Serverless State Management Systems

Tianyu Li Badrish Chandramouli
litianyu@csail. mit.edu badrishc@microsoft.com
MIT CSAIL Microsoft Research
ABSTRACT

Modern cloud developers face many distributed systems complexi-
ties when building disaggregated applications from cloud building
blocks. We propose a new class of systems, called Serverless State
Management Systems (SSMS), that abstracts away these complexi-
ties and transparently manages fault-tolerance, deployment, and
scaling of a logical cloud application on physical cloud resources.
An SSMS, analogous to a DBMS, provides three important abstrac-
tions for disaggregated applications: 1) a logical application model,
similar to relational algebra, that describes application semantics
but abstracts away the deployment details, 2) strong resilient pro-
gramming primitives, similar to ACID transactions, that simplifies
fault-tolerant programming in the cloud, and 3) smart, cost-based
optimization schemes that automates scheduling, placement, and
other details, similar to a query optimizer. We present a preliminary
design for SSMS and associated research challenges.

1 INTRODUCTION

The cloud is undergoing a major shift, as developers increasingly
build disaggregated applications by composing managed cloud ser-
vices (e.g., Amazon Aurora [1], Azure EventHubs [7]) and fine-
grained disaggregated resources (e.g., AWS Lambda [3], Azure Blob
Storage [8]). This new reality, broadly described as “serverless”,
claims to allow cloud developers to quickly assemble flexible appli-
cations that only consume resources as needed and quickly scale
to meet fluctuating demands. In reality, developers have a different
experience: consider a workload from Amazon Prime Video that
monitors a video/audio stream, divides them into chunks and de-
codes them, analyzes chunks for defects, and then sends real-time
notification for detected defects [10]. In a serverless architecture,
developers ended up using S3 storage buckets for data sharing, and
AWS Step Function [4] to orchestrate unreliable compute units. The
Prime Video team reports that this architecture is both expensive
and unscalable, prompting a rewrite of their application by migrat-
ing components onto elastic containers with custom orchestration
logic and intermediate result storage; this reportedly lead to as
much as 90% savings on infrastructure cost and better scalability.
Essentially, the current disaggregation stack often fails to achieve
the promise of serverless.

Interestingly, the Prime Video team reports that the high-level
architecture of their solution remained the same across the rewrite
— the same components and workflow now just deploy onto dif-
ferent backends, with custom scaling logic. This naturally leads
to the question of whether one can automate such engineering
efforts to make disaggregation work. Doing so requires novel ab-
stractions that separate the logical cloud application, consisting
of business and coordination logic, from the physical execution
layer that resiliently deploys and manages the application. Such
an abstraction layer allows the cloud to transparently swap out
infrastructure without requiring the kind of rewrite effort the Prime

Sebastian Burckhardt Samuel Madden
sburckha@microsoft.com madden@csail.mit.edu
Microsoft Research MIT CSAIL

Video team underwent. There have been various attempts at this:
cluster management tools such as Kubernetes[9] make intelligent
placement decisions and offer automatic crash recovery for coarse-
grained execution units (i.e., containers), but provide little help for
application-level tasks such as resilient orchestration of workflows;
actor systems such as Microsoft Orleans [15] and Ray [35] pro-
vide strong and intuitive logical programming models, but require
users to manage state (e.g., checkpointing) manually. This paper
is a thought experiment about designing the right type of cloud
programming abstraction from first principles rather than from
existing implementations. We start by postulating the key require-
ments for such an abstraction. Drawing analogies from the (widely
successful) abstraction of Database Management Systems (DBMSs),
we propose the following cornerstones for the ideal abstraction:
Logical Application Model. DBMS users define their data and
workload using logical schema and relational algebra, without ref-
erence to how data is laid out on disk or how queries are executed.
This has allowed the same SQL query! to execute on vastly dif-
ferent underlying engines (e.g., row vs. column stores, embedded
engine vs. globally distributed service). In contrast, cloud applica-
tions today are written specifically to deployment paradigms (e.g.,
VMs, Kubernetes) or even implementations of these paradigms
(e.g., AWS’s management API). Cloud users should be able to write
their programs once in a logical model of the cloud, which is then
mapped onto a variety of backends automatically.
Fault-Tolerance Primitives. ACID transactions help DBMS users
enjoy strong guarantees without relying on application-level failure-
handling logic or concurrency control. In the modern cloud, there
are few cross-service guarantees, even when individual services are
fault-tolerant in isolation. Consequently, users must devise com-
plex solutions to resiliently compose them (e.g., with systems such
as Temporal [12] and ExoFlow [48]). Ideally, users achieve fault-
tolerance solely by building on top of resilient primitives supplied
by the underlying cloud, and infrastructure providers are responsi-
ble for implementing the primitives correctly and efficiently.
Automatic Cost-based Optimizations. Cost-based query opti-
mizers in DBMSs transform declarative user queries into highly
efficient physical execution plans. Meanwhile, automatic optimiza-
tion of cloud applications is still in its early days, limited to treat-
ing workloads as black-boxes and implementing only rudimentary
knob-tuning or auto-scaling. The ideal cloud abstraction should
employ DBMS-style optimization to intelligently navigate the the
performance-cost trade-off curve, using collected statistics and
workload patterns, rather than heuristics or manual intervention.
Earlier solutions address these challenges to varying degrees, but
none, to our knowledge, combines all three aspects into a complete
solution. We coin the term Serverless State Management System
(SSMS) for a new class of cloud systems that aim to address these

