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Abstract
The family RX∗ of regular subsets of the free monoid X∗ generated by a finite set X is the standard example
of a ∗-continuous Kleene algebra. Likewise, the family C X∗ of context-free subsets of X∗ is the standard
example of a µ-continuous Chomsky algebra, i.e. an idempotent semiring that is closed under a well-
behaved least fixed-point operator µ . For arbitrary monoids M, C M is the closure of RM as a µ-continuous
Chomsky algebra, more briefly, the fixed-point closure of RM. We provide an algebraic representation of
C M in a suitable product of RM with C′2, a quotient of the regular sets over an alphabet ∆2 of two pairs
of bracket symbols. Namely, C M is isomorphic to the centralizer of C′2 in the product of RM with C′2,
i.e. the set of those elements that commute with all elements of C′2. This generalizes a well-known result
of Chomsky and Schützenberger (1963) and admits us to denote all context-free languages over finite sets
X ⊆M by regular expressions over X ∪ ∆2 interpreted in the product of RM and C′2. More generally, for
any ∗-continuous Kleene algebra K the fixed-point closure of K can be represented algebraically as the
centralizer of C′2 in the product of K with C′2.

Keywords: idempotent semiring, fixed-point-closure, regular language, context-free language, ∗-continuous Kleene algebra,
µ-continuous Chomsky algebra, Chomsky-Schützenberger theorem

1. Introduction
The classical Chomsky-Schützenberger theorem of Formal Language Theory relates the set C X∗

of context-free languages of the free monoid X∗ over the finite set X to the set R(X ∪ ∆2)
∗ of

regular languages over an extension of X by a set ∆2 = {b, d, p, q} of two bracket pairs b, d
and p, q. It says that every L∈C X∗ is the image of the intersection R∩D2(X) of a regular
language R∈R(X ∪ ∆2)

∗ with the Dyck language D2(X)∈C (X ∪ ∆2)
∗ of balanced bracketed

strings under the homomorphism hX∗ : (X ∪ ∆2)
∗→ X∗ that keeps elements of X fixed and maps

those of ∆2 to the unit of X∗. This result of Chomsky and Schützenberger (1963) can be stated as

(CST ) C X∗ ⊆ { hX∗(R∩D2(X)) | R∈R(X ∪ ∆2)
∗ }.

Intuitively, for L = hX∗(R∩D2(X)), the set R∩D2(X) consists of the sentences of L enriched
by begin- and end-markers of their phrases according to some context-free grammar for L, i.e. by
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their linearized parse trees; the two bracket pairs of ∆2 are used to encode a begin- and end-marker
for each phrase category of the grammar. The reverse inclusion

(reverse CST) C X∗ ⊇ { hX∗(R∩D2(X)) | R∈R(X ∪ ∆2)
∗ }

is trivial, since the intersection of a context-free set with a regular one and the homomorphic image
of a context-free set are context-free. (It will no longer be trivial in the generalizations considered
below.) Thus, balanced brackets are at the heart of the extension from regular to context-free sets.

To extend this relation C X∗ = { hX∗(R∩D2(X)) | R∈R(X ∪ ∆2)
∗ } from finitely generated

free monoids X∗ to arbitrary monoids M, we define RM and C M as suitable closures of the semir-
ing FM of finite subsets of M (with union as addition and elementwise product as multiplication)
within the semiring PM of all subsets of M. Namely, the family C M of context-free subsets of
M is the closure of FM under components of least solutions of finite systems of inequations

y1 ≥ p1(y1, . . . , yn), . . . , yn ≥ pn(y1, . . . , yn) (1)

between variables yi and polynomials pi ∈C M[y1, . . . , yn]. Notice that each such inequation sys-
tem does have a least solution in PM, so we can add the components of this solution to C M.
By adding further unknowns and inequations for the coefficients from C M, we can ultimately do
with polynomials pi ∈FM[y1, . . . , yn] in (1). The family RM of regular sets of M is the closure
of FM under components of least solutions of finite systems of inequations yi ≥ pi(y1, . . . , yn)
with right-linear polynomials pi ∈RM[y1, . . . , yn], i.e. where pi is a sum of monomials A or
Ay with A∈RM and y∈ {y1, . . . , yn}. These definitions make C M resp. RM be closed under
least fixed-points of arbitrary resp. right-linear polynomials and don’t assume that M be finitely
generated.

In classical Formal Language Theory, regular and context-free languages are defined by regular
and context-free grammars. A context-free grammar G = (X ,Y, P, S) over the set of terminal sym-
bols X is a finite set P⊆Y × (X ∪Y )∗ of grammar rules or productions (y, α), where Y is a set of
variables or nonterminal symbols, disjoint from X , and a specific start symbol S ∈Y . The produc-
tions give rise to a binary rewrite relation⇒G on (X ∪Y )∗ by w⇒G w′ iff for some u, v∈ (X ∪Y )∗

and (y, α)∈ P, w = uyv and w′ = uαv. Each y∈Y leads to a language L(G, y) = {w∈ X∗ | y⇒+
G

w }, where⇒+
G is the transitive closure of⇒G, and L(G) = L(G, S) is the language defined by G.

A right-linear grammar is a context-free grammar where P⊆Y × (X∗ ∪ X∗Y ).
Notice that P gives rise to a system (1) with Y = {y1, . . . , yn} and S = y1 where pi is the

sum over all monomials α ′ ∈FX∗[y1, . . . , yn] that arise from the right-hand side of a gram-
mar rule (yi, α) by replacing each x∈ X occurring in α by the singleton {x} ∈FX∗. The
languages (L(G, y1), . . . , L(G, yn)) are the least solution of the system (1) derived from G in
this way. Conversely, a polynomial system (1) with parameters from FX∗ gives rise to a context-
free grammar G = (X ,Y, P, y1) with Y = {y1, . . . , yn} and P consisting of those (yi, α) where
α arises from a monomial α ′ of pi by replacing each parameter in α ′ by one of its members
w∈ X∗. The least solution (L1, . . . , Ln) of the given polynomial system agrees with the languages
(L(G, y1), . . . , L(G, yn)) of the grammar so derived from it.

The grammatical way to define C X∗ can be extended from free monoids X∗ to arbitrary
monoids M, following Hopkins (2008a). The free extension M[Y ] of a monoid M by a set Y
disjoint from M consist of the set of all finite sequences m0y1m1 . . . ykmk, where m0, . . . , mk ∈M
and y1, . . . , yk ∈Y , with the sequence m0 of length 1 with m0 = 1 as unit, and with the operation
defined by

(m0y1m1 . . . ykmk)(m′0y′1m′1 . . . y′k′m
′
k′) = m0y1m1 . . . yk(mk ·M m′0)y

′
1m′1 . . . y′k′m

′
k′

for k, k′ ∈N, m0, . . . , m′k′ ∈M, y1, . . . , y′k′ ∈Y as product; for disjoint sets X and Y , there is an
isomorphism X∗[Y ]' (X ∪Y )∗, obtained by identifying y1y′ ∈ X∗[Y ] with yy′ ∈Y ∗. A context-
free grammar G = (Y, P, S) over the monoid M then consists of a set Y of variables, disjoint from
M, a finite set P⊆Y ×M[Y ] of productions, and a main variable S ∈Y . As for free monoids,
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G gives rise to a binary relation ⇒G on M[Y ] such that w⇒G w′ iff for some α, β ∈M[Y ] and
(y, γ)∈ P, w = αyβ and w′ = αγβ . For each variable y∈Y , G defines a subset L(G, y) = {m∈
M | y⇒+

G m } of M, where⇒+
G is the transitive closure of⇒G, and L(G) := L(G, S). This gives

us a grammatical definition of a set

C M = { L(G) | G a context-free grammar over M }.
The equivalence between the two definitions of C M can be shown by relating context-free gram-
mars over M with finite systems of polynomial inequations with parameters from FM, as in the
case of free monoids. (For an equivalence proof, see also Remark 2 in Leiß and Hopkins (2018).)
The regular subsets RM can be defined analogously by context-free grammars with right-linear
productions. Independently of the aims of the present article, RM and C M with non-free monoid
M are useful to study rational or context-free transductions T between a free input monoid X∗ and
a free output monoid Z∗ as subsets of M = X∗ × Z∗.

The components of least solutions in PX∗ of polynomial systems (1) with right-linear poly-
nomials pi ∈RX∗[y1, . . . , yn] can be denoted by regular expressions in the elements of X . The
regular expressions over X , defined by

r, s ::= 0 | 1 | x | (r + s) | (r · s) | r∗ with x ranging over X ,

are interpreted in the Kleene algebra RX∗ by taking /0 for 0, the singleton containing the unit
of X∗ for 1, {x} for x∈ X , binary union for +, elementwise concatenation for ·, and iteration
(aka monoid closure) for ∗. If the right-linear polynomial pn of (1) is q(y1, . . . , yn−1) + Ayn and
r denotes the parameter A∈RX∗, then the least solution of yn ≥ pn(y1, . . . , yn) is denoted by
(r∗ · q)(y1, . . . , yn−1). Substituting yn by (r∗ · q) in the remaining inequations, and iterating this
process, the first component of the least solution of (1) is named by a regular expression over X ,
free of unknowns y1, . . . , yn.

In a similar way, the components of least solutions of arbitrary polynomial inequations (1) with
parameters from C X∗ can be named by regular µ-terms over X ,

r, s ::= 0 | 1 | x | y | (r + s) | (r · s) | r∗ | µy.r, with x ranging over X ,

the extension of regular expressions over X by an infinite set of variables y and a unary least-
fixed point operator µ binding a variable; then (µyn.pn)(y1, . . . , yn−1) is a term denoting the least
solution of yn ≥ pn(y1, . . . , yn) of (1), relative to given values for y1, . . . , yn in C X∗. One of the
results of this article is an algebraic notation for context-free languages that is close to the regular
expressions and does not use a binding operator.

