Turning Databases Into Generative Al Machines

Alekh Jindal, Shi Qiao, Sathwik Reddy Madhula, Kanupriya Raheja, Sandhya Jain
research@smart-apps.ai
SmartApps Inc.
Bellevue, USA

ABSTRACT

Data is no more the commodity oil. Today, it is an asset for any
enterprise. However, turning data into intelligence remains a chal-
lenge for most people. In this paper, we explore whether databases
can be turned into generative Al machines that can talk to any-
one. We identify three core challenges when applying generative
Al on data, namely accuracy, scale, and privacy, and show how a
generative large data model could solve all of these. We describe
our conceptual framework of generative Al on databases, the GOD
machine, and ground it in production workloads at SmartApps. Our
results promise new directions in fusing Al with data.

ACM Reference Format:

Alekh Jindal, Shi Qiao, Sathwik Reddy Madhula, Kanupriya Raheja, Sandhya
Jain. 2024. Turning Databases Into Generative AI Machines. In Proceedings
of Conference on Innovative Data Systems Research (CIDR’24). ACM, New
York, NY, USA, 6 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Data is the differentiator for modern businesses and new age
databases such as Snowflake, BigQuery, Synapse, RedShift, and
Databricks offer highly sophisticated data processing on demand.
However, turning data from these databases into insights involves
a jungle of tools for data modeling, pipelining, dashboarding, and
so on — a mountain of complex, manual, yet tedious work that
requires a lot of time and expertise. It gets even worse with increas-
ingly popular ELT architectures where data is loaded quickly, while
leaving the transformations for the data analysts or the analytics
engineers to pick up later. As a result, end users wait for weeks
and months before they get the insights to make data-driven deci-
sions, an unsustainable situation as the gap between experts and
end users continues to grow. Just as cloud democratized the data
infrastructure, it’s time to democratize data intelligence as well.
Generative Al has shown a lot of promise in automating tedious
manual tasks, such as writing copy and code or building images
and videos. For data analytics, a lot of focus has been on generating
SQL queries from natural language, i.e., text-to-SQL [16]. However,
this just scratches the surface to understand user questions and not
the underlying data. More importantly, it is prone to errors, with
accuracy rates between 50-85%, that are increasingly hard to spot

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIDR’24, January 14-17, 2024, Chaminade, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

and need an expert to validate the generated SQL statements any-
ways. Consequently, text-to-SQL has seen little adoption beyond
academic prototypes.

Providing more context is a popular approach to improve under-
standing and reduce errors with language models. This is motivated
by larger context lengths supported in newer language models, e.g.,
32K in GPT-4 and 100K in Claude [1]. As a result, many newer tools,
such as Open Al Code Interpreter, provide data files as input to the
LLM. However, the context is still limited to few 100s of MBs of
data, which is peanuts compared to the size of enterprise databases.
Retrieval augmented generation (RAG) [7] overcomes the scale
challenge partially by fetching relevant context using vector search.
However, it embeds the physical data for retrieval, thus scaling lin-
early with the database size. RAG is also limited to filtering relevant
rows and does not understand other data transformations like joins
or aggregate that could provide valuable context. In addition to the
prompt engineering involved, context-based approaches also end
up sending actual data to the language models, making them hard
to work with third party LLMs.

The extreme approach to truly understand private data is to
build custom LLMs, either via fine-tuning or building from scratch.
BloombergGPT with 50 billion parameters is one example of build-
ing domain specific LLM built from scratch. However, this involves
a non-trivial amount of engineering effort and costs running into
millions of dollars for each run, a repeatedly incurring cost as new
data comes in. Finetuning also requires carefully crafted set of in-
structions, e.g., the 15K instructions gathers from all Databricks
employees for Dolly [5]. Finally, while custom LLMs address the
privacy problem, they still suffer from hallucination. Recent studies
from Open Al show GPT models having accuracy ranging between
50-80% [14]. Instead, database applications are business critical, and
they demand 100% accurate answers.