!Not considering, for the sake of argument, evolution of SQL syntax over the years
and discrepancies between various SQL dialects.

challenges simultaneously. The obvious question, then, is whether
the challenges in building such an abstraction can be solved. The
rest of this paper attempts to argue that this abstraction is real-
istic by sketching out a preliminary design for one such system,
combining recent work in actor-based programming, composable
fault-tolerant primitives, and ML-enhanced automatic system opti-
mization. Our key insight is that strong fault-tolerance is the basis
for simple programming abstractions and transparent optimizations.

Specifically, strong fault-tolerance allows the programming model

to abstract away common distributed system mechanisms, such

as timeouts, retries, and logging; the optimization layer can also
rely on fault-tolerance to dynamically migrate and reschedule com-
ponents without impacting application correctness. The resulting

SSMS design incorporates an expressive, actor-like programming

interface, automatically manages state for fault-tolerance, and trans-

parently applies application-level optimizations based on runtime
metrics for cost savings and performance boosts. To summarize,
we make the following contributions:

e We propose the SSMS abstraction that combines strong program-
ming abstractions, transparent fault-tolerance, and cost-based
optimizations to serve as the “narrow waist” between disaggre-
gated cloud applications and cloud infrastructure.

o We sketch out the architecture of an initial SSMS platform and
argue for its generality, performance and extensibility.

e We describe several optimizations already achievable in our pro-
totype SSMS design and provide preliminary evidence for their
effectiveness.

2 OUR PROPOSAL FOR SSMS V0.1

As mentioned, we propose SSMS as the mediating runtime layer
between disaggregated cloud applications and cloud infrastructure
(Figure 1). Users build SSMS applications using logical message-
passing automata — arbitrary programs written as stateful message
handlers, inspired by classical modeling of distributed systems
using I/O automata [33]. For most developers, this experience will
be similar to the actor model, popularized by systems such as Ray or
Microsoft Orleans. Compared to actors, however, SSMS automata
are not constrained to sequential/in-order processing like many
actor models. Hence, users have the freedom to implement more
coarse-grained automata, such as entire database partitions. SSMS
automata are virtual [15], meaning that SSMS manages the location
and resources for each automata, and users interact with them only
through SSMS-managed logical IDs.

Importantly, SSMS automatically and resiliently manages the
state of each automaton, modeling failure and recovery under a
fail-restart assumption. Under this model, each automaton is able
to checkpoint its volatile state to external persistent storage, and is
guaranteed to restart cleanly from previously checkpointed state
in bounded time after failure. Systems such as Kubernetes already
provide such guarantees in practice. SSMS users supply application-
specific checkpointing/recovery logic, but it is up to SSMS to supply
persistent storage, implement restarts, and manage checkpoints.

To correctly orchestrate complex workflows across multiple au-
tomata, SSMS relies on the Composable Resilient Steps (CReSt)
model [30]. Under CReSt, each automaton receives some messages,

Application Runtime Infrastructure
1 1
] 1
T '
1 1
Deploy &

m ! Manage' u
- ! o
Workload ! !

orkloads 1 ‘ SSMS }—,» VAN —_—

: ! 1]
1 B A ' D[-D[-D
] ~_7
. - : u
1 Transparent f
Automata 1 Optimization 1
Specification

Figure 1: SSMS Overview

updates its local state, and then sends some messages as an fault-
tolerant atmoic unit, similar to a database transaction. A step will
either complete and have all its effects recovered after failure, or
abort and have none of the effects recovered. Applications com-
posed with CReSt are resilient by construction, meaning that ex-
ternal users cannot to distinguish between an execution trace with
failures and one without (except through possible performance
degradations due to failure handling). We require SSMS compo-
nents to be written using CReSt by default, similar to how most
DBMSs execute commands under transactions by default. SSMS
takes care of implementing CReSt and exposes it as a primitive
for developers, building on top of the performant DARQ system
proposed in [30] to reduce overhead.

Importantly, this model allows SSMS freedom to apply a mul-
titude of transparent optimizations to improve performance and
save cost for an SSMS application. Examples include switching be-
tween serverless and provisioned backends for automata, shutting
down compute capacity for inactive automata, co-locating automata
that frequently communicate, or combining multiple fine-grained
automata into one equivalent “super” automata for batching op-
portunities. Many such decisions are fine-grained per-automaton
decisions, and depend on dynamically changing load, pricing, and
application-level patterns (e.g., hot spots), making it difficult for
humans or static workload schedulers to implement them. SSMS is
uniquely positioned to implement these optimizations because, as a
runtime layer, it can gather real-time statistics, and take advantage
of fault-tolerance to transparently make changes to how automata
are deployed.

