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Abstract. Hyperspectral imaging sensors commonly employ multiple apertures or focal 
planes for broad spectral coverage. These designs often result in spatial misregistration 
artifacts between the spectral regions. Unknown misregistration errors of fractions of a pixel 
cannot be corrected and can have a negative impact on target detection performance, 
especially for targets that are subpixel.  The work here analyzes the impact of band-to-band 
misregistration on hyperspectral target detection performance.  Synthetic imagery was used to 
simulate various amounts of sub-pixel misregistration between the visible (VIS) and near 
infrared (NIR) regions of the optical spectrum.  Scenes were created with vehicles placed as 
targets. Target detection algorithms were applied using both the full spectrum misregistered 
imagery, and the VIS and NIR bands separately.  Receiver operating characteristic curves 
were used to assess the performance of each algorithm for each target.  Results indicate that 
statistical target detection algorithms are less sensitive to band-to-band misregistration than 
geometric algorithms.  Results also indicate that in some cases it is more beneficial to use full 
spectrum misregistered imagery rather than applying target detection algorithms to the VIS 
and NIR bands separately, even for large amounts of sub-pixel misregistration. 
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1 INTRODUCTION 
It is common for hyperspectral imaging sensors to rely on the use of multiple apertures or 
focal planes to span a broad spectral range due to limitations in detector technology [1-3].  
This technique allows for imaging with more spectral bands than would be possible using a 
single focal plane technology.  The problem with this approach, however, is imperfect image 
registration.  The resulting composite hypercube consists of independent hyperspectral images 
collected at each focal plane which are generally not perfectly registered to one another.  
Also, even instruments using a single aperture and focal plane can suffer from inherent 
misregistrations due to the optical characteristics of the spectrometers [4]. 

Misregistration between sets of spectral bands has a negative impact on target detection 
performance, particularly when detecting small or subpixel targets because there is a different 
amount of spectral mixing of target and background materials in each set of spectral bands.  
This paper focuses on target detection performance using simulated band-to-band 
misregistered imagery. Synthetic imagery was used to allow full knowledge and precise 
control of the amount of misregistration.  Synthetic images were created at various amounts of 
misregistration between the visible and near infrared bands.  An urban scene was populated 
with 140 vehicles placed in different types of background materials.  Three different target 
detection algorithms were applied to the misregistered imagery, as well as to the visible (VIS) 
and near infrared (NIR) hyperspectral images separately.  Receiver Operator Characteristic 
(ROC) curves were generated to compare the target detection performance of various 
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algorithms. ROC curves show the tradeoff in probability of detection versus probability of 
false alarm as a detection threshold is varied [5].   

The motivation for this research is in part due to a characteristic of a hyperspectral sensor 
used at the Rochester Institute of Technology (RIT).  RIT’s Modular Imaging Spectrometer 
Instrument (MISI) is a hyperspectral line scanner that employs two spectrometers, one with 
35 spectral channels in the VIS and one with 35 spectral channels in the NIR, each fed by its 
own optical fiber from the focal plane [2].  This two-fiber configuration causes a 
misregistration between the VIS and NIR bands since the fibers occupy different locations on 
the focal plane.  Also, MISI’s line scanning optical design causes the amount of 
misregistration to vary as it scans over the scene.  More information on MISI’s misregistration 
issue and correction techniques can be found in [6].  Another example of an imaging system 
suffering misregistration between sets of spectral bands is NASA’s EO-1 Hyperion [3].  
Hyperion has a misregistration of approximately 0.28 pixels between the visible near infrared 
(VNIR) and the shortwave infrared (SWIR) bands due to the fact they are imaged by separate 
focal planes that are not perfectly co-aligned. The following sections report on the image 
simulation, the algorithms used in the evaluation, the results and our conclusions. 

 

 
Fig. 1. RIT’s Modular Imaging Spectrometer Instrument, a hyperspectral line scanner. 

 

a) b)  
Fig. 2. Illustration of MISI’s focal plane (a).  VIS and NIR channels are off the center axis.  This results 
in a slight misregistration between the VIS and NIR channels shown in (b). 