In this paper, we ask the question whether we can turn any
given database into a generative Al machine - one that is accurate,
fast, and secure. Our goal is to overcome the practical challenges
involved and make generative Al work for billions of profession-
als, helping them leverage data without being bottle-necked on
a handful of experts. The key insight we have is that language
models must be coupled with the right data models for answers
to be truthful, i.e., hallucination-free. Given that data models are
logical, they can scale to large data without revealing the physi-
cal values to third party LLMs. We introduce Large Data Model to
generate semantically relevant data models in response to natural
language queries. We retrieve the generated data model efficiently
with automatic materialization and cache. Furthermore, since data
models are logical, we can do one-time fine tuning of open-source
models and match the performance with GPT. Finally, we introduce
DataChains for building end to end applications on top of LDM.

In summary, we make the following key contributions:

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CIDR’24, January 14-17, 2024, Chaminade, USA

e We discuss the current landscape of generative Al for data
and dig into why the current approaches of text-to-SQL,
context building, and finetuning fall short. (Section 2)

e We present a brand-new plug-n-play approach to build gen-
erative Al on database (GOD) machines. (Section 3)

e We introduce Large Data Model (LDM) that can explore the
space of data transformations and generate high quality data
models to answer user questions. (Section 4)

e We present a scalable retrieval augmentation approach that
gets relevant transformations, generated by the large data
model, as context from a database of any size. (Section 5)

e We describe smaller open-source language models that could
be hosted privately and pre-fine-tuned for database questions
to match the performance of GPT-3.5. (Section 6)

e We define the notion of DataChain, a sequence to steps that
translate the results from a data talk into end-to-end tasks
for businesses. (Section 7)

e We show a case study from an Edtech customer looking to
transform their business with generative Al (Section 8)

2 CURRENT LANDSCAPE

In this section, we discuss the three primary approaches that are
applicable for generative Al on data.

2.1 Natural Language Interface

Artificial intelligence began with the question whether machines
can think, but soon the question also evolved into whether machines
can talk. People wondered whether natural language is unnatural
for machines [13]. In fact, one of the earliest natural language data-
base systems, the English querying system (EQS), was developed at
MIT in 1978 [12]. Today, many startups, such as text2sql.ai, seek.ai,
defog.ai, and NLSQL.com, are working to help people converse
with a database in natural language. Even more established players
have introduced capabilities to make the database query interface
simpler, e.g., ThoughtSpot Sage, Microsoft Synapse Fabric, Amazon
QuickSight, and Databricks English SDK [17].

The challenge with natural language interfaces is the accuracy
of translation from natural language to SQL. To illustrate, consider
Spider, a popular leaderboard for semantic parsing and text-to-SQL
challenge from Yale [18]. The leading model on Spider currently has
an accuracy of 85.3%. Likewise, Bird is another benchmark for text-
to-SQL over large-scale databases [8], and currently GPT-4 leads the
benchmark with 54.89% accuracy. The reasons for this inaccuracy
range from lack of perfect schema to work on, or the right data
models to reason on, or the underlying data characteristics to infer
from. Overall, inaccuracy is unacceptable for business applications
that expect guaranteed correctness.

2.2 Contextual Generation

Retrieval-augmented generation (RAG) is a context-oriented ap-
proach to reduce hallucination on knowledge-intensive tasks. The
core idea is to first retrieve text documents from a knowledge
source and then generate the output based on those documents.
Thus, RAG can provide more precise answers and the provenance
to those answers. Examples include FinGPT [11] for financial data
and RETRO [2] that matches GPT-3 despite being just 4% of its

Trovato et al.

’ Approach Accuracy | Speed Cost Privacy
Text-to-SQL Low
Contextual Generation Low
Finetuning Low High
Ideal 100% <2s Managed | Private

Table 1: Trade-offs in approaches for generative Al on data.

size. Furthermore, FLARE [6] performs a set of retrieval iteratively,
while Llamalndex [9] provides a “data framework" to apply RAG
on private data. Specific approaches for prompt engineering, such
as chain of thought or tree of thought, or even how to interleave
them with retrieval are orthogonal to the retrieval process itself.

The retrieval augmentation approach requires creating embed-
dings on the physical data and later retrieve relevant portions us-
ing vector search. Unfortunately, this is hard to scale with large
databases with billions of rows to embed and retrieve. Moreover, as
data changes, the embeddings also need to be constantly updated.
This is equivalent to always maintaining the perfect indexes — a
hard problem that has challenged database researchers for decades.
Even if we were to magically retrieve all relevant data, there are
limits to the size of the context, e.g., 16k tokens with GPT-3.5 and
32k tokens with GPT-4. Larger context length is also leading to
new problems such as ordering of data within the context [10].
Essentially, we may end up building another data processor outside
of the database to do what databases already do.