Now, the Chomsky-Schützenberger theorem and its reverse extend readily to the families RM
of regular and C M of context-free subsets of an arbitrary finitely generated monoid M as

C M = { hM(R∩D2(M)) | R∈R(M[∆2]) }. (2)

We here assume M to be finitely generated to have D2(M)∈C (M[∆2]), but this assumption can
be avoided by a different formulation using the pure Dyck language D2 ∈C ∆∗2 of brackets only,

C M = { π1(R∩ (M ×D2)) | R∈R(M × ∆
∗
2) },

where π1 : M × ∆∗2→M is the first projection.
In a number of semi-published contributions, Hopkins (1993) has tried to turn this dependence

of C M on R(M[∆2]) into a dependence on RM, express it in more algebraic terms, and generalize
it to an algebraic construction of the fixed-point-closure of a ∗-continuous Kleene algebra K. The
idea is to let elements of M and ∆2 commute with each other, i.e. replace M[∆2] by M × ∆∗2 or
R(M[∆2]) by a suitable product RM ⊗R C2 of RM with a “bra-ket algebra” C2, and perform the
balance-check ∩D2(M) and the bracket-erasure hM of (2) by algebraic calculations in C2. The
“bra-ket algebra”

C2 =R∆
∗
2/〈bd = 1 = pq, bq = 0 = pd, db + qp = 1〉
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is the quotient of the regular sets R∆∗2 by a congruence that is generated by three conditionsa:
by “match” conditions bd = 1 = pq that allow us to shorten strings by erasing all pairs bd or
pq of matching adjacent brackets, by “mismatch” conditions bq = 0 = pd that allow us to throw
away all strings containing a bracket mismatch bq or pd, and by a “completeness” condition
db + qp = 1 which ensures that corresponding bra-ket algebras Cn based on n > 2 bracket pairs
can be embedded in C2.b The product RM ⊗R C2 is, intuitively, the smallest ∗-continuous Kleene
algebra extension of RM and C2 in which elements of RM commute with those of C2. The
algebraic version of the Chomsky-Schützenberger theorem and its reverse then is that C M is
isomorphic to the centralizer of C2 in RM ⊗R C2,

C M ' ZC2(RM ⊗R C2), (3)

i.e. to the set of elements that commute with every member of C2. All elements of RM ⊗R C2 can
be denoted by regular expressions in the generators of M and C2, and it is easy to define a subset
of expressions that denote the members of the centralizer of C2. This is the above-mentioned
algebraic notation system for context-free sets that is much closer to the familar one for regular
sets than context-free grammars or regular µ-terms are.

The goal of the present work is to replace C2 in (3) by a simpler algebra, the “polycyclic
∗-continuous Kleene algebra on two generators”,

C′2 =R∆
∗
2/〈bd = 1 = pq, bq = 0 = pd〉,

and instead of (3) prove

C M ' ZC′2
(RM ⊗R C′2), (4)

our first main result. The congruence used in C′2 is generated by just the bracket match and mis-
match conditions. These, but not the completeness condition, can be seen as monoid equations,
provided we extend ∆∗2 by an annihilating monoid element 0. Doing so gives us the “polycyclic
monoid on two generators”,

P′2 = (∆2 ∪ {0})∗/〈{ x0 = 0 = 0x | x∈ ∆2 ∪ {0} } ∪ {bd = 1 = pq, bq = 0 = pd}〉.
This allows us to treat C′2 as RP′2 modulo {0}= /0 and RM ⊗R C′2 as R(M × P′2) modulo
{(1, 0)}= /0. Moreover, it lets us understand the centralizer of C′2 in RM ⊗R C′2: it contains (the
equivalence classes of) those R∈R(M × P′2) where R⊆M × {0, 1}.

Intuitively, therefore, (4) says that the context-free sets L∈C M correspond to the regular sets
R∈R(M × P′2) whose elements (m, t ′) have t ′ ∈ {0, 1}: elements (m, 1)∈ R come from an ele-
ment m∈M ∩ L with a parse tree t ∈D2 ⊆ ∆∗2 with respect to a context-free grammar for L,
reduced to t ′ = 1 in P′2; elements (m, 0)∈ R come from unparsable m∈M \ L and are thrown
away in the quotient of R(M × P′2) by {(1, 0)}= /0 .

However, the algebraic form (4) of the Chomsky-Schützenberger theorem and its reverse for
monoids does not yet give an algebraic representation of the fixed-point closure of an arbitrary ∗-
continuous Kleene algebra K, which need not be of the form RM for some monoid M. Equipped
with suitable notions of R- and C -morphisms, the categories of ∗-continuous Kleene algebras
(Kozen (1981)) and µ-continuous Chomsky algebras (Grathwohl et al. (2013)), respectively, are
subcategories DR and DC of the category D of dioids (i.e. idempotent semirings). In fact, DR
and DC are the Eilenberg-Moore categories of certain monads on the category of monoids. The
Kleene algebras RM and the Chomsky algebras C M, with monoid M, form the so-called Kleisli
subcategories of DR and DC . We want to extend (4) from their Kleisli subcategories to the
categories DR and DC themselves. In an equivalent categorical formulation of Hopkins (2008a)
and Leiß and Hopkins (2018), the objects of DR and DC , called R-dioids and C -dioids there,

aThe equations are semiring equations, in which elements w∈ ∆∗2 stand for the singleton sets {w} and 0 for the empty set.
bThe term “completeness” refers to the fact that the embedding is based on a complete suffix code of n opening brackets

by two opening brackets and a complete prefix code of n closing brackets by two closing brackets, see Remark 7 below.
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are dioids in which the regular resp. context-free subsets U of their multiplicative monoids have
least upper bounds ∑ U with respect to the partial order given by addition. As part of a broader
programme of algebraization of formal language theory, Hopkins (2008b) shows that there is an
adjunction

QC
R : DR→DC and QR

C : DC →DR

between these categories, where QR
C is the forgetful functor (restricting ∑ to regular subsets) and

QC
R maps an R-dioid K to its fixed-point- or C -closure in DC , which extends K by a set of order-

theoretic ideals of K. In yet unpublished work, Hopkins tries to show that the C -closure of an
arbitrary R-dioid K can also be algebraically described as

QC
R(K)' ZC2(K ⊗R C2). (5)

Based on (4), our second main result is that, again, C2 can be replaced by the simpler algebra C′2,
yielding a “categorical” Chomsky-Schützenberger theorem

QC
R(K)' ZC′2

(K ⊗R C′2). (6)

In contrast to the case of the Kleisli subcategories, we here really need the categorical notion of
product of R-dioids. A detailed presentation of the algebraic and categorical background used
here is given in Hopkins and Leiß (2018).

The rest of this paper is organized as follows. Section 2 gives the background of categories
DA of A -dioids for certain subfunctors A of the powerset functor P : M→M≤, where M
(resp. M≤) is the category of (partially ordered) monoids and (monotone) homomorphisms.
Section 2 also collects definitions and known results on products and quotients of A -dioids and
introduces polycyclic A -dioids C′n,A with n generators. Section 3 proves the algebraic version
C M ⊆ ZC′2

(RM ⊗R C′2) of the Chomsky-Schützenberger theorem, Section 4 the algebraic version
of the reverse Chomsky-Schützenberger theorem, C M ⊇ ZC′2

(RM ⊗R C′2). These are combined
in Section 5 to a proof that ZC′2

(RM ⊗R C′2) is the C -closure of RM; for M = X∗, this leads to
a set of regular expressions over X ∪ ∆2 that evaluate to the context-free sets of C M. Section 6
finally proves the general representation result: for an arbitrary R-dioid K, the C -closure of K is
isomorphic to ZC′2

(K ⊗R C′2). In the Conclusion, we also sketch where Hopkins’ proof of (5) uses
the completeness assumption and how it is avoided in our proof of (6).

2. The Category of A -Dioids and A -Morphisms
Let M be the category of monoids (M, ·, 1) and homomorphisms between monoids, and M≤
the category of partially ordered monoids (M, ·, 1,≤) and monotone homomorphisms between
them. We consider subfunctors of the powerset-functor P : M→M≤ and partially order them
by A ≤A ′ iff for all monoids M, A M ⊆A ′M. A monadic operatorc is a functor A : M→M≤
such that for all monoids M, N,

(A0) A M is a set of subsets of M,

(A1) A M contains all singleton subsets of M,

(A2) A M is closed under products, hence (A M, ·, {1},⊆) is a partially ordered monoid, where

A · B := { a · b | a∈ A, b∈ B } for A, B∈A M,

(A3) A M is closed under unions of sets from A ((A M, ·, {1})), and

cThis generalizes the definition in Hopkins (2008a), Hopkins and Leiß (2018), which demand (A1) A M contains all finite
subsets of M. The generalization serves to cover the example under (1) in Example 1 below.
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(A4) if f : M→N is a homomorphism, so is A f : A M→A N, where for U ⊆M,

(A f )(U) := { f (u) | u∈U }.

We write A M for both the selected set of subsets of M and the partially ordered monoid
(A M, ·, {1},⊆) or just the monoid (A M, ·, {1}). For the lifting A f of f we often write f̃ .

An A -dioid (D, ·, 1,≤) is a partially ordered monoid which is A -complete, i.e. each U ∈A D
has a least upper bound, ∑ U ∈D, and A -distributive, i.e.

(∑U)(∑V ) =∑(UV ) for all U,V ∈A D.

An A -morphism f : D→D′ between A -dioids D and D′ is a monotone homomorphism such that
f (∑ U) = ∑(A f )(U) for all U ∈A D. Let DA be the category of A -dioids and A -morphisms
between A -dioids.

Example 1 (Hopkins (2008a)). The following functors are monadic operators:

(1) I , where I M is the set of all singleton subsets of M; DI is the category M of monoids
(with equality as partial order) and (monoid-) homomorphisms.

(2) F , where FM is the set of all finite subsets of M; DF is the category D of dioids and
dioid-homomorphisms.

(3) R, where RM is the set of all regular subsets of M; DR is the category of ∗-continuous
Kleene algebras and morphisms between them, see Kozen (1981), Hopkins (2008a).

(4) C , where C M is the set of all context-free subsets of M; DC is the category of µ-continuous
Chomsky algebras and morphisms between them, see Grathwohl et al. (2013), Leiß and
Hopkins (2018).

(5) T , where T M is the set of all Turing-subsets (r.e.) of M. Notice that (A3) generalizes the
well-known fact that the union of an r.e. family of r.e. subsets of N is an r.e. subset of N.

(6) Pℵ0 , where Pℵ0M is the set of countable subsets of M; DPℵ0 is the category of closed
semirings, see Kozen (1990).