Putting it together — our SSMS design exposes a virtual automata
interface to users and transparently deploys automata to under-
lying cloud infrastructure. Unlike previous actor systems, SSMS
integrates state management of automata and controls when and
where to persist state. This allows SSMS to support strong resilience
guarantees and effectively hide distributed systems anomalies from
developers. SSMS takes advantage of this to implement automatic
online optimizations for both performance and cost in a cloud en-
vironment.

3 SSMS V0.1 ARCHITECTURE

We now sketch how our prototype SSMS may be implemented
in Figure 2, building on the DARQ system proposed by [30]. We
start by introducing DARQ, and then outline how SSMS can be
implemented as a management layer on top of a DARQ cluster.

SSMS Automaton

User Code
Execute

Compute

ll SSMS Automaton
Resilient (7
Composition External "

Steps) —
Appl ication Messages \ Service ._"_|_‘
Layer pARQ MMM e Wrappers St

DARQ Pool Compute Pool

K o]
Runtime

S fe) o0
Layer (OIS Lo oL
T / sl T

Management
g Autoscaler
Layer

"a’a Optimizer
v = P

Runtime
/@D Statistics

Figure 2: SSMS v0.1 Architecture
3.1 Background: DARQ

DARQ is a cloud-native storage service, and users attach ephemeral
compute nodes to a DARQ instance to simulate fail-restart au-
tomata running CReSt. Automata logic is written as stateful mes-
sage handlers performing steps, and DARQ takes care of reliably
delivering messages, checkpointing/recovering of automata state,
and enforcing CReSt. Developers persist automata state through
self-messages(similar to write-ahead log entries), which encodes
any state updates to the automaton and is replayed upon failure to
reconstruct state. Because CReSt is atomic, if some external effect
of a step (i.e., outgoing DARQ messages) survives the failure, so
must the self-messages that allow reconstruction of the state as of
the step. Underneath the hood, each DARQ is backed by a persis-
tent log, and DARQ uses an OCC-like protocol [29] over its log to
ensure atomicity and resilience of steps and relies on a number of
other DBMS-inspired techniques for performance, such as group
commit [19] and early lock release [41].

3.2 Automata Implementation

By default, SSMS automata are implemented with DARQ. At any
given time, SSMS maintains a pool of DARQ instances and a pool
of ephemeral compute nodes. When the user requests an automa-
ton, SSMS serves the request by picking one of each and loading
user code into the compute node. Both pools are heterogeneous
and consist of instances that occupy different points in the cost-
performance trade-off space (e.g., fast but expensive dedicated VMs
vs. slow but cheap serverless functions). To interact with existing
cloud services (e.g., a database service), users register them as spe-
cial, blackbox automata that are not managed by SSMS, but address-
able to the rest of the system. Without special handling, SSMS is un-
able to guarantee resilience across these special automata, meaning
that users may observe anomalies or duplicate messages. However,
users can optionally choose to implement CReSt-compatible wrap-
pers to address this. For example, an automaton representing an
external database may provision an additional table that temporar-
ily stashes all outgoing responses, transactionally update it with the
rest of the database, and have a separate process continuously retry

delivering responses until recipient acknowledgement to ensure
delivery (i.e., the transactional outbox pattern). Doing so ensures
CReSt semantics, and allows for the resilience guarantee of SSMS
to extend to external systems.

3.3 SSMS Catalog

To manage the various DARQ instances, SSMS needs to implement
a highly-available catalog service. Logically, the catalog stores 3
tables: 1) a table mapping automata types to user definitions (i.e.,
code files), 2) a list of available compute and DARQ nodes, their
types, how to reach them, and their current load, and 3) a currently-
active automata table, mapping automaton ID to automaton type,
compute backend, and DARQ backend. Each DARQ uses the cata-
log to translate logical IDs in user code to physical addresses for
message routing and caches this information for performance. We
adopt a lazy protocol for handling outdated cache entries. First,
each message between DARQs is explicitly tagged with the recipi-
ent automaton ID, and each DARQ instance checks whether they
are currently serving the intended automaton upon receiving a
message. A DARQ instance will then be able to detect stale cached
entries when it receives a message for an automaton it does not
currently service, and send a signal for invalidation.

The catalog also requires some compute capability to perform
metadata operations; this includes instantiation of a new automa-
ton, deallocation of an inactive one, and recovery (from failure or
re-deployment). The key challenge here is again fault-tolerance, as
even though the catalog content is the source of truth, metadata
operations have non-atomic side effects (e.g., loading user code into
a compute node). Failure during a metadata operation may cause
resource leakage or other anomalies. To overcome this, SSMS ex-
presses each metadata operation as a resilient workflow, achievable
with DARQs as shown in [30], ensuring that all necessary steps of
an operation complete regardless of metadata worker failure.

3.4 SSMS Management Layer

Finally, a management layer is responsible for tuning, scaling, and
optimizing an SSMS layer at runtime in the background. The SSMS
management layer can be broadly categorized into 3 components
as shown in Figure 2, an autoscaler that controls the size and com-
position of DARQ and compute pools, an optimizer that makes
placement and migration decisions, and a monitoring component
that collects runtime statistics to support the first two components.

