Reconstructing and Querying ML Pipeline Intermediates

Sebastian Schelter, University of Amsterdam, s.schelter@uva.nl

In order to study and increase the reliability and correctness of the
predictions made by machine learning (ML) applications, various
data debugging techniques have been developed in the last years.
These methods aim to reveal dependencies between the inputs (fea-
tures) and outputs of an ML model. Examples include Slice Finder [2],
Gopher (4], Fairtest [6] or Fairlearn [1], which identify subsets of the
data where a model performs poorly or which negatively impact a
model’s fairness.

Unfortunately, the majority of these methods are not directly
applicable to real-world ML applications with complex data prepa-
ration pipelines, as they assume a single, static input dataset with
attributes to slice the data, aligned with features and predictions
in matrix form. Therefore data scientists typically have to manu-
ally construct an appropriate evaluation dataset by rewriting the
pipeline. This is tedious, as data scientists already spent the major-
ity of their time writing data wrangling code [8], and also poses the
danger of accidentally introducing hard-to-find ML-related bugs
into the analysis [7].

Provenance-based reconstruction and querying of pipeline
intermediates. In previous work [3], we proposed “inspections”
for operator-centric debugging of ML pipelines. We generalize these
techniques to automatically construct the required evaluation data
for holistic debugging of complex pipelines. For that, we leverage
a recently proposed model of ML pipelines, which treats them as
a dataflow computation with known operations, containing only
select-project-join and ML-specific featurization operations [3, 5].
In this model, a pipeline takes multiple relational inputs, internally
filters, joins and transforms then into a train relation Riy,i, and a test
relation Ryegt, builds their featurized counter parts Xiyain and Xiest,
together with corresponding labels yiqin and yiest, and outputs the
predictions ypreq-

During execution, we track fine-grained tuple-level provenance
for the relational and feature-encoding operations in the dataflow.
Based on the captured provenance, we generate views over the
inputs to reconstruct Ryp,in and Riest and over their captured ma-
trix counter parts. Given these views, we can apply all previously
discussed data debugging techniques directly. While the individual
debugging approaches differ in their access patterns, the proposed
views are sufficient to provide the required data for all of them. Note
that some of the approaches like SliceFinder can even be expressed
as a series of aggregation queries over these views.

Prototypical implementation. We prototype our approach for
ML pipelines written as Python scripts, which either leverage pan-
das and scikit-learn, or pyspark and SparkML. For the former, we
compute the provenance with an optimised variant of the approach
from mlinspect [3], for the latter, we “piggyback” the computation

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR °23). January 8-11, 2023, Amsterdam, The
Netherlands.

of provenance polynomials on top of Spark’s RDD operations. Our
prototype is available at https://github.com/amsterdata/freamon.

We leverage DuckDB to create virtual views over the captured
pipeline intermediates by joining them according to the provenance
information. The API of our approach allows users to execute an ML
pipeline, and materialize a view over the features, labels and predic-
tions for training and testing the model, sliceable by attributes from
the relational inputs. We provide example notebooks to showcase
how to generate views to debug the predictions of a pipeline which
trains a classifier to predict the helpfulness of product reviews. Data
scientists can, for example, execute the pipeline, and subsequently
generate a view over the test labels and predictions, sliceable by
the category and rating attributes from the input tables:

Execute sklearn pipeline, capture intermediates and provenance
view_generator = from_sklearn_pipeline('classify-product-reviews.py'
Materialize a view over the test labels and predictions,
sliceable by two attributes from the test input
test_view = view_generator.materialize_test_view(
sliceable_by=["'category', 'rating'],
with_features=False, with_y=True, with_y_pred=True)

This view can directly be leveraged by external data debugging
libraries. The data scientists could for example use Fairlearn [1] to
compute fairness metrics for the review predictions with respect to
the product category and review rating:

Compute fairness metrics from the view via the fairlearn library

fairness_metrics = fairlearn.metrics.MetricFrame(
metrics={'recall': sklearn.metrics.recall_score},
y_true=test_view.y, y_pred=test_view.y_pred,
sensitive_features=(test_view.category, test_view.rating>3)

print(fairness_metrics.by_group)

Alternatively, users can directly write aggregation queries over
a virtual, non-materialised internal view over all inputs and in-
termediates for model training and testing. Such queries can for
example compute the mean and variance of the cross-entropy loss
for different data slices, analogous to SliceFinder [2]:

view_generator.execute_query ("
SELECT category, rating>3 AS toprated,
AVG(cross_entropy_loss(y, y_pred)) AS avg_loss,
VARIANCE (cross_entropy_loss(y, y_pred)) AS var_loss,
COUNT (*) as size
FROM virtual_test_view
GROUP BY GROUPING SETS ((category,rating>3),(rating>3),(category))"

In future work, we plan to generalize this prototype into a system

to manage and debug ML pipelines, based on their provenance and
materialised intermediates.

REFERENCES

1] S.Bird, et al. Fairlearn: A toolkit for assessing and improving fairness in AL

2] Y. Chung, et al. Slice finder: Automated data slicing for model validation. ICDE’19.
3] S. Grafberger, et al. Data Distribution Debugging for ML Pipelines. VLDB7’ 22.
4]
5]

R. Pradhan, et al. Interpretable explanations for fairness debugging. SIGMOD’22.

B. Karlas, et al. Data Debugging with Shapley Importance over End-to-End

Machine Learning Pipelines. arXiv preprint arXiv:2204.11131 2022.

[6] F.Tramer, et al. Fairtest: Discovering unwarranted associations in data-driven
applications. EuroS&P’17.

[7] S.Kapoor, et al. Leakage and the Reproducibility Crisis in ML-based Science. arXiv
preprint arXiv:2207.07048 2022.

[8] Anaconda.com. The State of Data Science 2020. https:// www.anaconda.com/state-

of-data-science-2020.

[
[
[
[
[

https://github.com/amsterdata/freamon
https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020

	References