(7) P , the power set operator; DP is the category of quantales with unit (Rosenthal (1990)).

The sets RM, C M, T M can be defined by generalizing the grammatical approach of doing so
for free monoids M = X∗ (Hopkins (2008a)). We use the more algebraic, equivalent definitions
for R and C given in Hopkins and Leiß (2018). RM is the closure of FM under (binary) union,
elementwise product, and iteration ∗, i.e. if A∈RM, so is A∗ :=

⋃{ An | n∈N }, where A0 = {1},
An+1 = An · A. C M is the closure of FM under components of least solutions of polynomial
systems over C M, i.e. the components A1, . . . , An of the least solution in PM of a system of
inequations

x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)

with polynomials pi in x1, . . . , xn with parameters from C M all belong to C M. �

A Kleene Algebra (K,+, ·, ∗, 0, 1) is an idempotent semiring with a unary operation ∗ such that
a∗b is the least solution x of ax + b≤ x and ba∗ the least solution of xa + b≤ x, where y≤ z is
defined by y + z = z (Kozen (1994)). The Kleene algebra K is ∗-continuous if

ac∗b =∑{ acmb | m∈N } for all a, b, c∈K.

A Chomsky algebra (Grathwohl et al. (2013)) is an idempotent semiring K that is algebraically
closed, i.e. where every finite system of inequations x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)
with polynomials pi ∈K[x1, . . . , xn] has a least solution a1, . . . , an ∈K. If semiring terms, i.e.
terms in 0, 1,+, ·, are extended to µ-terms by adding a unary fixed-point operator µ , the least
solution of x≥ p(x, x1, . . . , xk) can be named by the term (µx.p)(x1, . . . , xk). A Chomsky algebra
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is µ-continuous, if for all µ-terms µx.p with parameters from K,

a(µx.p)b =∑{ a · pm(0) · b | m∈N } for all a, b∈K.

In the ∗- and µ-continuity conditions, the existence of the least upper bounds on the right is
asserted, not assumed. Hence, these conditions are related to the R- and C -dioid axioms by the
existence assertions U = { cm | m∈N } ∈RK resp. U = { pm(0) | m∈N } ∈C K and the A -
distributivity assertion, for A =R resp. A =C ,

a(∑U)b =∑ aUb, for all a, b∈K,

which (assuming A -completeness) is equivalent to the A -distributivity condition above. Of
course, by A K we mean A applied to the multiplicative monoid of K. We refer to Hopkins
(2008a) and Leiß and Hopkins (2018) for the details of the equivalence between ∗-continuous
Kleene algebras and R-dioids and between µ-continuous Chomsky algebras and C -dioids,
respectively, and use the latter terminology in the following.

A dioid (D,+, ·, 0, 1) is an idempotent semiring. Idempotency of + provides a partial order
≤ on D, via d ≤ d′ iff d + d′ = d′, with 0 as least element. Distributivity makes · monotone with
respect to ≤, and + guarantees a least upper bound ∑ U = d1 + . . .+ dn for each finite subset
U = {d1, . . . , dn} of D. Let D be the category of dioids with dioid homomorphisms.

For F ≤A , (A3) implies that A M is an idempotent semiring with

0 :=
⋃

/0, A + B :=
⋃
{A, B}, for A, B∈A M.

In this case, every A -dioid (D, ·, 1,≤) becomes a dioid (D,+, ·, 0, 1), using a + b := ∑{a, b}
and 0 := ∑ /0, and every A -morphism is a dioid-homomorphism. Hence we then view DA as a
subcategory of D.

Let us collect a number of results of that will be frequently used below:

Theorem 1 (Hopkins (2008a)). Let A be a monadic operator with F ≤A . Let M, N be monoids
and D be an A -dioid.

(1) A M is an A -dioid.
(2) A M is the free A -dioid extension of M. (That is, any homomorphism f : M→D to an

A -dioid D extends uniquely to an A -morphism f ∗ : A M→D such that f (m) = f ∗({m}).)
(3) The least-upper-bound-operator ∑ : A D→D is an A -morphism.
(4) If f : M→N is a homomorphism, its lifting A f : A M→A N is an A -morphism.
(5) If f : M→N is a surjective homomorphism, so is its lifting A f : A M→A N.
(6) If M is a submonoid of N, then A M ⊆A N.

In fact, by Theorem 16 of Hopkins (2008b), A : M→DA and the forgetful functor Â :
DA →M form an adjunction and combine to a monad TA = (Â ◦A , η , µ) : M→M with
m∈M 7→ {m} ∈A M as unit η and U ∈A A M 7→⋃

U ∈A M as product µ . Therefore, A -dioids
are best viewed as Eilenberg-Moore T -algebras for this monad TA , i.e. two-sorted structures

D = (D, ·, 1,∑ : A D→D)

with ∑ as “structure map” (see Mac Lane (1971)). The free A -dioids A M with monoid M are the
objects of the Kleisli-category of this monad TA .

Besides the free A -dioid extensions A M of monoids M, further examples of A -dioids can be
obtained from given ones by suitable quotient- and tensor product constructions as defined later.
Some categories DA are closed under matrix semiring formation, in particular:
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Example 2. Let J be a non-empty set and D = (D,+D, ·D, 0D, 1D) a P-dioid. Then

MatJ,J(D) = 〈DJ×J ,+, ·, 0, 1〉
is a P-dioid, where DJ×J is the set of functions from J × J to D, 0 is the constant function with
value 0D, 1 the function with 1(i, i) = 1D and 1(i, j) = 0D for i 6= j, and + and · are given by
( f + g)(i, j) = f (i, j) +D g(i, j) and ( f · g)(i, j) = ∑{ f (i, k) ·D g(k, j) | k ∈ J }, for all i, j ∈ J.

MatJ,J(D) is P-complete, because any U ⊆MatJ,J(D) has a least upper bound ∑ U defined
componentwise by (∑ U)(i, j) = ∑{ f (i, j) | f ∈U } using ∑ : PD→D; the P-distributivity
of MatJ,J(D) follows from the definition of matrix product and the P-distributivity of D:

(g · (∑U) · h)(i, j) = ∑{ g(i, k) ·D (∑{ f (k, l) | f ∈U }) ·D h(l, j) | k, l ∈ J }
= ∑{ g(i, k) ·D f (k, l) ·D h(l, j) | f ∈U, k, l ∈ J }
= ∑{ (g · f · h)(i, j) | f ∈U }.

Elements of MatJ,J(D) will be called J × J-matrices over D and often are denoted by A, B;
as usual, we write Ai, j instead of A(i, j) etc. If M is a monoid, MatJ,J(PM) is a P-dioid. In
particular, since B'PM for the trivial monoid M, the boolean matrices MatJ,J(B) form a P-
dioid. We identify MatJ,J(B) with the P-dioid of binary relations on J, and often write (i, j)∈
A⊆ J × J instead of Ai, j = 1. �

Remark 2. Similarly, DF is closed under Matn,n(·) for finite n and DPℵ0 under MatJ,J(·) for
countable J. It is an open question whether Matn,n(D) is an A -dioid for an arbitrary monadic
operator A and A -dioid D. The least upper bound ∑ U of a set U ⊆Matn,n(D) has to satisfy
(∑ U)i, j = ∑{ Ai, j | A∈U }, but U ∈A (Matn,n(D)) does not seem to imply { Ai, j | A∈U } ∈
A D, so it is already unclear if the componentwise suprema exist and Matn,n(D) is A -complete.
Defining the iteration A∗ of a matrix A of dimension n× n by a formula of Conway (1971) , Kozen
(1994) shows that for a Kleene algebra K, Matn,n(K) is a Kleene algebra. Ésik et al. (2015) claim
that the same is true for ∗-continuous Kleene algebras, i.e. DR, referring to Kozen (1990), who
however treats the case DPℵ0 of closed semirings. We are aware of no published proof that the
category of R-dioids is closed under Matn,n(·), but the proof for the category of C -dioids in Leiß
(2016) can be modified to obtain one. (A simpler one may be submitted elsewhere.)

Lemma 3. Let f : M→D be a homomorphism from a monoid M to a dioid D. Suppose that for
each L∈A M, its image (A f )(L)∈A D has a least upper bound in D, L̂ := ∑{ f (m) | m∈ L },
and that ·̂ : A M→D is a surjective homomorphism. Then D is an A -dioid.

Proof. By Theorem 1, the map A ( ·̂ ) : A A M→A D is a surjective homomorphism. Therefore,
we can define a least-upper-bound operator ∑ that makes the following diagram commute:

A A M
A ( ·̂ )

- A D
˙̇
˙̇
˙̇
˙̇⋃

?

˙̇
˙̇
?̇

∑

A M
·̂ - D.

For each V ∈A D there is U ∈A A M such that V = { L̂ | L∈U }. Since
⋃

U ∈A M, its image

under (A f ) = f̃ has by assumption a least upper bound,
⋃̂

U = ∑{ f (m) | m∈⋃
U } ∈D. Then

∑V :=
⋃̂

U
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is an upper bound of V in D, since for each L∈U , L⊆⋃
U , hence f̃ (L)⊆ f̃ (

⋃
U) and L̂ ≤ ⋃̂

U .
If e∈D is any upper bound of V , then for each m∈⋃

U there is L∈U with m∈ L, so

f (m)≤ L̂ ≤ e.

Hence e is an upper bound of { f (m) | m∈⋃
U } and so

⋃̂
U ≤ e. Therefore, ∑ V is the least

upper bound of V in D, and D is A -complete.
To show that D is A -distributive, suppose V1,V2 ∈A D. Since A ( ·̂ ) : A A M→A D is sur-

jective, there are U1,U2 ∈A A M such that Vi = { L̂ | L∈Ui } and ∑ Vi =
⋃̂

Ui for i = 1, 2.
Then V1V2 ∈A D has a least upper bound ∑(V1V2), and since (∑ V1)(∑ V2) is an upper bound
of V1V2, we have ∑(V1V2)≤ (∑ V1)(∑ V2). For the reverse inequation, use that ·̂ and

⋃
are

homomorphisms:

∑(V1V2) = ∑{ L̂1L̂2 | L1 ∈U1, L2 ∈U2 }
= ∑{ L̂1L2 | L1 ∈U1, L2 ∈U2 }
= ∑{ L̂ | L∈U1U2 }
= ∑{∑{ f (m) | m∈ L } | L∈U1U2 }
≥∑{ f (m) | m∈

⋃
(U1U2) }

=
⋃̂
(U1U2)

= (
⋃

U1 ·
⋃

U2)
̂

=
⋃̂

U1 ·
⋃̂

U2

= (∑V1)(∑V2).