2 SYNTHETIC IMAGE GENERATION 
This section describes the image simulation tool used to generate the synthetic imagery, the 
particular scene used for the study, and the methodology used to create the misregistered 
images.  
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2.1 Image simulation tool 
The image simulation was performed using the Digital Imaging and Remote Sensing Image 
Generation (DIRSIG) tool.  DIRSIG [7] is a first principles based synthetic image generation 
model developed by the Digital Imaging and Remote Sensing Laboratory (DIRS) at RIT.  It is 
capable of producing radiometrically accurate broad band panchromatic, multispectral, and 
hyperspectral images from the visible through thermal infrared regions of the optical 
spectrum.  DIRSIG uses radiation propagation and geometric submodels to model such effects 
as the scene-sun-sensor geometry, the sensor point spread function (PSF), and the 
bidirectional reflectance distribution function (BRDF) of materials.  The Air Force Research 
Laboratory’s Moderate resolution atmospheric transmission code (MODTRAN [8]) is used to 
model the propagation of electromagnetic radiation through the atmosphere.  

2.2 Scene 
A portion of an existing large urban area scene known as MegaScene [9] was selected for this 
study.  This scene was modeled after an urban residential area just northeast of Rochester, 
New York.  The area includes residential neighborhoods, parks, and a school complex as 
shown in Figure 3.  The ground size of the scene is approximately 800 meters by 800 meters. 
A running track is located near the bottom of the scene and two large calibration panels (light 
and dark) were placed in the infield of the model scene.  DIRSIG was used to generate this 
radiometrically accurate scene.  Physical models were used to simulate a 3-d environment 
complete with various surfaces, buildings, trees, and vehicles.  Spectral reflectance curves 
from the DIRSIG reference library were applied to each surface in the scene.  MODTRAN 
was used to model all propagation of electromagnetic radiation through the atmosphere until it 
is collected by the sensor. All of this was done to simulate a real HSI collection.  After the 
simulated scene was imaged, a common HSI processing approach was followed and the 
image was atmospherically compensated to spectral reflectance using the two large calibration 
panels inside the track area and the empirical line method (ELM) [10]. Three versions of the 
scene were generated, each with vehicles having different spectral reflectance curves 
corresponding to their color (blue, green, or white).  140 vehicles (of the same color) were 
placed in each scene to provide sufficient samples to estimate detection probability. To allow 
for a range of backgrounds, the vehicles were placed either on grass, the running track or on 
one of two types of road asphalt. Target masks were created which labeled pixels as target or 
background.  These masks were used to calculate the probability of detection and probability 
of false alarm to generate ROC curves after target detection algorithms were applied to the 
images.  Further details are available in [6]. 

2.3 Model sensor and misregistered image simulation 
A notional model of an airborne hyperspectral imager was implemented within DIRSIG to 
render the at-sensor radiance generated by the scene and atmospheric models as a 
hyperspectral image. The model sensor had 73 bands with 10 nm spectral resolution and 
spaced every 10 nm from 0.40 to 1.12 microns. The first 31 (0.40 to 0.70 microns) were 
considered to be from one spectrometer (VIS) while the remaining 42 (0.71 to 1.12 microns) 
were considered to be from a second spectrometer (NIR) and shifted spatially to create the 
misregistration as described below. All final images had Gaussian random noise added to 
achieve an average signal-to-noise ratio (SNR) of 100 for all spectral bands.  

The scene was initially rendered at a ground sample spacing of 0.2 meters, yielding 
images that were 4000 x 4000 for the scene. These images were then spatially degraded using 
a circularly symmetric Gaussian point spread function (PSF) to yield pixels spaced 2 meters 
apart with approximately 2 meter resolution. To induce misregistration, the NIR bands were 
shifted by integer increments of the initial 0.2 meter pixels relative to the VIS bands prior to 
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the application of the Gaussian. The 10x oversampling in the initial rendering allowed 
misregistrations to be created in 0.1 pixel increments for the final 400 x 400 pixel images. 
Misregistrations between the VIS and NIR image cubes of up to 0.5 pixels in one direction 
were studied. Figure 4 shows a natural color rendition of a small portion of the initial image 
and the same area of the final image after the point spread function was applied. As can be 
seen the vehicles occupy a portion of several pixels in the 2 meter images used for the 
detection studies.  Figure 5 shows reflectance curves for the vehicles used in this simulation. 
 

