2020. Heterogeneity-Aware Cluster Scheduling Policies for

Deep Learning Workloads. In OSDI.

8

https://developer.nvidia.com/deepstream-sdk
https://archive.org/details/tv
https://aws.amazon.com/redshift/features/aqua/
https://aws.amazon.com/redshift/features/aqua/
https://arxiv.org/abs/2006.15168
https://github.com/GoogleCloudPlatform/gcsfuse
https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/gpus-pricing
https://www.youtube.com/watch?t=513&v=hx7BXih7zx8&feature=youtu.be
https://www.youtube.com/watch?t=513&v=hx7BXih7zx8&feature=youtu.be

VIVA: An End-to-End System for Interactive Video Analytics CIDR’22, January 9-12, 2022, Chaminade, CA, USA

[35] NVIDIA. 2021. NVIDIA T4. https://www.nvidia.com/en-us/data-center/tesla-t4/.

[36] Oberlo. 2021. Youtube Statistics. https://www.oberlo.com/blog/youtube-

statistics.

[37] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.

2020. Starling: A Scalable Query Engine on Cloud Functions. In SIGMOD.
[38] Alex Poms, William Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018. Scan-

ner: Efficient Video Analysis at Scale (To Appear). (2018).

[39] An Qin, Mengbai Xiao, Yongwei Wu, Xinjie Huang, and Xiaodong Zhang. 2021.

Mixer: efficiently understanding and retrieving visual content at web-scale. Proc.
VLDB Endow. (2021).

[40] Parthasarathy Ranganathan et al. 2021. Warehouse-Scale Video Acceleration:

Co-Design and Deployment in the Wild. In ASPLOS.
[41] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.

INFaaS: Automated Model-less Inference Serving. In ATC.
[42] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.

2021. Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video

Analytics Pipelines. In SoCC.

[43] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A

Disseminated, Distributed OS for Hardware Resource Disaggregation. In OSDI.
[44] Prahlad Venkatapuram, ZhaoWang, and ChandraMallipedi. 2020. Custom Silicon

at Facebook: A Datacenter Infrastructure Perspective on Video Transcoding and

Machine Learning. In IEDM.

[45] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,

and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated

Storage. In NSDI.
[46] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and

Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine towards Query

Fusion for Structured and Unstructured Data. Proc. VLDB Endow. (2020).
[47] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. 2019. VStore: A Data

Store for Analytics on Large Videos. In EuroSys. ACM, 16.

[48] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep

Ganguli. 2014. Druid: A Real-Time Analytical Data Store. In SIGMOD.
[49] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,

Paramvir Bahl, and Michael J Freedman. 2017. Live Video Analytics at Scale with

Approximation and Delay-Tolerance. In NSDI, Vol. 9. 1.

9

https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.oberlo.com/blog/youtube-statistics
https://www.oberlo.com/blog/youtube-statistics

	Abstract
	1 Introduction
	2 Feasibility of IVA
	3 VIVA
	3.1 Query Types Supported by VIVA
	3.2 Workflow Example
	3.3 Key VIVA Components

	4 Specifying Relational Hints
	4.1 Relational Hints Operators
	4.2 Relational Hints Scope

	5 End-to-End IVA Query Execution
	5.1 Materializing Results at Video Ingest
	5.2 Blending Structured and Unstructured Data
	5.3 Co-optimizing Execution & Video Fetch
	5.4 Caching and Materializing Results

	6 Related Work
	7 Discussion and Research Directions
	References