For monadic operators A ≤B, the B-completion of an A -dioid D is a B-dioid D together
with an embedding A -morphism ηD : D→D such that the following ‘universal property’ holds:
any A -morphism f from D to a B-dioid D′ extends uniquely to a B-morphism f̄ : D→D′, in
the sense that f = f̄ ◦ ηD:

D′

6·······
�
�
�

f �
�
��

····
f̄

D
ηD

- D

By the universal property, the B-completion of D is unique up to a B-isomorphism.
The C -completion of a Kleene algebra or an R-dioid is analogous to the algebraic closure of a

field, but instead of adjoining roots to polynomials, we adjoin least fixed points. The C -completion
shall therefore also be called the C -closure or fixed-point closure of the Kleene algebra.

Proposition 4. For monoids M, the C -completion of RM is C M with the inclusion as ηRM .

Proof. C M is a C -dioid by Theorem 1 of Hopkins (2008a). If f : RM→C is an R-morphism to
a C -dioid C, we define f̄ : C M→C by

f̄ (L) =∑{ f ({m}) | m∈ L }, for L∈C M.

It is routine to check that f̄ is the only C -morphism h : C M→C with f = h ◦ ηRM .
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In the rest of this paper, we give an algebraic construction of the C -closure C M of RM for
monoids M and generalize this to a construction of the C -closure of an arbitrary R-dioid K.

2.1 Quotients in DA

From now on, we assume F ≤A , so that all A -dioids are dioids. For a partial order (D,≤), the
down-closure of U ⊆D is U↓ := { d ∈D | d ≤ u for some u∈U }.

If D = (D,+D, ·D, 0D, 1D) is a dioid and ρ a dioid-congruence on D, then D/ρ , the set of
congruence classes of ρ , is a dioid under the operations

d/ρ + d′/ρ := (d +D d′)/ρ, d/ρ · d′/ρ := (d ·D d′)/ρ, 0 := 0D/ρ, 1 := 1D/ρ.

The partial order ≤ on D/ρ derived from + is

d/ρ ≤ d′/ρ :⇐⇒ (d +D d′)/ρ = d′/ρ.

An A -congruence on an A -dioid D is a dioid-congruence ρ on D such that for all U,U ′ ∈A D,
if (U/ρ)↓ = (U ′/ρ)↓, then (∑ U)/ρ = (∑ U ′)/ρ .

Proposition 5 (Hopkins and Leiß (2018)). If D is an A -dioid and ρ an A -congruence on D, then
D/ρ is an A -dioid and the canonical map d 7→ d/ρ is an A -morphism.

Proof. For each V ∈A (D/ρ), there is U ∈A D such that V =U/ρ = { d/ρ | d ∈U }. Since ρ

is an A -congruence, ∑(U/ρ) := (∑ U)/ρ is well-defined and a least upper bound of V . (This
needs F ≤A .)

If D is an A -dioid and E ⊆D×D, there is a least A -dioid-congruence ρ on D with E ⊆ ρ ,
the intersection of all A -dioid-congruences on D above E.

The A -dioid A (X∗/ρ) of the quotient monoid X∗/ρ is isomorphic to the quotient A X∗/ρ̃ of
the free A -dioid A X∗ by a suitable A -congruence ρ̃ . If ρ is determined by a set E of monoid
equations, ρ̃ is determined by the corresponding set of dioid equations between singleton sets:

Proposition 6 (Hopkins and Leiß (2018)). Let ρ be a congruence on the monoid M and A ρ the
least A -congruence on A M above { ({m}, {m′}) | (m, m′)∈ ρ }. Then A (M/ρ)'A M/A ρ .

It is shown in Hopkins and Leiß (2018) that DA has coequalizers and the quotient D/ρ of
an A -dioid D by an A -congruence ρ on D is the coequalizer of two suitable A -morphisms
f , g : N

-
- D. The kernel ker( f ) of an A -morphism f : D→D′ between A -dioids is an A -

congruence on D.

2.2 The Polycyclic A -Dioids C′n,A
Let ∆n = {p0, . . . , pn−1, q0, . . . , qn−1} be a set of n pairs of “brackets”, p0, q0, . . . , pn−1, qn−1.
We decompose ∆n = Pn ∪Qn into the set Pn = { pi | i < n } of “opening” brackets and the set
Qn = { qi | i < n } of “closing” brackets. We also use 〈i| for pi and |i〉 for qi.

Let A be a monadic operator such that /0∈A M for each monoid M. The polycyclic A -dioid
C′n,A is the quotient C′n,A =A ∆∗n/ρn of A ∆∗n by the A -congruence ρn generated by the relations

piq j = δi, j for i, j < n, (7)

where δi, j is the Kronecker δ . These equations allow us to algebraically distinguish matching
brackets, where piq j = 1, from non-matching ones, where piq j = 0. Recall that in A ∆∗n, ele-
ments of ∆∗n are interpreted by their singleton sets, 0 by the empty set, so that ρn is the least
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A -congruence containing ({piqi}, {1}) and ({piq j}, /0) for i, j < n, i 6= j. The bra-ket algebra
Cn,A of Hopkins (2007) further assumes a “completeness” condition, 1 = ∑{ qi pi | i < n }, i.e.

Cn,A =A ∆
∗
n/〈{ piq j = δi, j | i, j < n } ∪ {1 =∑{ qi pi | i < n }}〉.

We will only use the case A =R and abbreviate Cn,R and C′n,R by Cn and C′n, respectively.

Remark 7. The reason to call 1 = q0 p0 + . . .+ qn−1 pn−1 the completeness condition is as fol-
lows. A map c : {0, . . . , n− 1}→ {0, 1}∗ is a prefix code if none of the code words c0, . . . , cn−1
is a prefix of another one. A prefix code c is complete if for each w∈ {0, 1}∗, either none or
both successors w0, w1 of w are prefixes of code words. By induction on the word length, define
pw, qw ∈ ∆∗2 by pε = ε = qε , piw = pw pi and qiw = qiqw for i < 2. Then the map c is a prefix code
iff in C2, pciqc j = δi, j for all i, j < n, and a complete prefix code iff additionally ∑i<n qci pci = 1.
In the latter case, pi 7→ pci , qi 7→ qci (i < n) is an embedding of Cn into C2, for n≥ 2. For example,
c0 = 0, c1 = 10, c2 = 11 is a complete prefix code c : {0, 1, 2}→ {0, 1}∗, leading to an embed-
ding of C3 into C2 by mapping p0, p1, p2 to p0, p0 p1, p1 p1 and q0, q1, q2 to q0, q1q0, q1q1. The
code words of different closing brackets aren’t prefixes of each other, those of different opening
brackets aren’t suffixes of another.

As we omit the completeness condition, we can view the semiring equations (7) as monoid
equations, interpreted in monoids with an annihilating element 0, which leads to a different
representation of C′n,A that will be useful later.

The polycyclic monoid generated by Pn is the quotient P′n := (∆n ∪ {0})∗/ρn, where ρn now is
the monoid congruence generated by

{ piq j = δi, j | i, j < n } ∪ { x0 = 0 = 0x | x∈ ∆n ∪ {0} }.
Every string w∈ (∆n ∪ {0})∗ can be reduced to a “normal form” nfn(w), using the equations

generating ρn as rules to shorten a string. The reduction either runs into a bracket mismatch and
returns 0, or finds matching brackets only and returns 1, or ends in a string with all closing brackets
in front of all opening brackets. Hence we can identify P′n with (Q∗nP∗n ∪ {0}, ·, 1), where

u · v := nfn(uv), u, v∈Q∗nP∗n ∪ {0}.
The Cayley graph of the polycyclic monoid P′n is the graph whose nodes are the elements x∈ P′n

with edges x δ−→ x · δ , for δ ∈ ∆n.

Example 3. A drawing of a part of the Cayley graph of P′2 is given in Figure 1, not showing the
sink node 0 and edges connected to it. For example, there is no edge q0

p0−→ 1 since q0 p0 6= 1. As
the picture indicates, the subgraph with nodes in P∗2 corresponds to a stack P∗2 ' {0, 1}∗, with pi

for push(i) and qi for pop(i).d For u∈ ∆∗2, an equation u = 1 holds in P′2 iff u is the label of a path
in the Cayley graph starting and ending in the node 1. The set of all those u is of course the pure
Dyck language D2 ∈C ∆∗2 of balanced strings over ∆2, i.e. the least solution in P∆∗2 of

y≥ 1 + p0yq0 + p1yq1 + yy.

It is easy to define a pushdown automaton accepting { u∈ ∆∗2 | u = 1 in P′2 }, keeping on its stack
the ρ-normal form of the input sequence read. �

Nivat and Perrot (1970) initiated the study of the connection between polycyclic monoids and
formal languages.

dActually, the graph contains infinitely many stacks: for each~q∈Q∗2 the subgraph with nodes in {~q}P∗2 forms a stack.
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Figure 1. Part of the Cayley graph of P′2.

Remark 8. The polycyclic dioid C′n has an interpretation in the algebra of binary relations on the
Cayley graph of P′n, arising from the interpretation of pi and qi as the transition relations

pi−→
and

qi−→ shown in the graph. Under this interpretation, the completeness condition 1 = ∑i<n qi pi

is not valid, as node 1 is not related to itself by any of the relations
qi pi−→ . We will later use

a restriction of this interpretation to the “stack part” P∗n of P′n. It may seem that a constant π

representing an “empty stack” test is needed to model a stack properly by

1 = π +∑ { qi pi | i < n }, ππ = π,
∧
i<n

(πqi = 0 = piπ).

But in our case, this turns out to be unnecessary, since computations popping from the empty stack
can be interpreted by the empty transition relation (cf. the proof of Theorem 17).

The map from P′n to A ∆∗n given by 0 7→ /0, 1 7→ {1}, and pi 7→ {pi}, qi 7→ {qi} for i < n, extends
to a homomorphism from P′n to the multiplicative monoid of C′n,A . Since P′n has no non-trivial
congruences (by Nivat and Perrot (1970)), this is an embedding of P′n into C′n,A , for F ≤A .