Finally, retrieval augmentation adds sensitive private data to the
context and hence unlikely to be used with third party LLMs. In
fact, recent survey shows privacy and accuracy as the top barriers
for leaders to adopt generative AL

2.3 Fine-tuned Models

Organizations with massive resources are tempted to create
in-house language models on their private data. Estimates indicate
GPT models to cost between 4 to 100 hundred millions of dollars.
Bloomberg’s BloomberGPT, for instance, is estimated to have taken
1.3 million GPU hours for training. Such massive investments
need strategic planning and long-term resourcing to maintain the
models over time. The bigger challenge still is model accuracy and
how to avoid it degrading over time. For instance, recent study
shows ChatGPT’s behavior degrading over time [4]. Given the
costs involved and the expertise required to train inhouse language
models, it is unlikely to go beyond niche use cases.

Table 1 summarizes the competitive landscape for generative Al
on data. While Text-to-SQL approach suffers from inaccuracy, slow
speed (direct queries to databases), and privacy, it does provide a
low-cost solution. Context generation, on the other hand improves
accuracy at the expense of privacy. It can also suffer from speed and
cost issues depending on how much effort and expertise is available.
Finetuning preserves privacy and can be fast at the expense of
hallucination and very high costs.

3 THE GOD MACHINE

Figure 1 shows the architecture of our proposed generative Al on
databases, the GOD machine. It starts with existing databases and

Turning Databases Into Generative Al Machines

a Ol

Questions

Reports

Insights Visualizations Actions

Plug-n-play
Generative Al

Figure 1: Generative Al on database (GOD) machine.

adds a plug-n-play generative Al layer on top. This layer combines
the ability to generate arbitrary data models, retrieve them effi-
ciently, and brings private language models to reason upon the user
questions. Users can see insights, analyze visualizations, generate
reports, or take actions. A DataChain combines a series of steps
derived from the user actions for end-to-end applications. Users get
started with the GOD machine by simply connecting their databases
and wait for up to 30 minutes, for one-time training and embed-
ding, before they start asking questions. Retraining/re-embedding
is only needed when the database schema or distribution changes
significantly. The GOD machine has the following salient features.

e All answers are generated only based on the underlying
database that is connected.

e Users can trace back every answer to a concrete data model.

o All data transformations that are needed to generate the data
model are applied behind the scenes.

o Likewise, all data pipelines that are needed to keep the data
models refreshed are generated automatically.

e The machine has an intelligent cache to for an interactive
querying experience.

e The machine provides efficient retrieval for context augmen-
tation using vector search.

o The system maintains high levels of relevance to user queries.

e It can retrieve arbitrary data transforms that could be then
refined into the final data model.

o The machine provides fully managed open source LLMs that
match the accuracy of OpenAL

e The system automatically handles all prompt engineering
transparent to the users.

e The web interface provides automatic visuals for users to
make the judgement on their own.

o Users can also drill down and chat with any of the generated
data model.

CIDR’24, January 14-17, 2024, Chaminade, USA

I High Quality Models
107 Total Models

108

10°
10?
) | | ‘ ‘ ‘ ‘ ‘ |
RITATIAHAN
Producti t:

uction Datasets

Number of models

Figure 2: Comparing default and filtered space of data models
with LDM.

e Finally, users can apply one or more actions to make their
insight actionable.

Below we describe each of the four key components in the GOD
machine, namely the large data model, scalable retrieval augmenta-
tion, private language models, and the DataChain.

4 LARGE DATA MODEL

Data modeling is the process of transforming data from a database
so that it can be used in business applications. Typically, it involves
identifying the clean data, combining different tables, building ag-
gregations, identifying meaningful dimensions and measures, iden-
tifying dynamic filters to slice data interactively, selecting the right
subset of the data to present, and deciding the right visualizations
for the resulting data at hand.

While traditionally data modeling depends on the domain and
the business scenario, many of the transformation tasks are often
repetitive and time consuming. Large data model (LDM) is a hier-
archical mixture model that learns what kind of transformations
make sense for different kinds of data distributions. It consists of
thousands of parameterized rules to answer the following questions:

(1) Which part of the data is clean?