As mentioned, we envision SSMS’s optimization to be cost-based
and online, inspired by both adaptive query processing [14] and
more recent work in self-tuning and self-driving databases [34,
36, 45]. On a high-level, we propose to implement a cost model
that, given an SSMS deployment and a predicted workload, can
forecast the performance and cost of the system in the near future.
The cost model relies both on hard-coded rules and observation
of active deployments. Users specify a custom weighting function
(e.g., minimize cost so long as performance does not drop below
some level) that rolls multiple objectives into a unified optimiza-
tion target. SSMS will attempt to launch new automata in a “safe”
configuration depending on the target metric (e.g., over-provision
if users value performance), and then incrementally refine the de-
ployment as it collects information about the behavior of deployed

automata. The SSMS auto-scaler is responsible for managing pro-
visioned resources in the cluster. Even though SSMS can scale out
quickly using serverless offerings such as FaaS, much prior work
has demonstrated that provisioned resources beat serverless func-
tions in both performance and cost if utilization is high. The SSMS
auto-scaler is therefore required to detect stable parts of the work-
load, and launch the approrpiate amount of provisioned resources
to support that workload. The primary challenge here is that the
optimal provisioning depends on the optimizer — a perfectly valid
provisioning would appear under-utilized if the optimizer does not
yet place much work on provisioned VMs. As a stopgap solution,
we expect to invoke the auto-scaler much less frequently than the
optimizer, so the optimizer has time to converge on a good config-
uration before the infrastructure shifts under it. Eventually, with
techniques similar to the ones proposed for the BRAD cloud data
management system [27], SSMS will be able to utilize machine
learning and the vast amount of runtime statistics cloud vendors
collect to train better cost models and efficiently search the joint
planning space of resource provisioning and placement.

4 OPTIMIZING SSMS APPLICATIONS

In this section, we present a (non-exhaustive) list of possible opti-
mizations that are already achievable in SSMS v0.1. For each op-
timization, we briefly discuss their implementation and illustrate
how much benefit they can bring using microbenchmarks.

4.1 Optimization through Placement

The most basic and broadest class of optimizations for SSMS is
placement, which selects the DARQ instance and compute instance
for each automaton. Every placement decision occupies a differ-
ent point in the cost-performance trade-off space, and SSMS navi-
gates the application cost-performance curve by varying placement
choices. For DARQs, SSMS can choose between high-performance,
low-latency replicated DARQ, mid-tier instances with dedicated
servers but various cheaper cloud storage as backend, or cheap
instances that exist solely on cloud storage and must be loaded into
the compute node when used. For compute nodes, SSMS may utilize
spare compute capacity on dedicated DARQ machines, dedicated
compute-intensive VMs, or on-demand serverless functions. Within
each category, there may be further variations based on machine
types, pricing (e.g., spot instances), or specialized hardware avail-
able (e.g., GPUs). The following optimizations can all be captured
as placement decisions:

Scale Up/Down. To scale an automaton up or down, SSMS chooses
more powerful/economical compute/storage to deploy it onto. Note
also that scaling of compute and storage is separate, and it is pos-
sible to redeploy an I/O heavy automaton to faster storage while
downsizing its compute instance, and vice-versa.

Automatic Deactivation. Automatic deactivation is a staple of
any serverless offering, and allows users to pay nothing or very
little for inactive deployments in exchange for slower spin-up time.
In SSMS, if an automaton is inactive, its compute node may be
deallocated transparently, and replaced with an on-demand FaaS
only when a request arrives. Similarly, left-over state of the inactive
automaton may be flushed to cold storage. If an automaton has no

unconsumed (self or incoming) messages, it becomes stateless and
can be unassigned from a DARQ entirely.

Co-location. Physical co-location of disaggregated resources is a
key design principle for performant serverless computation [42].
SSMS is able to capture this by having multiple compute instances
that are co-located with DARQ instances, or multiple DARQ in-
stances that are co-located on the same VM/storage backend. Mes-
sages between such co-located instances are logical and can be
implemented with highly efficient local operations.

4.2 Multiplexing DARQs

As shown in [30], each DARQ instance supports up to 750k steps
per second on fast storage; to saturate one DARQ with a single
sequential compute node, each compute step cannot spend more
than a few microseconds. It would be ideal to multiplex automata
onto a single physical DARQ to increase utilization. However, mul-
tiple compute nodes may submit parallel steps that conflict with
each other. The original DARQ system sidesteps this by enforcing
that only one compute node is allowed to connect to DARQ at
any given time. To support multiplexing in DARQ, we modify our
earlier safeguards to allow for partitions - DARQ users explicitly
tag each message with an additional partition ID, and DARQ allows
multiple compute nodes as long as they work on disjoint partitions.
By definition, partitions do not share state and cannot conflict with
each other. Every partition on a physical DARQ can then be consid-
ered a logical DARQ that has the same guarantees and semantics of
a DARQ, but shares resources with its peers on a physical DARQ.
For simplicity, we enforce that logical DARQs are the smallest unit
of operation in SSMS - each automaton corresponds to one logical
DARQ, and multiplexing beyond this level must be done in user
application. The SSMS layer hides logical multiplexing of DARQ
from users, as users only refer to DARQs using logical IDs.