In the original definition C′n =R∆∗n/ρn, we take the quotient of the regular sets R∆∗n under the
semiring congruence ρn, where 1 stands for {1} and 0 for /0. We now take the regular sets RP′n of
P′n and remove the annihilating element:

Proposition 9. If ν is the least R-congruence on RP′n containing ({0}, /0), then C′n 'RP′n/ν .
Moreover, for B, B′ ∈RP′n we have B/ν = B′/ν iff B \ {0}= B′ \ {0}.

Proof. We first prove the second statement.⇐: Since {0}/ν = /0/ν is the least element of RP′n/ν ,
for B∈RP′n we have

B/ν =∑{ {w}/ν | w∈ B }=∑{ {w}/ν | w∈ B \ {0} }.
Hence if B, B′ ∈RP′n with B \ {0}= B′ \ {0}, then B/ν = B′/ν .
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⇒: One shows by induction on the regular operations that

ν0 := { (B, B′)∈RP′n ×RP′n | B \ {0}= B′ \ {0} }
is an R-congruence containing ({0}, /0), and obviously ν ⊆ ν0.

For the first statement, notice that a congruence class A/ρn of C′n =R∆∗n/ρn can be repre-
sented by a set of reduced strings, { nfn(w) | w∈ A } \ {0}, and A/ρn 7→ { nfn(w) | w∈ A }/ν

constitutes an isomorphism between C′n,R and RP′n/ν .

The n > 2 pairs of brackets pi, qi, i < n of ∆n can be coded by two pairs, say b, d and p, q of
∆2, via pi := bpi and qi := qid. This extends to an embedding of P′n in P′2.

2.3 The Tensor Product of A -Dioids
In a category whose objects have a monoid structure, two morphisms F1 : M1→M and F2 : M2→
M are relatively commuting, if for all m1 ∈M1 and m2 ∈M2, F1(m1) · F2(m2) = F2(m2) · F1(m1).

The tensor product of M1 and M2 is an object M1 ⊗M2 with two relatively commuting
morphisms >1 : M1→M1 ⊗M2 and >2 : M2→M1 ⊗M2 such that for any pair of relatively com-
muting morphisms f : M1→M and g : M2→M there is a unique morphism h f ,g : M1 ⊗M2→M
with f = h f ,g ◦ >1 and g = h f ,g ◦ >2:

M1
>1- M1 ⊗M2 �

>2
M2

˙̇
˙̇
˙̇
˙

@
@
@
f @
@
@R

˙̇
˙̇
?̇

h f ,g

	�
�
� g
�
�
�

M
By the universal property, the tensor product of M1 and M2 is unique up to isomorphism.

Example 4. In the category M of monoids, the tensor product of M1 and M2 is the carte-
sian product M1 ×M2 with componentwise multiplication, unit (1, 1) and injections defined by
>1(a) = (a, 1) for a∈M1 and >2(b) = (1, b) for b∈M2. The induced morphism h f ,g is the one
given by h f ,g(a, b) = f (a) · g(b). �

Theorem 10 (Hopkins and Leiß (2018)). A tensor product of A -dioids D1 and D2 exists,

>1 : D1 −→D1 ⊗A D2←−D2 :>2,

consisting of D1 ⊗A D2 :=A (M1 ×M2)/≡, where Mi = Â Di is the monoid underlying Di and
≡ is the A -congruence generated by the “tensor product relations”

{(∑ A,∑ B)}= A× B (A∈A M1, B∈A M2),

together with the embeddings >1,>2 defined by

>1(d1) := {(d1, 1)}/≡ for d1 ∈D1 and >2(d2) := {(1, d2)}/≡ for d2 ∈D2.

The liftings of the embeddings of Mi into M1 ×M2 map A∈A M1 to A× {1} ∈A (M1 ×M2)
and B∈A M2 to {1} × B∈A (M1 ×M2), hence A× B = (A× {1})({1} × B)∈A (M1 ×M2).
The tensor product relations are needed to make the >i : Di→D1 ⊗A D2 be A -morphisms.

For U ∈A (M1 ×M2), we write [U ] for U/≡. By the definition of ∑ on D1 ⊗A D2,

[U ] = [
⋃
{ {(a, b)} | (a, b)∈U }] =∑{ [{(a, b)}] | (a, b)∈U }=∑{ a⊗ b | (a, b)∈U },
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using a⊗ b for >1(a) · >2(b) = [{(a, b)}]∈D1 ⊗A D2. In particular, for A∈A M1, B∈A M2,
via A× B∈A (M1 ×M2) we have, by the tensor product relations,

(∑ A)⊗ (∑ B) =∑{ a⊗ b | a∈ A, b∈ B }.
Since D1 ⊗A D2 is the quotient of A (M1 ×M2) by the A -congruence ≡, its partial order is
the dioid-order on the quotient, i.e. [U ]≤ [V ] iff [U ∪V ] = [V ] for U,V ∈A (M1 ×M2), which is
coarser than the order on A (M1 ×M2) among the representatives U,V .

Proposition 11 (Hopkins and Leiß (2018)). For monoids M1 and M2, the tensor product of the
A -dioids A M1 and A M2 is isomorphic to the A -dioid A (M1 ×M2):

A M1 ⊗A A M2 ' A (M1 ×M2).

Proof. (Sketch) The isomorphism A M1 ⊗A A M2→A (M1 ×M2) maps [R] = ∑{ A⊗ B |
(A, B)∈ R } ∈A M1 ⊗A A M2 to

⋃{ A× B | (A, B)∈ R }e, where R∈A (A M1 ×A M2); the
inverse maps S ∈A (M1 ×M2) to ∑{ {a} ⊗ {b} | (a, b)∈ S }.

Since (A, B) 7→ A× B is a homomorphism from A M ×A N to A (M ×N), its lifting is a
homomorphism from A (A M ×A N) to A (A (M ×N)), so for R∈A (A M ×A N),

SR :=
⋃
{ A× B | (A, B)∈ R } ∈A (M ×N).

By the isomorphism, we have [R] = [R′] iff SR = SR′ . Conversely, for S ∈A (M ×N),

RS := { ({a}, {b}) | (a, b)∈ S } ∈A (A M ×A N),

hence [RS] = ∑{ {a} ⊗ {b} | (a, b)∈ S } ∈A M ⊗A A N. Notice that S(RS) = S and [R(SR)] = [R].
We can push this a bit further:

Theorem 12. Let M be a monoid and N a monoid with annihilating element 0. Then

A M ⊗A (A N/ν)'A (M ×N)/ν̃ (8)

where ν is the least A -congruence on A N containing ({0}, /0) and ν̃ is the least A -congruence
on A (M ×N) containing ({(1, 0)}, /0).

Putting Rν := { (A, B/ν) | (A, B)∈ R } for R∈A (A M ×A N), the isomorphism is given by

[Rν ] 7→ (SR)/ν̃ , where SR :=
⋃
{ A× B | (A, B)∈ R } for R∈A (A M ×A N),

S/ν̃ 7→ [(RS)ν ], where RS := { ({m}, {n}) | (m, n)∈ S } for S ∈A (M ×N).

Proof . Since B 7→ B/ν is a surjective A -morphism from A N to A N/ν , each element of
A (A M × (A N/ν)) is of the form Rν for some R∈A (A M ×A N).

To prove A M ⊗A (A N/ν)'A (M ×N)/ν̃ , it is sufficient to show that

>′1 : A M −→A (M ×N)/ν̃←−A N/ν :>′2
form a tensor product of A M and A N/ν in DA , where >′1 and >′2 are defined by

>′1(A) = (A× {1})/ν̃ and >′2(B/ν) = ({1} × B)/ν̃ .

This will be done in the Appendix. We here show that the isomorphism A M ⊗A (A N/ν)'
A (M ×N)/ν̃ consisting of the A -morphisms h>′1,>′2 and h′>1,>2

induced by the universal

eThe hint to prove Prop.7 of Leiß and Hopkins (2018) erroneously says that [R] maps to { (∑ A, ∑ B) | (A, B)∈ R }.
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properties of the two tensor product constructions

A M
>′1 - A (M ×N)/ν̃ �

>′2
A N/ν

˙̇
˙̇
˙̇
˙
6······

@
@
@
>1 @@

@R

h′>1,>2 ˙̇
˙̇
?̇

·····
h>′1,>′2

	�
�
� >2

�
�
�

A M ⊗A (A N/ν)

is as claimed in the theorem. The induced A -morphisms are defined by

h>′1,>′2([Rν ]) := ∑{ >′1(A) · >′2(B/ν) | (A, B)∈ R }
= ∑{ (A× {1})/ν̃ · ({1} × B)/ν̃ | (A, B)∈ R }
= ∑{ (A× B)/ν̃ | (A, B)∈ R }
= (

⋃
{ A× B | (A, B)∈ R })/ν̃ = (SR)/ν̃

and

h′>1,>2
(S/ν̃) := ∑{ >1({m}) · >2({v}/ν) | (m, v)∈ S }

= ∑{ {m} ⊗ {v}/ν | (m, v)∈ S }
= [(RS)ν ].

Since S(RS) = S, we have

(h>′1,>′2 ◦ h′>1,>2
)(S/ν̃) = h>′1,>′2([(RS)ν ]) = S(RS)/ν̃ = S/ν̃ ,

and since the tensor product embeddings >1,>2 are A -morphisms,

(h′>1,>2
◦ h>′1,>′2)([Rν ]) = h′>1,>2

(SR/ν̃) = [(R(SR))ν ]

= ∑{ A⊗ B/ν | (A, B)∈ R(SR) }
= ∑{ {m} ⊗ {v}/ν | (m, v)∈ SR }
= ∑{ {m} ⊗ {v}/ν | (m, v)∈ A× B, (A, B)∈ R }
= ∑{ A⊗ B/ν | (A, B)∈ R }= [Rν ].

With Proposition 9, Theorem 12 provides us with a representation of RM ⊗R C′2 as a quotient
of a free R-dioid extension:

Corollary 13. Let ν be the least R-congruence on RP′2 containing ({0}, /0) and ν̃ the least
R-congruence on R(M × P′2) containing ({(1, 0)}, /0). Then

RM ⊗R C′2 =RM ⊗R(RP′2/ν)'R(M × P′2)/ν̃ .