(2) Which tables are valid and useful to join?

(3) Which parts of the data to filter?

(4) Which grouping and aggregations should be built?

(5) Which columns are potential dimensions?

(6) Which columns are potential measures?

(7) Which columns can be interactive filters?

(8) Which models are of high-quality?

(9) Which subsets of the rows are interesting to analyze?
(10) Which visualizations are interesting?
(11) What can be generalized across data sources?

We can see there is a massive space of possible transformations,
which takes users a lot of time (and expertise) to figure out manually
on any given database. The goal of LDM, therefore, is to narrow
down this space to a much smaller one and to make it searchable
to users in real time. This means users do not have start from raw
databases and apply mundane transformations repeatedly. Instead,

CIDR’24, January 14-17, 2024, Chaminade, USA

EEm Scalable Retrieval
108 Llama Index

Latency (seconds)

5

roduction Datasets

,,
N
|I|| I‘| |
P

Figure 3: Comparing traditional retrieval using Llamalndex
with scalable retrieval.

they search the most relevant data model for their analysis and tune
it further. Figure 2 illustrates the space of all valid and high-quality
models over 50 production databases at SmartApps. We can see
that while the total number of models can exceed 10s of millions on
these databases, the actual high-quality models remain within 10s
of thousands only - a three orders of magnitude reduction in the
search space, helping users focus on the high-quality data models.

The key advantages of LDM are as follows. First, it eliminates
hallucination by rooting all responses in well-defined and high-
quality data models. Second, LDM scales to arbitrary databases
since it operates on logical data model space. Third, since LDM
decouples logical and physical data, it leverages existing database
techniques such as materialization and caching to speed up the data
models. And finally, LDM can work in combination with any LLM
on top without any finetuning required on the physical data.

5 SCALABLE RETRIEVAL AUGMENTATION

A key component in the GOD machine architecture is scalable
retrieval augmentation that retrieves relevant data to answer user
questions from database of any size. The popular approach is to
use a vector database to embed the physical data and retrieve the
semantically relevant portions of it at query time. For databases, this
means embedding all rows from all tables in the database, which
is not feasible. Therefore, we embed logical data models, instead
of the physical data, and retrieve relevant ones in response to user
queries. As a result, vector search now scales with the number of
data models, which have already been filtered by the LDM, and not
the number of rows in the database.

Figure 3 shows how retrieval on logical data in our approach
scales compares to retrieval on physical data in Llamalndex [9]
over 50 production databases at SmartApps. While Llamalndex
can easily have retrieval time run into 100s to 1000s of seconds,
our scalable retrieval approach keeps it under 1 second in most
cases and 10 seconds in the extreme cases. Thus, we see two orders
more scalablity, making interactive performance (<2s) possible. Fur-
thermore, while the retrieval latencies of physical data embedding
approaches continue to grow with the number of rows, the latencies
with logical data embeddings are bounded by the schema sizes.

Trovato et al.

°
S

True Positive Rate
o
2

02

—— Sentence Transformer (SBERT)
—— OpenAl Embeddings

0.0

0.4 0.6 08 10
False Positive rate

Figure 4: Comparing OpenAl with pre-tuned SBERT model.

We consider various options when generating the embeddings
for semantic search. Every data model is represented by a SQL
expression, which could be embedded directly. Alternatively, we
could convert the SQL expression into a description, or a business
topic, with few shot prompting for the data model to capture more
general meaning. Currently, we use OpenAl for the embeddings
and pgvector for vector search. We could as well replace them with
other language models (e.g., Llama, T5, etc.) and vector databases
(e.g., pg_embedding, Qdrant, etc.). To speed up the performance,
we speculatively cache interesting data models in memory (Redis).
This could be based on model quality, usage, recency, and so on.

Note that vector search only gives data sorted by similarity score
(cosine similarity by default). However, we still need to decide
whether it is relevant to the user query and not add irrelevant infor-
mation as context. To do this, we determine a similarity threshold to
decide whether a retrieved data model is relevant or not. We train
this threshold by crafting irrelevant questions on a database and
computing their similarity scores with valid data models on that
database. We observe a strict similarity threshold of 0.851, where
no irrelevant models are retrieved. But that also misses some rele-
vant models. Therefore, we pick a threshold 0.784 that gives a true
positive rate of 0.971 and false positive rate of 0.125. Overall, this
results in a relevance of 85% to user queries.