For added runtime flexibility, DARQ must also support dynamic
movement of logical DARQs. Logically, a migration is a step that
consumes all previously unconsumed messages of a logical DARQ,
and copies them as outgoing messages to their new location. Migra-
tion is complete when all such messages have been received. The
primary challenge here is guarding against concurrent steps and
new messages during a migration. To address this, the migration
must only begin after the local DARQ has been configured to reject
requests against the migration target. This means that a logical
DARQ appears as temporarily unavailable during migration, which
may cause some messaging delays, but is ultimately safe as long as
the migration eventually completes. DARQ has built-in epoch pro-
tection capabilities to support this [32], and our scheme is similar
to earlier systems that implement dynamic key migration [28, 31].

4.3 Transparent Replica and Stand-Bys

DARQ applications can be transparently replicated for high avail-
ability. To do so, SSMS allocates more than one compute node to an
SSMS automaton, with one being designated the primary. Because
SSMS controls messaging, it can enforce primary/backup semantics
by only streaming external messages to the recognized primary
and only allowing the recognized primary to submit steps. Backup
compute nodes receive self-message for replaying, which allows
them to build up the same local state as the primary, in classical

replicated state machine fashion [37]. To switch to a backup, SSMS
merely needs to make a local decision to re-route messages and
step privilege to a backup node. Note here that this only requires
client-supplied recovery logic, and clients need not implement ad-
ditional mechanisms such as consensus or heartbeat. When SSMS
detects that certain compute nodes are failing more than others, it
may decide to transparently increase replicas. Alternatively, SSMS
can also spin up temporary replica before a scheduled automata
relocation, or in response to pre-emption on a spot instance, to
reduce performance impact on operations.

4.4 Layering Abstractions

Some important optimizations cannot be captured through place-
ment. For example, a flexible application may wish to add or remove
stateless workers dynamically depending on load; other applica-
tions may partition their states, and then dynamically migrate
key ranges to respond to hot spots. With SSMS v0.1, users must
still manually create automata that represent partitions or addi-
tional workers, and route requests between them. SSMS will not
be able to optimize the number of workers or partitions because
they are application-level logic. One way to address this issue is
through multiple layers of SSMS abstractions, where each virtual
automata may be implemented by a mini-system of self-managed
automata underneath the hood. Consider the stateless worker case;
a layered abstraction may provide a special type of automaton
called a AutoScaledStatelessSet<A>, where A is a normal state-
less worker. AutoScaledStatelessSet<A> exposes the same exter-
nal interface as A, but internally manages a dynamic set of instances,
routes messages, and load-balances between them. The rest of the
system can refer to AutoScaledStatelessSet<A> as a single au-
tomaton, and leave the management tasks to the internal (reusable)
implementation. Interestingly, such layered abstractions have a
solid theoretical foundation in the form of I/O automata compo-
sition, hiding, and simulation relations [33]. We envision future
SSMS implementations to ship with many such abstractions, akin
to “standard libraries” of traditional programming languages.

4.5 Preliminary Evaluation

We now show the effectiveness of these optimization techniques
using experiments. We conduct our experiments on the Azure pub-
lic cloud using a simple application that repeatedly computes pi to
some precision (compute scale factor c¢). Each completed task then
enqueues a new computation task to a different DARQ to continue
the computation. We deploy this application on various compute
node types, DARQ backends and (manual) placement configura-
tions to showcase the potential SSMS might bring in automatically
optimizing these decisions.

Cost-Performance Trade-off. We deploy the simple application
on two VM sizes: D32s v3 and D8s v3 [11] and three DARQ storage
backends: hot-replicated (simulated with volatile memory), man-
aged cloud SSD [5], and Azure storage blob [8]. Each computation
step computes pi in parallel to take full advantage of VM compute
capacity. We then compute the monthly cost of such deployments
using Azure’s current pricing information (assuming 3-way repli-
cation for simulated replication backend). We report the result in

» 150 D8s/mem D32s/mem
<
@
=1 D325/SSD
21001 P8s/SSD
<
'_
X
5 $8s/blob D32s/blob
o
50 : .
1000 3000 6000
Cost ($/month)
(a) c=1m
100
@ D32s/mem
é 751 D32s/SSD
%_ D32s/blob
=
'; 50+
8s/SSD
8 D8s/blob” $H8s/mem
25 : .
1000 3000 6000