The centralizer ZC(D) of a set C under an embedding i : C→D in an A -dioid D is the set

{ d ∈D | d · i(c) = i(c) · d for each c∈C }
of all elements of D that commute elementwise with the image of C in D under i.

In the following, we are concerned with ZC′2
(RM ⊗R C′2), the centralizer of C′2 in RM ⊗R C′2

under the tensor product embedding >2 : C′2→RM ⊗R C′2.

Proposition 14. For each R-dioid K, ZC′2
(K ⊗R C′2) is an R-dioid.
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Proof. It is clear that ZC′2
(K ⊗R C′2) is closed under 0, 1,+ and ·, so it is a sub-dioid of K ⊗R C′2.

It is also closed under the restriction of ∑ : R(K ⊗R C′2)→K ⊗R C′2 to R(ZC′2
(K ⊗R C′2)): if

c∈C′2 and U ∈R(ZC′2
(K ⊗R C′2))⊆R(K ⊗R C′2), then since K ⊗R C′2 is R-distributive,

(1⊗ c)∑U =∑{ (1⊗ c)u | u∈U }=∑{ u(1⊗ c) | u∈U }= (∑U)(1⊗ c),

so ∑ U ∈ ZC′2
(K ⊗R C′2).

We will later see that for monoids M, ZC′2
(RM ⊗R C′2) is a C -dioid and isomorphic to C M.

The reason to care about this is that it provides us with regular expressions as a notation system
for context-free sets. Every L∈C M is, under C M ' ZC′2

(RM ⊗R C′2), an element of the Kleene
algebra RM ⊗R C′2 and therefore denoted by a regular expression in the generators of RM ⊗R C′2.

Example 5. Let ∆2 = {b, d, p, q} and M be a monoid. For x, y∈M, consider L = { xnyn |
n∈N } ∈C M and the regular expression b(px)∗(yq)∗d. Interpreted in RM ⊗R C′2, elements
m∈M mean >1({m}) = {m} ⊗ {1}/ν and elements δ ∈ ∆2 mean >2({δ}) = {1} ⊗ {δ}/ν . By
∗-continuity and since m and δ commute with each other in RM ⊗R C′2, we obtain

b(px)∗(yq)∗d = b(∑{ (px)k | k ∈N })(∑{ (yq)n | n∈N })d
= ∑{ b(px)k(yq)nd | k ∈N, n∈N }
= ∑{ xkynbpkqnd | k ∈N, n∈N }
= ∑{ xnyn | n∈N },

where in the final step, bpkqnd = δk,n since pq = 1 = bd and bq = 0 = pd. We will see that for any
L∈C M, its image L̂ := ∑{ {m} ⊗ 1 | m∈ L } in RM ⊗R C′2 belongs to ZC′2

(RM ⊗R C′2). �

To prove that ZC′2
(RM ⊗R C′2), together with the embedding >1, is the C -closure of RM,

we want to show that any R-morphism f : RM→C to a C -dioid C has a unique extension to a
C -morphism f̄ : ZC′2

(RM ⊗R C′2)→C, which can be defined by

f̄ (L̂) =∑{ f ({m}) | m∈ L } for L∈C M.

At least this works if for each element e∈ ZC′2
(RM ⊗R C′2) there is a unique L∈C M with e = L̂.

This uniqueness condition will be established in the following two sections: by Theorem 17 of
Section 3, there is at most one such L∈C M, by Theorem 26 of Section 4, there is at least one
such L.

We remark that the category DA has coproducts and free extensions (Hopkins and Leiß
(2018)). In particular, the free A -dioid extension of A M by the set ∆, (A M)[∆], is isomorphic to
A (M[∆]), whence we simply write A M[∆] below.

3. The CST for Monoids and its Algebraic Version
We now prove the Chomsky-Schützenberger theorem for arbitrary monoids M by reducing C M to
RM and the pure Dyck language D2 ∈C ∆∗2 and then give an algebraic version that embeds C M
into ZC′2

(RM ⊗R C′2). Recall that ∆2 is an alphabet of two pairs of brackets and M[∆2] the free
extension of M by ∆2, which is just (X ∪ ∆2)

∗ in case M = X∗.
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3.1 The CST for Monoids
For a finite set X , Dyck’s language D2(X)∈C X∗[∆2] of balanced strings over X∗[∆2] is the least
solution of

y≥ 1 + X + yy + p0yq0 + p1yq1

in P(X∗[∆2]). By the classical theorem of Chomsky and Schützenberger (1963),

C X∗ ⊆ { hX∗(R∩D2(X)) | R∈RX∗[∆2] }.
Since, for any monoid M, C M is defined inductively as an extension of FM by least solutions

(in PM) of polynomial systems with parameters from C M, one can reduce the parameters in the
polynomial systems to the base case FM, so that all elements of M that occur in the parameters
come from a finite set X ⊆M. Therefore,

C M =
⋃
{C 〈X〉 | X ∈FM }, likewise RM =

⋃
{R〈X〉 | X ∈FM },

where 〈X〉 ⊆M is the submonoid of M generated by X . We identify a system y1 ≥ p1, . . . , yn ≥ pk
with polynomials pi ∈C 〈X〉[y1, . . . , yk] with a context-free grammar with nonterminal symbols
y1, . . . , yk, start symbol y1 and terminal symbols from X . Since M resp. D2(M) belong to C M
resp. C M[∆2] only if M is finitely generated, we first state the CST for finitely generated monoids:

Theorem 15 (CST for finitely generated monoids). For any finitely generated monoid M,

C M ⊆ { hM(R∩D2(M)) | R∈RM[∆2] }
where D2(M)∈C M[∆2] is the set of elements of M[∆2] with balanced brackets.

Our proof is essentially a proof of the classical Chomsky-Schützenberger theorem, with a per-
haps more intuitive construction of R from L than can be found in textbooks; it may be helpful to
first consider Example 6 below. We use the grammatical definitions of C M and RM[∆2].

Proof. Let L1, . . . , Lk ∈C M be the least solution of the grammar G = 〈y1 ≥ p1, . . . , yk ≥ pk〉.
We can assume that the parameters in p1, . . . , pk are singletons or empty. Suppose there are n− 1
occurences of the variables y1, . . . , yk in p1, . . . , pk. Let ∆n = {〈0|, . . . , 〈n− 1|, |0〉, . . . , |n− 1〉}
be a set of n of “opening brackets” 〈i| and n “closing brackets” |i〉, i < n, and reserve the
brackets 〈0|, |0〉 for later usage. Surrounding the i-th variable occurrence by the i-th bracket
pair, for 0 < i < n, turns G into a grammar G′ = 〈y1 ≥ p′1, . . . , yn ≥ p′k〉 with least solution
L′1, . . . , L′k ∈C M[∆n]. For example, a monomial m1y j,1 . . . msy j,sms+1 of p j is turned into a mono-
mial m1〈i1|y j,1|i1〉 . . . ms〈is|y j,s|is〉ms+1 of p′j. By the choice of p′1, . . . , p′k, clearly L′j ⊆Dn(M)

and L j = hM(L′j) for 1≤ j≤ k.
Approximate L′1 from above by a regular set R1 ∈RM[∆n] as follows. To each monomial α

of p′j (i.e. grammar rule (y j, α) or y j→ α) attach a “follow”- or “continuation”-variable yF
j and

split αyF
j into right-linear factors m′y, where m′ ∈M[∆n] and y∈ {y1, . . . , yk, yF

j }. Let GF be the
right-linear polynomial system

y1 ≥ p′′1 , . . . , yk ≥ p′′k , yF
1 ≥ pF

1 + 1, yF
2 ≥ pF

2 , . . . , yF
k ≥ pF

k ,

where the monomials of p′′j are the initial factors m′y of the monomials of p′jy
F
j and those of pF

j are
the factors m′y that follow the occurrences of y j in p′1yF

1 , . . . , p′kyF
k . Let R1 be the first component

of the least solution of GF in RM[∆n].

Claim 1. For all 1≤ j≤ k and w∈M[∆n], if y j⇒∗G′ w, then y j⇒∗GF wyF
j .

Proof of Claim 1. By induction on the derivation length r≥ 1 in y j⇒r
G′ w. If r = 1, then y j→w

is a rule of G′, hence y j→wyF
j is a rule of GF . If y j⇒1

G′ α⇒r
G′ w, and the rule y j→ α of G′ is
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y j→m1〈i1|y j,1|i1〉 . . . ms〈is|y j,s|is〉ms+1, then GF has the rules

y j→m1〈i1|y j,1, yF
j,1→ |i1〉m2〈i2|y j,2, . . . , yF

j,s→ |is〉ms+1yF
j ,

and so y j⇒∗GF α . By the induction hypothesis, we get α⇒∗GF wyF
j , hence y j⇒∗GF wyF

j . /

Using yF
1 ≥ 1, Claim 1 implies L′1 ⊆ R1, hence L′1 ⊆ R1 ∩Dn(M).

Claim 2. For all 1≤ j≤ k and w∈Dn(M), if y j⇒∗GF wyF
j , then y j⇒∗G′ w.

Proof of Claim 2. by induction on the derivation length r≥ 1 in y j⇒r
GF wyF

j . If r = 1, then y j→w
is a rule of G′, hence y j⇒∗G′ w. For length r + 1 > 1, suppose y j⇒1

GF α⇒r
GF wyF

j . By the choice
of y j ≥ p′′j of GF , there is m1 ∈M such that α = m1〈i1|y j,1 for some i1 and y j,1 ∈ {y1, . . . , yk},
or α = m1yF

j . The second case cannot occur, since m1yF
j ⇒r

GF wyF
j with r≥ 1 is impossible: all

monomials of pF
j either begin with a closing bracket |i〉 for some i, or are 1. In the first case, we

have m1〈i1|y j,1⇒r
GF wyF

j . As w∈Dn(M), there are u1, w1 ∈Dn(M) such that w = m1〈i1|u1|i1〉w1

and y j,1⇒r
GF u1|i1〉w1yF

j . By the construction of GF , |i1〉 occurs only in rules yF
j,1→ |i1〉m2yF

j or
yF

j,1→ |i1〉m2〈i2|y j,2 with m2 ∈M and y j,2 ∈ {y1, . . . , yk}. So we must have

y j,1⇒r1
GF u1yF

j,1⇒r2
GF u1|i1〉w1yF

j with r = r1 + r2.