In summary, we scale retrieval augmentation by operating on
logical data model instead of the physical data. Such an approach
scales in the size of schema (and data characteristics), without
exploding with the number of rows in the database. We further
cache the data models aggressively to hide the load latencies (overall
1.2s on average). We also determine a similarity threshold to decide
whether the retrieved data model is relevant or not. Together, we
provide a fast and effective retrieval for database of any size.

6 PRIVATE LANGUAGE MODELS

Third party models, such as GPT, are a privacy risk for many en-
terprises. An information leak could impact intellectual property,
violate regulatory laws, or simply loose the competitive edge if
the data is used by the third-party to train itself. Additionally, the
general-purpose models contain a lot of redundant parameters and

Turning Databases Into Generative Al Machines

are not trained for data analytics specifically. Therefore, the ques-
tion is whether we can train a smaller inhouse model that matches
the performance of OpenAl model. Below we compare OpenAl
with open-source models on our two primary tasks: (1) embedding,
and (2) text generation.

Embeddings. Recall that we embed high-quality models from the
LDM and store them in pgvector database for scalable retrieval. We
then also embed user questions and find the relevant data models
with the highest cosine similarity scores.

For OpenAl, we train the embeddings model by fine tuning GPT
3.5 with a siamese objective of moving similar sentence embeddings
closer to each other. However, this requires sharing the database
schema with the OpenAl endpoint. Also, since the initial pre-trained
model is decoder only transformer, the embeddings are not evenly
distributed in the embedding space. In fact, when determining
similarity threshold, we noted that relevant models all lie in the
narrow range of 0.75 to 0.85.

For open source, we use the Sentence Transformer (SBERT-
all-mpnet-base-v2) with 109.5 million parameters [15]. The Sen-
tence transformer uses a pre-trained encoder only transformer and
fine-tuned with the siamese objective. Unlike OpenAl embeddings,
the embeddings produced by the all-mpnet-base-v2 model are dis-
tributed evenly across the embedding space, i.e, the similarity scores
of relevant and non-relevant models are spread evenly in the range
from 0 to 1. This helps distinguish the relevant models better and
thus determine a crisper similarity threshold.

We evaluate the relevance of OpenAl and SBERT models by
manually classifying the top 5 data models for 33 queries on our
production databases as relevant or not. Figure 4 shows the ROC
(receiver operating characteristic) analysis for both OpenAI and
SBERT embeddings. For OpenAl, we can observe that the similarity
threshold of 0.784 allows us to distinguish the relevant and non-
relevant models with a true positive rate of 97.1% and false positive
rate of 12.5%. For SBERT, a similarity threshold of 0.317 allows us
to distinguish between relevant and non-relevant models with a
true positive rate of 93.2% and false positive rate of 7.6%. From
the ROC graph, we can also observe that the area under the curve
(AUC) for SBERT embeddings (0.958) is higher than OpenAI (0.948),
indicating that SBERT embeddings are more useful at ranking the
most relevant data models than OpenAl One caveat to note is that
OpenAl has a lot more parameters storing a lot of information from
many domains. This means that for very niche domains, SBERT
may not perform very well since it may not be trained in that
domain. Analyzing this further will be part of future work.

Text generation. We generate text from SQL to create better em-
beddings for semantic search. The generated text also helps users
to understand the model better and to use it as context when an-
swering their questions. Third party LLM end points, such as Chat-
GPT, expose the data model definitions which is not acceptable to
many organizations. Therefore, we have fine-tuned the open source
T5(base) model of 220 million parameters using our custom dataset
curated from test workloads. This inhouse model generated text
with almost the same quality as OpenAlI GPT 3.5-Turbo model (154
billion), even though it has very few parameters. To evaluate the
performance, we compare the similarity score of text generated by
our fine-tuned T5 model with GPT-3.5 Turbo. The results show a

CIDR’24, January 14-17, 2024, Chaminade, USA

140
Bl Automated Dashboard DataChain

Automated Monitoring DataChain
120

=
@ ® o
=] =] =)

Time taken (seconds)

N
=)

.uuullllllll"""

Production DataSets

Figure 5: DataChain execution times for different production
databases.

similarity score of 93.6% with the OpenAl embeddings (similarity
threshold of 0.784), and a similarity score of 0.77 with SBERT em-
beddings (similarity threshold of 0.317). We can see that the text
generation quality of our custom model matches very closely to
that of OpenAlI on either embeddings.