Cost ($/month)
(b) c=10m

Figure 3: SSMS Cost-Performance Trade-Off Space

I Colocated (Both) Colocated (DARQ-only) BN Remote
0 2000

% 1500

©

£1000

5

£ 500 I

= 0 . - :

c=100k c=1m c=10m

Figure 4: Benefits of Co-location in Different Scenarios

Figure 3. As seen, the options chosen span a large area in the cost-
performance trade-off space. The sweet spot for each application is
also highly variable — note that in the first non compute-intensive
scenario, upgrading to faster storage is much more cost-efficient
than upgrading VMs, whereas in the compute-intensive scenario,
fast VM matters more than fast storage. Note here also that we
calculated the price of blob-based configurations assuming a 10%
utilization rate, as blobs charge users per request. Assuming peak
utilization throughout the month, blobs turned out to be the most
expensive, but quickly became cost-efficient with low utilization.
Co-location. We now show the impact of co-location on perfor-
mance. We run the same workload as before, but when co-locating
DARQ, we no longer force the next task to enqueue onto another
DARQ (co-located DARQ-only), and we further take advantage of
DARQ’s co-located compute API to elide communication overhead
between DARQ and the compute node when noted (co-located both).
We show our results in Figure 4, which illustrates that co-location
can have orders-of-magnitude of impact on overall performance.
However, it is again highly dependent on the application - if the
application is compute-intensive, co-location has some benefits, but
is much more limited than I/O intensive ones.

2000

@ 1500
Y2
%]
s
<1000
o
o
L)
a 8 12 16
Tenants

Figure 5: Benefits of Multi-Tenancy in DARQ

Multi-tenancy. Finally, we showcase the effectiveness of multite-
nancy in DARQs. We simulate multi-tenancy in DARQ by imple-
menting a special message handler that partitions the log manually
and runs computation with bounded parallelism (number of ten-
ants). As shown in Figure 5, many tenants can effectively share
DARQ’s I/O resources up to some limit and almost linearly scale
up overall throughput. As expected, though, this effect begins to
flatten out as the DARQ’s resources are stretched. Such inflection
points vary depending on the type of jobs running and the storage
backend chosen, and are again best determined by an automated
agent such as SSMS rather than manual effort.

Overall, these experiments show that by picking the right con-
figuration, SSMS can potentially have large performance improve-
ments or cost-savings. Such decisions are sufficiently complicated
and sensitive to changes in the workload; humans cannot be ex-
pected to make case-by-case manual decisions. Therefore, it is both
beneficial and necessary to have an automated solution like SSMS.

5 RELATED WORK

Orchestration Systems. Traditionally, cloud providers offer re-
sources in coarse-grained bundles as statically provisioned VMs,
which burdens developers with managing VM instances and sched-
uling work intelligently on them. Most modern users manage VMs
through higher-level orchestration systems such as Kubernetes [9],
Amazon ECS [2], or Apache Mesos [22]. These systems typically
employ some intelligent cluster scheduling algorithm to place work-
load [24], but fundamentally expose a low-level machine-level ab-
straction (i.e., raw VMs or containers). Recent work has also pro-
posed to extend this paradigm to multiple clouds [43]. Compared
to SSMS, such orchestration systems better support compatibility
with earlier VM-based cloud software, but has limited ability to
optimize applications as low-level black boxes.

Serverless Frameworks. Much of the prior work on disaggregated
cloud applications focuses on the paradigm of “serverless”, particu-
larly the Function-as-a-Service paradigm (FaaS) [3, 6]. Despite the
promises of simplified and flexible cloud programming [26], FaaS
is considered flawed and cannot support efficient data processing,
state management, or complex coordination [21]. Researchers have
proposed various solutions by either orchestrating fault-tolerant
workflows across Faa$ instances [4, 12, 13], or improving stateful
programming support [25, 42, 47]. In contrast, SSMS is designed
with statefulness and fault-tolerance as a first-class concern, and
also incorporates provisioned resources.

Streaming and Actor Frameworks. SSMS is closest to actor sys-
tems such as Ray [35, 48], Orleans [15] in its programming model

and abstraction. However, SSMS is based on more classical dis-
tributed systems modeling of I/O automata [33]. Most actor frame-
works also do not provide strong fault-tolerance guarantees, whereas
SSMS provides transparent and resilient state management using
the CReSt primitive and DARQ system. In this respect, SSMS is sim-
ilar to previous proposals of actor-oriented database systems [16],
but we engineer SSMS as an integrated system rather than a sepa-
rate database backend. SSMS also share many characteristics with
stream processing systems such as Trill [17] and Kafka Streams [46].
Most notably, many modern stream processing systems also provide
strong exactly-once guarantees and take advantage of the guarantee
to dynamically optimize for execution [23]. The main difference is
that SSMS targets a more general cloud workload beyond streaming,
and also explicitly optimizes for cost in addition to performance.
Cloud Operating Systems. Some recent work proposes radical
re-engieering of the current cloud stack. Several proposals exist for
building a new operating systems layer over mutliple machines to
hide distributed complexity in the data center [38, 44]. The most rad-
ical of these approaches argue that cloud applications can be built
on top of a high-performance distributed SQL database [40]. Other
systems proposals focus on tackling the challenge of managing fine-
grained disaggregated resources in the modern data center, often on
the hardware level [39]. SSMS, in contrast, is an application-facing
system that operates above the usual OS layer. SSMS is closest to
recent proposals from Google to write applications as logical mono-
liths but physically distribute them with an automated runtime
layer [20]; unlike this proposal, SSMS provides resilience as part of
the guarantee, which enables many of our optimization techniques.
New Directions. Recent proposals for Sky Computing [43], Hy-
dro [18], and Self-Optimizing Data Meshes [27] call for a rethink
for how developers interact with the cloud. The key insights are
heterogeneous infrastructure, strong abstractions that simplifies
user programming, and intelligent self-optimization of user appli-
cations. SSMS is very much proposed in the same spirit as these
initiatives, but focuses on the smaller and more concrete problem
of transparent and resilient state management, which we believe is
crucial for solving the bigger challenge pointed out by these other
work.