Since r1 ≤ r, we get y j,1⇒∗G′ u1 by induction. If the part yF
j,1⇒

r2
GF |i1〉w1yF

j is

yF
j,1⇒GF |i1〉m2yF

j ⇒r2−1
GF |i1〉w1yF

j ,

we must have r2 = 1 and w1 = m2, so y j→m1〈i1|y j,1|i1〉m2 is a rule of G′, and since w =
m1〈i1|u1|i1〉m2, the claim y j⇒∗G′ w is shown. If the part yF

j,1⇒
r2
GF |i1〉w1yF

j is

yF
j,1⇒GF |i1〉m2〈i2|y j,2⇒r2−1

GF |i1〉w1yF
j ,

there are u2, w2 ∈Dn(M) such that w1 = m2〈i2|u2|i2〉w2 and y j,2⇒r2−1
GF u2|i2〉w2. As |i2〉 occurs

only in rules yF
j,2→ |i2〉m3yF

j or yF
j,2→ |i2〉m3〈i3|y j,3 with m3 ∈M and y j,3 ∈ {y1, . . . , yk}, we can

continue this way and get 1≤ i1, . . . , is ≤ n, r1, . . . , rs ≤ r, m1, . . . , ms+1 ∈M and u1, . . . , us ∈
Dn(M) such that w = m1〈i1|u1|i1〉 . . . ms〈is|us|is〉ms+1 and

y j⇒GF m1〈i1|y j,1, y j,1⇒r1
GF u1yF

j,1, yF
j,1⇒GF |i1〉m2〈i2|y j,2, . . .

y j,s⇒rs
GF usyF

j,s, yF
j,s⇒GF |is〉ms+1yF

j .

By construction of GF there is a rule y j→m1〈i1|y j,1|i1〉 . . . 〈is|y j,s|is〉ms+1 in G′, and by induction
y j,1⇒∗G′ u1, . . . , y j,s⇒∗G′ us. The claim y j⇒∗G′ w follows. /

Using yF
1 ⇒GF 1, Claim 2 implies R1 ∩Dn(M)⊆ L′1. So L′1 = R1 ∩Dn(M), and L1 = hM(L′1) =

hM(R1 ∩Dn(M)). Finally, Dn(M) can be replaced by D2(M), since two bracket pairs b, d and p, q
can be used to code 〈i| by bpi and |i〉 by qid for i < n.

Example 6. Let a, b, c∈M and let G = 〈y≥ py(y, z), z≥ pz(y, z)〉 be the following grammar

y ≥ a + bzc, z ≥ yy,

which defines sets Ly, Lz ∈C M. Adding brackets around the three variable occurrences on the
right turns G into the grammar G′ = 〈y≥ p′y, z≥ p′z〉

y ≥ a + b〈1|z|1〉c, z ≥ 〈2|y|2〉〈3|y|3〉,
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defining L′y, L′z ∈C M[∆3]. It is clear that Ly = hM(L′y) and L′y ⊆D4(M). Now add follow- or
continuation-variables to the summands of p′y resp. p′z

y ≥ ayF + b〈1|z|1〉cyF , z ≥ 〈2|y|2〉〈3|y|3〉zF ;

now split the monomials of p′yyF and p′zz
F into right-linear factors mx with m∈M[∆3] and

x∈ {y, z, yF , zF} to build the right-linear grammar GF = 〈y≥ p′′y , z≥ p′′z , yF ≥ pF
y + 1, zF ≥ pF

z 〉
where p′′y resp. p′′z are the sums of the initial factors from p′yyF resp. p′zz

F , and pF
y resp. pF

z are the
sums of factors following an occurrence of y resp. z in p′yyF and p′zz

F :

y ≥ ayF + b〈1|z, z ≥ 〈2|y, yF ≥ |2〉〈3|y + |3〉zF + 1, zF ≥ |1〉cyF . (9)

We need yF ≥ 1, since y is the start symbol of G. Let Ry ∈RM[∆3] be the y-component of the
least solution of GF . Intuitively, L′y ⊆ Ry since yF collects what follows any occurrence of y. A
finite automaton accepting Ry is shown in Figure 2 (with initial node y and accepting node yF ). A
regular expression for Ry can be obtained by solving the inequation system in Kleene algebra (i.e.
replace x≥ Ax + B with constant A, B by x = A∗B) with respect to y. This leads via zF = |1〉cyF ,

yF = |2〉〈3|y + |3〉|1〉cyF + 1
= (|3〉|1〉c)∗(|2〉〈3|y + 1)
= (|3〉|1〉c)∗|2〉〈3|y + (|3〉|1〉c)∗

and z = 〈2|y to the least solution in y by

y = ayF + b〈1|〈2|y
= a(|3〉|1〉c)∗|2〉〈3|y + a(|3〉|1〉c)∗ + b〈1|〈2|y
= (b〈1|〈2|+ a(|3〉|1〉c)∗|2〉〈3|)y + a(|3〉|1〉c)∗
= (b〈1|〈2|+ a(|3〉|1〉c)∗|2〉〈3|)∗a(|3〉|1〉c)∗.

For example, Ry contains the description b〈1|〈2|a|2〉〈3|a|3〉|1〉c of a parse tree of baac∈ Ly.
Let us add a preview to the algebraic version of the theorem and its reverse. Those elements

of Ry that are not descriptions of parse trees of words in Ly contain (modulo commuting brackets
with elements of M) bracket mismatches or have initial closing brackets or final opening brack-
ets, like w = a|3〉|1〉c|2〉〈3|a∈ Ry. With the reserved pair 〈0|, |0〉 of brackets, we can go from
Ry to {〈0|}Ry{|0〉} and thereby turn the latter kind of elements into further ones with bracket
mismatches, like 〈0|w|0〉= 〈0|a|3〉|1〉c|2〉〈3|a|0〉. The modified automaton shown in Figure 3
therefore is a description of Ly: if we only extract sequences without bracket mismatches,
we obtain all parse trees of words in Ly. An algorithm to extract only bracket-mismatch-free
strings from a similar automaton is given by Hulden (2011) for a CFG-parser based on the
Chomsky-Schützenberger theorem. �

a
y

z

yF

zF

b〈1| 〈2| |1〉c

|2〉〈3|

|3〉

Figure 2. automaton for Ry ∈RM[∆3]
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zF

〈0|

b〈1| 〈2|

|0〉

|1〉c

|2〉〈3|

|3〉

Figure 3. automaton for Ly ∈C M ' ZC′4
(RM ⊗R C′4)
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A version without the assumption that M be finitely generated follows:

Corollary 16 (CST for monoids). Let M be a monoid M and D2 ∈C ∆∗2 the pure Dyck language
over ∆2. For any L∈C M there is some R∈R(M × ∆∗2) such that

L = {m | (m, d)∈ R, d ∈D2 }.
Moreover, for (m, d)∈ R the normal form nf2(d) in P′2 = Q∗2P∗2 ∪ {0} of d belongs to {0, 1}.

Proof. For each L∈C M there is a finitely generated submonoid N ⊆M with L∈C N, and by
Theorem 15 there is S ∈RN[∆2] such that L = hN(S ∩D2(N)). The homomorphism 〈hN , h∆∗2〉 :
N[∆2]→N × ∆∗2 lifts to a homomorphism h : RN[∆2]→R(N × ∆∗2)⊆R(M × ∆∗2). Then R :=
h(S)∈R(M × ∆∗2) and L = hN(S ∩D2(N)) = π1(R∩ (M ×D2)), where π1 : M × ∆∗2→M is the
first projection.

The normal form nf2 : (∆2 ∪ {0})∗→ P′2 = Q∗2P∗2 ∪ {0} maps those d ∈ ∆∗2 with d ∈D2 to 1∈
Q∗2P∗2 and those containing a bracket mismatch to 0. To obtain nf2(d)∈ {0, 1} for all (m, d)∈ R,
the idea is to wrap all strings of ∆∗2 with a third pair of brackets; this turns strings with normal
form 0 or 1 into strings with the same normal form and those with normal form in Q∗2P∗2 \ {1} into
strings with normal form 0, because of a mismatch with the new wrapping brackets; finally, the
three bracket pairs are coded by two.

To carry this out, suppose ∆2 = {〈0|, |0〉, 〈1|, |1〉}. The embedding of ∆2 in ∆∗2 given by
〈i| 7→ 〈0|〈1|i+1 and |i〉 7→ |1〉i+1|0〉 for i < 2 extends to a homomorphism ′ : ∆∗2→ ∆∗2, such that
d ∈D2 iff d′ ∈D2 for each d ∈ ∆∗2. Then (m, d) 7→ (m, d′) also is a homomorphism, which lifts
to a homomorphism from R(M × ∆∗2) to R(M × ∆∗2). From R∈R(M × ∆∗2) we therefore obtain
R′ := { (m, d′) | (m, d)∈ R } ∈R(M × ∆∗2), hence also

R̃ := {(1, 〈0|)} · R′ · {(1, |0〉)} ∈R(M × ∆
∗
2).

For d ∈ ∆∗2 we have d ∈D2 iff d′ ∈D2 iff 〈0|d′|0〉 ∈D2, so nf2(d) = 1 iff nf2(〈0|d′|0〉) = 1, and

L = {m | (m, d)∈ R, d ∈D2 }= {m | (m, d̃)∈ R̃, d̃ ∈D2 }.
Moreover, if nf2(d) = 0, then nf2(〈0|d′|0〉) = 0. Finally, if nf2(d)∈Q∗2P∗2 \ {1}, then nf2(d

′)
begins with |1〉i+1|0〉 or ends in |0〉〈1|i+1, for some i < 2, so that nf2(〈0|d′|0〉) = 0. Hence, with R̃
instead of R both claims in the statement of the corollary hold.

3.2 Algebraic Version of the CST for Monoids
In the algebraic formulation, the Chomsky-Schützenberger theorem relates the objects RM and
C M of the Kleisli subcategories of DR and DC . While in the classical formulation, each L∈C M
has a regular approximation R∈RM[∆2] such that L = hM(R∩D2(M)), one can now perfom both
the intersection with D2(M) and the removal of brackets by hM algebraically in RM ⊗R C′2, and
the relation between L and R becomes one of representing the same tensor.