In summary, we can successfully train open-source language
models that are much smaller in size and yet match or outperform
OpenAl in terms of relevance and accuracy. Thus, we can build
generative Al on data without compromising on privacy.

7 DATACHAIN

The GOD machine helps find truthful answers rooted in data models.
It goes even further to help combine data tasks for an end-to-end
application and takes care of running them autonomously. We refer
to such chain of tasks as DataChain and it is like Langchain [3].
Below we describe four concrete scenarios of DataChain and show
how they can be accomplished with the GOD machine.
Automated Dashboard. Data analysts spend a lot of time building
dashboards that need to be kept refreshed. They need to write
data pipelines and materialize aggregated data before it could be
displayed on the dashboard. Most BI tools allow users to define the
refresh intervals or to specify which columns to check for changes.
Many also have limits, e.g., Power BI limits scheduled refresh to 8
refresh per day. All this manual tedious work can be automated with
DataChains. Once users retrieve the relevant data model and tune
it to their needs, they can pin it to a dashboard. Behind the scenes,
the GOD machine creates an Airflow job (shared with all pinned)
to keep data models refreshed. Thus, not only are users relieved
from writing tedious data pipelines manually, but the system can
also share computations and reduce cost more effectively.
Automated Monitoring. Cloud operators are often worried about
things going wrong, and they want to stay on top when that hap-
pens. However, with the growing footprint of cloud services, it
is extremely hard for them to analyze, visualize, and spot issues
from the mountain of monitoring data that gets collected. Most
monitoring tools allow users to create custom rules to manually
define the abnormal and get alerted if that happens. However, given
the number of possibilities, it is very hard for users to know what is

CIDR’24, January 14-17, 2024, Chaminade, USA

“normal" and catch all possible scenarios. DataChains can automate
this manual monitoring effort by keeping track of how the data
models behave over time. Users can mark which data models need
monitoring or they can also monitor all high-quality models on
a database. By batching the monitoring tasks into shared Airflow
jobs, the system can scale efficiently, while relieving the user.

Automated Reports. Decision makers need periodic reporting on
the state of affairs. However, current tools limit them to canned
reports, and any customization requires falling back to the data
experts to get the appropriate data. They also spend a lot of time
interpreting the results and putting it in context for their business,
e.g., with respect to external data. DataChain can help them gen-
erate reports from one or more data models and leverage LLMs
for descriptive external data enabled analysis. Users can identify
the data models they need to report on and choose the analysis
they want to be included in their report. The system then generates
tailored reports for them in a self-serve fashion.

Automated Q&A. Business analysts provide actionable insights
to the stakeholders. However, they typically rely on data analysts
to build a dashboard before they can see the data. Typically, this
process gets plagued with back and forth on requirements followed
by long delays in delivery. As a result, the business analyst needs
to weigh in carefully before making any requests. With DataChain,
the business analyst can "talk” to the data directly before coming up
with concrete requirements. They can ask natural language ques-
tions and dig into a Q&A with any data model to ask more pointed
questions. This can help them understand their scenario better
and define the requirements with a concrete example. Behind the
scenes, the GOD machine loads the data model into the LLM and
runs real-time data science operations in response to user questions.

Figure 5 shows the automated dashboard and automated moni-
toring DataChains over the 50 production databases at SmartApps.
Depending on the size of the database, the Airflow jobs underlying
the DataChains can take from 10s to 100s of seconds. However, all
those Airflow jobs are automatically generated, and their execution
fully managed by the GOD machine. Thus, DataChains helps users
accomplish sophisticated end-to-end analytics tasks with ease.

8 CASE STUDY

We now describe a case study of using the GOD machine for
an Edtech company that runs 100s of courses over 1000s of stu-
dents with 10,000s of online meetings every year. The key business
questions that they are looking to answer are three-fold: (i) non-
payment and refund issues, (ii) punctuality and engagement in
classes, (iii) customer acquisition and churn. Currently, they em-
ploy engineers to answer these questions, and it takes anywhere
from a couple of days to a week for each new question. This is
both tedious and costly. As a result, they miss critical insights and
potential actions they could take.