6 CONCLUSION

We proposed the Serverless State Management System (SSMS), a
cloud abstraction layer that combines a logical application model,
strong fault-tolerant primitives, and transparent runtime optimiza-
tions. We sketched a prototype design of one such SSMS that can
provide transparently resilient state management for an actor-like
interface, and propose a variety of automatic optimizations pos-
sible under this architecture. We believe SSMS can serve as the
“narrow waist” between user applications and cloud infrastructure
and unlock new potentials for the cloud.

ACKNOWLEDGMENTS

We are grateful for the support of the MIT DSAIL@CSAIL member
companies.

REFERENCES

[1] Amazon Aurora. https://aws.amazon.com/rds/aurora/, 2023.
[2] Amazon Elastic Container Service. https://aws.amazon.com/ecs/, 2023.

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/ecs/

[16]

[17]

[18

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28]

[29]

[30]

AWS Lambda. https://aws.amazon.com/pm/lambda, 2023.

AWS Step Functions. https://aws.amazon.com/pm/step-functions/, 2023.

Azure Disks. https://azure.microsoft.com/en-us/products/storage/disks/, 2023.
Azure Functions. https://azure.microsoft.com/en-us/products/functions, 2023.
Event Hubs - Real-Time Data Ingestion. https://azure.microsoft.com/en-us/
products/event-hubs, 2023.

Overview of Azure Page Blobs. https://learn.microsoft.com/en-us/azure/storage/
blobs/storage-blob-pageblob-overview, 2023.

] Production-Grade Container Orchestration. https://kubernetes.io/, 2023.

Scaling up the Prime Video audio/video monitoring serbice and reducing costs by
90%. https://www.primevideotech.com/video- streaming/scaling-up-the-prime-
video-audio-video-monitoring- service-and-reducing-costs-by- 90, 2023.

Sizes for Virtual Machines in Azure. https://learn.microsoft.com/en-us/azure/
virtual-machines/sizes, 2023.

Temporal. https://temporal.io/, 2023.

What are Durable Functions? https://learn.microsoft.com/en-us/azure/azure-
functions/durable/durable- functions-overview, 2023.

S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In
Conference on Innovative Data Systems Research, 2005.

P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans: Distributed
virtual actors for programmability and scalability. Technical Report MSR-TR-
2014-41, March 2014.

P. Bernstein, M. Dashti, T. Kiefer, and D. Maier. Indexing in an actor-oriented
database. In Conference on Innovative Database Research (CIDR), January 2017.
B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Ter-
williger, and J. Wernsing. Trill: A high-performance incremental query processor
for diverse analytics. Proc. VLDB Endow., 8(4):401-412, dec 2014.

A. Cheung, N. Crooks, J. M. Hellerstein, and M. Milano. New directions in cloud
programming. ArXiv, abs/2101.01159, 2021.

D.]. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood.
Implementation techniques for main memory database systems. In Proceedings of
the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD
’84, page 1-8, New York, NY, USA, 1984. Association for Computing Machinery.
S. Ghemawat, R. Grandl, S. Petrovic, M. Whittaker, P. Patel, I. Posva, and A. Vahdat.
Towards modern development of cloud applications. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, HOTOS ’23, page 110-117, New
York, NY, USA, 2023. Association for Computing Machinery.

J. M. Hellerstein, J. M. Faleiro, J. Gonzalez,]. Schleier-Smith, V. Sreekanti, A. Tu-
manov, and C. Wu. Serverless computing: One step forward, two steps back.
ArXiv, abs/1812.03651, 2018.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and L. Stoica. Mesos: A platform for Fine-Grained resource shar-
ing in the data center. In 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 11), Boston, MA, Mar. 2011. USENIX Association.

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream
processing optimizations. ACM Comput. Surv.,, 46(4), mar 2014.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy:
Fair scheduling for distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, page 261-276,
New York, NY, USA, 2009. Association for Computing Machinery.

Z.Jia and E. Witchel. Boki: Stateful serverless computing with shared logs. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP 21, page 691-707, New York, NY, USA, 2021. Association for Computing
Machinery.

E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez, R. A. Popa,
1. Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view
on serverless computing, 2019.

T. Kraska, T. Li, S. Madden, M. Markakis, A. Ngom, Z. Wu, and G. X. Yu. Check out
the big brain on brad: Simplifying cloud data processing with learned automated
data meshes. Proc. VLDB Endow., 2023.

C. S. Kulkarni, B. Chandramouli, and R. Stutsman. Achieving high throughput
and elasticity in a larger-than-memory store. Proc. VLDB Endow., 14:1427-1440,
2020.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213-226, jun 1981.