 
Fig. 3. Natural color (RGB) rendition of the scene used in this study.  Red dots 
indicate the locations of the vehicles used as targets. 
 

a)  b)  

Fig. 4. Natural color (RGB) images of a small area of the scene rendered at the a) 
initial high resolution and b) after application of the Gaussian PSF.  
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Fig. 5. Reflectance values of the three vehicles used in the simulation. 

3 TARGET DETECTION ALGORITHMS AND PERFORMANCE 
EVALUATION 
Three target detection algorithms were considered in this study: the Spectral Angle Map 
(SAM) [11], the Adaptive Subspace Detector (ASD) [12] and the Adaptive Coherence 
Estimator (ACE) [13]. These algorithms have been put in a common notation for the 
hyperspectral imaging community in [14]. They were selected as commonly used 
representative algorithms to study the influence of the algorithm on detection errors 
introduced by the misregistration. SAM and ASD are examples of geometric algorithms, with 
the difference being ASD uses information about the background while SAM does not. ACE 
is a stochastic detection algorithm which uses the image-wide background covariance. These 
three algorithms are commonly used in the hyperspectral target detection community and 
were selected to form a good representation of the geometrical and statistical classes of 
algorithms. All were applied in the reflectance domain to atmospherically compensated 
versions of the imagery generated using ELM and the large calibration panels inside the 
running track.  

The SAM algorithm given in Eq. (1) uses no background information and relies solely on 
the target signature to detect targets. Here, d is the target library spectral reflectance pixel 
vector and x is a test pixel vector from the reflectance image. The superscript T denotes 
transpose.  
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The ASD algorithm, given in Eq. (2), uses scene endmembers to characterize the 

background.  
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Here, Pb is a matrix specifying the background space and Ps is the corresponding matrix for 
the image space.  The background and image matrices are computed using Eq. (3)  
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(3) 

 
where I is the identity matrix, M is a matrix of endmembers, and y specifies which 
endmembers are used to construct M.  M# is the pseudo inverse of M and is shown in Eq. (4).  
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Pb uses a matrix of only background endmembers when constructing Mb and Ps uses a matrix 
of background endmembers concatenated with a matrix of target endmembers for Ms. The 
background endmembers were obtained as the cluster centers (in spectral space) found from 
an unsupervised K-means clustering algorithm applied to the image assuming six classes. 
Multiple target endmembers may be used depending on how the target signature is expected 
to vary under different conditions.  However, in this study only one target endmember was 
used as the retrieved target signatures were not expected to vary much throughout the scene.  

The ACE algorithm is a stochastic algorithm and uses a covariance matrix to characterize 
the background.  In this experiment, the target-free, mean subtracted, image-wide covariance 
was used.  ACE is a variation of the generalized likelihood ratio test (GLRT) and is given in 
Eq. (5)  
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where bΣ is the target-free, image-wide, mean subtracted covariance matrix and d and x are 
defined as above.   

For each algorithm and test image, scalar test statistic images T(x) were generated for all 
pixels x using the equations provided above. ROC curves were generated by varying a 
detection threshold from –∞ to +∞ and recording the observed probability of detection and 
probability of false alarm at each threshold.  The probability of detection is estimated as the 
ratio of the number of true target vehicles detected divided by the total number of true target 
vehicles. A vehicle was counted as being detected if the maximum test statistic value within 
the pixels occupied by the target vehicle exceeds the threshold. The probability of false alarm 
was estimated as the ratio of the number of non-target pixels (background) whose test statistic 
exceeded the threshold divided by the total number of non-target pixels in the image. Varying 
the threshold shows the tradeoff in probability of detection versus false alarm. ROC curves 
were generated for each level of band-to-band misregistration to illustrate how misregistration 
affects target detection performance. As described above, in generating the ROC curves 
estimates of the probability of detection were made on a per-target basis while estimates of 
the false alarm probability were per-pixel excluding a small buffer region around each target.  
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4 RESULTS 
ROC curves were created from the target detection maps resulting from applying the SAM, 
ASD and ACE target detection algorithms on each scene. In addition to applying the 
algorithms to the full spectrum including various amounts of misregistration, the algorithms 
were also applied to only the VIS or NIR spectral subsets. ROC curve results from the SAM 
algorithm applied to the scenes with blue vehicles and the various misregistration levels are 
shown in Figure 6.  Figures 7 and 8 show corresponding curves obtained using the ASD and 
ACE algorithms, respectively.  Similar results were observed for the green and white vehicles 
and are available in [6]. Figure 9 shows the probability of detection at a constant false alarm 
rate (CFAR) of 10-4 for the blue vehicle and the various combinations of misregistration and 
algorithms. Figures 10 and 11 show the corresponding results for the green and white 
vehicles.  

