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Fábio Botler

Universidad de Valparaiso

fbotler@dii.uchile.cl

www.ime.usp.br/~fbotler

Joint work with M. Sambinelli, R. S. Coelho, and O. Lee

www.ime.usp.br/~fbotler


2/17

G – simple graph (no loops, no multiple edges)

A trail is an alternating sequence v0e1v1e2 · · · e`v` of vertices and
edges such that ei = {vi−1, vi} and ei 6= ej .

A path is an alternating sequence v0e1v1e2 · · · e`v` of vertices and
edges such that ei = {vi−1, vi} and vi 6= vj .

A trail
that is not a path.

A path.
that is not a trail.
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Decomposition of G :

I D = {H1, . . . ,Hk}, Hi ⊆ G

I E (G ) =
⋃

i E (Hi )

I E (Hi ) ∩ E (Hj) = ∅, i 6= j

– A decomposition is a partition of the edges of G .

path decomposition of G :

I Hi is a path, ∀i .
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A decomposition is a “coloring” of the edges of G .

A path decomposition
of G
of G

A minimum
path decomposition

of G

I pn(G) – the size of a path decomposition of G with a
minimum number of elements;

I pn(G) – path number of G .
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Problem
Given graph G, calculate pn(G).

Example

I pn(G) = 1 if and only if G is a path;

I If G is a cycle, then pn(G) = 2;

I If G is a forest with o odd degree vertices, then pn(G) = o/2.
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Theorem (Péroche, 1984)

Given a graph G with maximum degree 4, deciding whether
pn(G) = 2 is NP-complete.

Corollary

Calculate pn(G) NP-hard.

Conjecture (Gallai, 1966)

If G is a simple connected graph with n vertices, then
pn(G) ≤ dn/2e.
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Some known results

Let Gev be the subgraph of G induced by the even degree vertices.

I If Gev contains at most one vertex, then pn(G) ≤ bn/2c.
(Lovász, 1968)

I If Gev is a forest, then pn(G) ≤ bn/2c. (Pyber, 1996)

I If each block of Gev is triangle-free and has maximum degree
at most 3, then pn(G) ≤ bn/2c. (Fan, 2005)
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Some known results

I pn(G) ≤ b3n/4c. (Donald, 1980)

I pn(G) ≤ b2n/3c. (Dean–Kouider, 2000)

I If G is Eulerian and has maximum degree at most 4, then
pn(G) ≤ dn/2e. (Favaron–Kouider, 1988)

I If G has maximum degree at most 5, then pn(G) ≤ dn/2e.
(Bonamy–Perrett, 2016)
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Our result

Theorem (B.–Sambinelli–Coelho–Lee, 2017+)

If G has treewidth at most 3, then pn(G) ≤ bn/2c,
or G ∈ {K3,K

−
5 }.

Reducing subgraphs

I H ⊆ G is an r-reducing subgraph of G if pn(H) ≤ r and
G − E (H) has at least 2r isolated vertices;

I G is a Gallai graph if pn(G) ≤ bn/2c.
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Reducing subgraphs

Lemma
Let H be an r-reducing subgraph of G.
If G − E (H) is a Gallai graph, then G is a Gallai graph.

I How to obtain reducing subgraphs?

I How to obtain reducing subgraphs H such that G − E (H) is a
Gallai graph?

Lemma
Let H be a reducing subgraph of G, and let K be a component of
G − E (H) such that K ∈ {K3,C4,K

−
5 ,K5}.

Then H + K is a reducing subgraph of G.
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Theorem (B.–Sambinelli–Coelho–Lee, 2017+)

If G has treewidth at most 3, then G is a Gallai graph,
or G ∈ {K3,K

−
5 }.

I 3-trees;

I partial 3-trees;

I terminal vertices
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Proof.

I G minimal counterexample

I u, v terminal vertices

I d(u) = d(v) = 3;

I |N(u) ∩ N(v)| = 2;

I Every vertex in N(u) ∩ N(v) has odd degree.
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Concluding remarks

I Every planar graph with girth at least 6 is a Gallai graph;

I If G has maximum degree at most 4, then G is a Gallai graph
or G ∈ {K3,K5,K

−
5 };

I Develop more techniques to obtain reducing subgraphs.
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