T. Li, B. Chandramouli, S. Burckhardt, and S. Madden. Darq matter binds every-
thing: Performant and composable cloud programming via resilient steps. Proc.

(31]

[32

(33]

[34

@
2

[36

(37]

(38]

%
20,

[40

[41

[42]

=
&

[44

[45]

[46

N
=

[48

ACM Manag. Data, 1(2), jun 2023.

T. Li, B. Chandramouli, J. M. Faleiro, S. Madden, and D. Kossmann. Asynchro-
nous prefix recoverability for fast distributed stores. Proceedings of the 2021
International Conference on Management of Data, 2021.

T. Li, B. Chandramouli, and S. Madden. Performant almost-latch-free data struc-
tures using epoch protection. Proceedings of the 18th International Workshop on
Data Management on New Hardware, 2022.

N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the Sixth Annual ACM Symposium on Principles

of Distributed Computing, PODC ’87, page 137-151, New York, NY, USA, 1987.
Association for Computing Machinery.

L. Ma, W. Zhang, J. Jiao, W. Wang, M. Butrovich, W. S. Lim, P. Menon, and A. Pavlo.
Mb2: Decomposed behavior modeling for self-driving database management
systems. In Proceedings of the 2021 International Conference on Management of
Data, SIGMOD °21, page 1248-1261, New York, NY, USA, 2021. Association for
Computing Machinery.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan, and I. Stoica. Ray: A distributed framework for emerging
Al applications. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 561-577, Carlsbad, CA, Oct. 2018. USENIX
Association.

A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C. Mowry,
M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu,
R. Xian, and T. Zhang. Self-driving database management systems. In Conference
on Innovative Data Systems Research, 2017.

F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Comput. Surv.,, 22(4):299-319, dec 1990.

M. Schwarzkopf, M. P. Grosvenor, and S. Hand. New wine in old skins: The case
for distributed operating systems in the data center. In Proceedings of the 4th Asia-
Pacific Workshop on Systems, APSys ’13, New York, NY, USA, 2013. Association
for Computing Machinery.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A disseminated, distributed OS
for hardware resource disaggregation. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 69-87, Carlsbad, CA, Oct.
2018. USENIX Association.

A. Skiadopoulos, Q. Li, P. Kraft, K. Kaffes, D. Hong, S. Mathew, D. Bestor, M. Ca-
farella, V. Gadepally, G. Graefe, J. Kepner, C. Kozyrakis, T. Kraska, M. Stonebraker,
L. Suresh, and M. Zaharia. Dbos: A dbms-oriented operating system. Proc. VLDB
Endow., 15(1):21-30, sep 2021.

E. Soisalon-Soininen and T. Ylonen. Partial strictness in two-phase locking. In
G. Gottlob and M. Y. Vardi, editors, Database Theory — ICDT 95, pages 139-147,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,]. M. Hellerstein,
and A. Tumanov. Cloudburst: Stateful functions-as-a-service. Proc. VLDB Endow.,
13(12):2438-2452, jul 2020.

L Stoica and S. Shenker. From cloud computing to sky computing. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS 21, page 26-32, New
York, NY, USA, 2021. Association for Computing Machinery.

A. Szekely. o os: Elastic realms for multi-tenant cloud computing, September
2022. Available at https://dspace.mit.edu/handle/1721.1/147373.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database manage-
ment system tuning through large-scale machine learning. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD ’17, page
1009-1024, New York, NY, USA, 2017. Association for Computing Machinery.
G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J. Sax, J. Roesler, S. Blee-
Goldman, B. Cadonna, A. Mehta, V. Madan, and J. Rao. Consistency and complete-
ness: Rethinking distributed stream processing in apache kafka. In Proceedings
of the 2021 International Conference on Management of Data, SIGMOD ’21, page
2602-2613, New York, NY, USA, 2021. Association for Computing Machinery.
H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. Fault-tolerant and
transactional stateful serverless workflows. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 1187-1204. USENIX
Association, Nov. 2020.

S. Zhuang, S. Wang, E. Liang, Y. Cheng, and L. Stoica. ExoFlow: A universal work-
flow system for Exactly-Once DAGs. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 269-286, Boston, MA, July
2023. USENIX Association.

https://aws.amazon.com/pm/lambda
https://aws.amazon.com/pm/step-functions/
https://azure.microsoft.com/en-us/products/storage/disks/
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/event-hubs
https://azure.microsoft.com/en-us/products/event-hubs
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-pageblob-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-pageblob-overview
https://kubernetes.io/
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://temporal.io/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://dspace.mit.edu/handle/1721.1/147373

	Abstract
	1 Introduction
	2 Our Proposal for SSMS v0.1
	3 SSMS v0.1 Architecture
	3.1 Background: DARQ
	3.2 Automata Implementation
	3.3 SSMS Catalog
	3.4 SSMS Management Layer

	4 Optimizing SSMS Applications
	4.1 Optimization through Placement
	4.2 Multiplexing DARQs
	4.3 Transparent Replica and Stand-Bys
	4.4 Layering Abstractions
	4.5 Preliminary Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