With GOD machine, they can search insights over all their data
in natural language. They can visualize the insights, refine the data
models, and pin the relevant ones to the dashboard. At any time,
they can download a report to summarize their business insights.
The GOD machine generated insights helped the company identify
10% leakage in revenue, and provided pointed actions to take.

Trovato et al.

9 CONCLUSION

Databases have long mastered the art of storing and processing data.
However, taking data from a database into something insightful and
actionable remains a challenge for many people. In this paper, we
described turning databases into generative Al machines, automat-
ing many of the manual tedious tasks involved. We introduced large
data model to generate relevant data models for user questions and
presented a scalable retrieval approach for database of any size. We
demonstrated the use of inhouse language models for privacy and
described the notion of DataChains to put end-to-end applications
together. To conclude, we believe generative Al can be a big leap
for databases, and this paper is a step in that direction.

REFERENCES

[1] Anthropic. 2023. Introducing 100K Context Windows. Retrieved July 31, 2023
from https://www.anthropic.com/index/100k-context-windows
[2] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman
Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer,
Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero,
Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. 2022. Improving
language models by retrieving from trillions of tokens. arXiv:2112.04426 [cs.CL]

[3] Harrison Chase. 2022. LangChain. https://github.com/hwchase17/langchain

[4] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. How is ChatGPT’s behavior
changing over time? arXiv:2307.09009 [cs.CL]

[5] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali
Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. 2023. Free Dolly:
Introducing the World’s First Truly Open Instruction-Tuned LLM. Retrieved
July 31, 2023 from https://www.databricks.com/blog/2023/04/12/dolly-first-open-
commercially-viable-instruction-tuned-1lm

[6] Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiging Sun, Qian Liu, Jane Dwivedi-
Yu, Yiming Yang, Jamie Callan, and Graham Neubig. 2023. Active Retrieval
Augmented Generation. arXiv:2305.06983 [cs.CL]

[7] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktédschel,
Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. arXiv:2005.11401 [cs.CL]

[8] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma,
Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A Blg Bench for Large-Scale
Database Grounded Text-to-SQLs. arXiv:2305.03111 [cs.CL]

[9] Jerry Liu. 2022. Llamalndex. https://doi.org/10.5281/zenodo.1234

[10] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. arXiv:2307.03172 [cs.CL]

[11] Xiao-Yang Liu, Guoxuan Wang, and Daochen Zha. 2023. FinGPT: De-

mocratizing Internet-scale Data for Financial Large Language Models.

arXiv:2307.10485 [cs.CL]

William A. Martin. 1978. Some Comments On EQS, A Near Term Natural Lan-

guage Data Base Query System. In Proceedings of the 1978 Annual Conference

(ACM ’78). Association for Computing Machinery, 156-164.

Christine A. Montgomery. 1972. Is Natural Language an Unnatural Query Lan-

guage?. In Proceedings of the ACM Annual Conference - Volume 2 (ACM ’72).

Association for Computing Machinery, 1075-1078.

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. arXiv:1908.10084 [cs.CL]

[16] Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha,

Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Improved Large Language

Model Adaptation for Text-to-SQL. arXiv:2306.00739 [cs.CL]

Gengliang Wang, Xiangrui Meng, Reynold Xin, Allison Wang, Amanda Liu, and

Denny Lee. 2023. Introducing 100K Context Windows. Retrieved July 31, 2023

from https://www.databricks.com/blog/introducing-english-new-programming-

language-apache-spark

[18] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs.CL]

[12

(13

=
R

=
]

https://www.anthropic.com/index/100k-context-windows
https://arxiv.org/abs/2112.04426
https://github.com/hwchase17/langchain
https://arxiv.org/abs/2307.09009
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.03111
https://doi.org/10.5281/zenodo.1234
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.10485
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2306.00739
https://www.databricks.com/blog/introducing-english-new-programming-language-apache-spark
https://www.databricks.com/blog/introducing-english-new-programming-language-apache-spark
https://arxiv.org/abs/1809.08887

	Abstract
	1 Introduction
	2 Current Landscape
	2.1 Natural Language Interface
	2.2 Contextual Generation
	2.3 Fine-tuned Models

	3 The God Machine
	4 Large Data Model
	5 Scalable Retrieval Augmentation
	6 Private Language Models
	7 DataChain
	8 Case Study
	9 Conclusion
	References