A visual inspection of the ROC curves and detection rate graphs reveals that SAM and 
ASD tend to be more sensitive to band-to-band misregistration than ACE.  ASD also does not 
appear to gain benefits of using the entire, slightly misregistered spectrum. ACE tends to be 
the most robust in the presence of misregistration and using all bands in the spectral range 
yields performance increases over using only the VIS or NIR regions of the spectrum, even at 
misregistration amounts up to 0.3 pixels or more.  

For the three vehicles used in this experiment, SAM and ASD tended to have higher 
detection rates when using either the VIS or NIR bands separately, rather than using the full 
spectrum, even at small amounts of misregistration.  While ACE sometimes has lower overall 
detection rates, it tended to have higher detection rates relative to using only the VIS or NIR 
bands separately even at large amounts of misregistration.  

The results can also be interpreted further by considering the reflectance spectra of the 
target vehicles shown in Figure 5. It is observed that the spectra have more distinctive 
characteristics in the VIS (0.4 to 0.7 microns) than in the NIR (0.7 to 1.1 microns). That is, 
there are distinctive peaks at 0.48 microns for the blue vehicle and 0.52 microns for the green 
vehicle, and a unique sharp rise at 0.42 microns followed by a fairly flat region for the white 
vehicle. While there are differences in the overall slopes for the vehicle reflectances in NIR, 
there is not the same type of distinctive nature as the VIS. 

In examining the detection results, we see that the VIS alone performance exceeds the 
NIR alone performance for vehicles of all colors when using the ASD and ACE algorithms. 
Note that these algorithms use background information, suggesting that the VIS spectral 
region has more features in the background that can be used to improve detection 
performance. SAM, on the other hand, looks at the spectral similarity between the pixel of 
interest and the true target spectrum without the use of background information. With SAM, 
we see the NIR region alone does slightly better than the VIS for the blue and the green 
vehicle, but the white vehicle results are higher for VIS than NIR, consistent with the results 
of the ASD and ACE algorithms. This result suggests the NIR region of the blue and green 
vehicles has greater contrast in spectral angle with non-target pixels than the VIS region.  

While these general trends were observed in this study, it must be cautioned that the 
performance in given situations can vary widely depending on the particular target of interest 
and background characteristics and may not allows follow these same trends.  Nonetheless, 
these observations should contribute to the overall body of understanding. 
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Fig. 6. ROC curves for blue vehicle using SAM algorithm. The vertical axis is the probability of 
detection (Pd) while the horizontal axis is the probability of a false alarm (Pfa). 

 
Fig. 7. ROC curves for blue vehicle using ASD algorithm. The vertical axis is the probability of 
detection (Pd) while the horizontal axis is the probability of a false alarm (Pfa). 

 

 
Fig. 8. ROC curves for blue vehicle using ACE algorithm. The vertical axis is the probability 

of detection (Pd) while the horizontal axis is the probability of a false alarm (Pfa).
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Fig. 9. Detection rates at CFAR=10-4 for the blue vehicle 

 

 

Fig. 10. Detection rates at CFAR=10-4 for the green vehicle 

 

 

Fig. 11. Detection rates at CFAR=10-4 for the white vehicle 
 
 

Journal of Applied Remote Sensing, Vol. 3, 033513 (2009)                                                                                                                                    Page 9



5 CONCLUSIONS 
The results from this experiment show that the statistical algorithm ACE is more robust than 
the geometric algorithms SAM and ASD in the presence of band-to-band misregistered 
hyperspectral data.  While the overall detection rates for ACE were not necessarily higher 
than those for ASD, the ACE detection rates operating on full spectrum misregistered data 
were often higher than detection rates using VIS or NIR bands separately.  This result 
indicates that statistical approaches may be useful for target detection applications when using 
hyperspectral data with unknown amounts of misregistration between spectral bands.  
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