Theorem 17 (Algebraic CST for monoids). For any monoid M and L∈C M, the elementwise
>1-image { {m} ⊗ 1 | m∈ L } ∈C (RM ⊗R C′2) of L has a least upper bound in RM ⊗R C′2,

∑{ {m} ⊗ 1 | m∈ L }.
In fact, there is an injective map ·̂ : C M→ ZC′2

(RM ⊗R C′2) given by

L 7→ L̂ :=∑{ {m} ⊗ 1 | m∈ L }.

Proof. By Corollary 16, for L∈C M there is S ∈R(M × ∆∗2) with L = {m | (m, d)∈ S, d ∈D2 },
and the normal form nf2(d) of each d ∈ ∆∗2 with (m, d)∈ S belongs to {0, 1} ⊂ P′2. There is an
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isomorphism R(M × ∆∗2)'RM ⊗R R∆∗2 which maps S ∈R(M × ∆∗2) to the congruence class of

RS = { ({m}, {d}) | (m, d)∈ S } ∈R(RM ×R∆
∗
2).

By definition, using {m} ⊗ {d} := [{({m}, {d})}], this congruence class is

[RS] = ∑{ {m} ⊗ {d} | (m, d)∈ S } ∈RM ⊗R R∆
∗
2,

where ∑ is the least upper bound in the tensor product. The canonical map ·/ρ2 : R∆∗2→C′2 =
R∆∗2/ρ2 is an R-morphism mapping those {d} with d ∈D2 to 1∈C′2 and those where d contains
a bracket mismatch to 0∈C′2. By the assumption on S, for all (m, d)∈ S either nf2(d) = 1, i.e.
d ∈D2, or nf2(d) = 0, i.e. d contains a bracket mismatch. Hence for all d with (m, d)∈ S ,

d ∈D2 ⇐⇒ {d}/ρ2 = 1, d /∈D2 ⇐⇒ {d}/ρ2 = 0.

The image of RS under the homomorphism h := Id× ·/ρ2 : RM ×R∆∗2→RM ×C′2 is

{ ({m}, {d}/ρ2) | (m, d)∈ S } ∈R(RM ×C′2),

and therefore, since {m} ⊗ 0 = 0,

∑{ {m} ⊗ 1 | m∈ L } = ∑{ {m} ⊗ {d}/ρ2 | (m, d)∈ S, d ∈D2 }
= ∑{ {m} ⊗ {d}/ρ2 | (m, d)∈ S }
= [{ ({m}, {d}/ρ2) | (m, d)∈ S }]∈RM ⊗R C′2.

Since each {m} ⊗ 1 and {m} ⊗ 0 commutes with each 1⊗ c for c∈C′2, we have

L̂ =∑{ {m} ⊗ 1 | m∈ L } ∈ ZC′2
(RM ⊗R C′2)

by the R-distributivity of RM ⊗R C′2.
To show that the map L 7→ L̂ is injective, we present two relatively commuting R-morphisms

f , g such that the induced R-morphism h f ,g maps L̂ back to a copy of L.

RM
>1 - RM ⊗R C′2 �

>2
C′2

˙̇
˙̇
˙̇
˙

@
@
@
f @
@
@R

˙̇
˙̇
?̇

h f ,g

	�
�
� g
�
�
�

PM ⊗P MatP∗2 ,P
∗
2
(B)

Let f be defined by f (A) = A⊗ I for A∈RM, where I ∈MatP∗2 ,P
∗
2
(B) is the unit matrix. By

g we interpret C′2 in MatP∗2 ,P
∗
2
(B), which is isomorphic to the P-dioid of binary relations over

P∗2 , the “stack part” of P′2 = (Q∗2P∗2 ∪ {0}, ·, 1). To define g, let γ : ∆∗2→MatP∗2 ,P
∗
2
(B) be the

homomorphism generated by the relations “push pi” and “pop pi” on the stack part P∗2 of P′2,

γ(pi) := { (u, v)∈ P∗2 × P∗2 | u · pi = v },
γ(qi) := { (u, v)∈ P∗2 × P∗2 | u · qi = v }

for i < 2. Clearly, γ extends to an R-morphism γ∗ : R∆∗2→MatP∗2 ,P
∗
2
(B) by

γ
∗(U) =∑{ γ(u) | u∈U }.

The semiring equations piq j = δi, j hold in MatP∗2 ,P
∗
2
(B) when 0 and 1 are interpreted by the matri-

ces 0 and I, and pi and q j by γ∗({pi}) and γ∗({q j}), for i < 2. Therefore, γ∗ is constant on
ρ2-congruence classes, and hence

g(U/ρ2) = {1} ⊗ γ
∗(U), for U ∈R∆

∗
2,
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defines an R-morphism g : C′2→PM ⊗P MatP∗2 ,P
∗
2
(B). Obviously, f and g are relatively com-

muting.
By the choice of S for L∈C M we have L = {m | (m, d)∈ S, d ∈D2 } and

{d}/ρ2 =

{
1 d ∈ π2(S)∩D2,

0 d ∈ π2(S) \D2.

So g({d}/ρ2) is the unit matrix for d ∈ π2(S)∩D2 and the zero matrix for d ∈ π2(S) \D2. As h f ,g
is an R-morphism and { {m} ⊗ {d}/ρ2 | (m, d)∈ S } ∈R(RM ⊗R C′2), we obtain

h f ,g(L̂) = h f ,g(∑{ {m} ⊗ 1 | m∈ L })
= h f ,g(∑{ {m} ⊗ {d}/ρ2 | (m, d)∈ S })
= ∑{ h f ,g({m} ⊗ {d}/ρ2) | (m, d)∈ S }
= ∑{ f ({m}) · g({d}/ρ2) | (m, d)∈ S }
= ∑{ {m} ⊗ I | m∈ L }
= L⊗ I,

using the C -continuity of the embedding >′1 : PM→PM ⊗P MatP′2,P
′
2
(B) in the final step.

Since >′1 is injective, h f ,g is essentially an inverse to L 7→ L̂.f.

4. The Reverse CST for Monoids and its Algebraic Version
The “reverse” Chomsky-Schützenberger theorem, i.e. that for finite X ,

{ hX∗(R∩D2(X)) | R∈R(X∗[∆2]) } ⊆C X∗,

involves showing that R∩D2(X)∈C (X∗[∆2]), which is usually done by coupling a finite-state
acceptor with a push-down automaton. This construction does not work for an arbitrary finitely
generated monoid M, since there is no standard presentation of elements of M as a sequence
of elements from a finite generating subset; we therefore give a grammatical proof of hM(R∩
D2(M))∈C M below. A version of a reverse CST for arbitrary monoids follows.

4.1 The Reverse CST for Monoids
If M is a finitely generated monoid, M belongs to C M and D2(M) to C (M[∆2]). So we can
formulate the reverse CST for such M as direct generalization from the classical case.

Theorem 18 (Reverse CST for finitely generated monoids). For any finitely generated monoid M,

{ hM(R∩D2(M)) | R∈R(M[∆2]) } ⊆C M.

Proof. Since the erasing homomorphism hM : M[∆2]→M lifts to hM : C (M[∆2])→C M, it is
sufficient to show

{ R∩D2(M) | R∈R(M[∆2]) } ⊆C (M[∆2]). (10)

Suppose R∈R(M[∆2]). Then R is a component of the least solution ~R of a system

y1 ≥ p1(y1, . . . , yn), . . . , yn ≥ pn(y1, . . . , yn)

with right-linear polynomials p1, . . . , pn ∈F (M[∆2])[y1, . . . , yn]. By means of additional vari-
ables and inequations, we can assume that all parameters from F (M[∆2]) are singletons or the

fIt can be shown that PM ⊗P MatP∗2 ,P
∗
2
(B)'MatP∗2 ,P

∗
2
(PM), so L⊗ I is the diagonal matrix LI ∈MatP∗2 ,P

∗
2
(PM).
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empty set, so that the system can be written as

y1 ≥ w1,1y1 + . . .+ w1,nyn + w1,

... (11)
yn ≥ wn,1y1 + . . .+ wn,nyn + wn,

where the parameters wi, j, wi are from M[∆2], standing for the singletons {wi, j} resp. {wi}, or are
0 and stand for /0. As any w∈M[∆2] is an interleaving sequence of products of generators of M
and elements of ∆2, we can further assume that wi, j ∈ X ∪ ∆2 ∪ {0} and wi ∈ {0, 1}, where X is
the finite set of generators of M. Then ~R can be obtained by first taking the least solution of (11)
in R(X∗[∆2]) and then interpreting sequences m1 · · ·mk ∈ X∗ by the product m1 ·M · · · ·M mk ∈M
of their members. Let D2(M)∈C (M[∆2]) be the likewise interpretation of the Dyck language
D2(X)∈C (X∗[∆2]). To show R∩D2(M)∈C (M[∆2]), we construct a context-free grammar G,
the least solution of which assigns R∩D2(M) to its main variable S. The variables Y of G are
S and all [y, D, z], [y, d, z] and [y, D, 1] with y, z∈ {y1, . . . , yn}, d ∈ ∆2 and auxiliary symbol D.
Its inequations Y ≥ α1 + . . .+ αk are obtained by combining all inequations Y ≥ α1, . . . ,Y ≥ αk
with the same left hand side Y from the following table:

context-free G for R∩D2(X) definition (11) of R contains

S ≥ [y, D, z] y as main variable

[y, D, z] ≥ m y≥mz with m∈ X

[y, d, z] ≥ d y≥ dz with d ∈ ∆2

[y, D, 1] ≥ 1 y≥ 1

[y, D, y] ≥ 1

[y, D, z] ≥ [y, D, y′][y′, D, z]

[y, D, z] ≥ [y, pi, y′][y′, D, z′][z′, qi, z] (i < 2)

Claim 1. For all y∈ {y1, . . . , yn} and z∈ {y1, . . . , yn} ∪ {1},

[y, D, z]⇒∗G w and w∈M[∆2] iff y⇒∗R wz and w∈D2(X).

Proof of Claim 1.⇒: This is easily shown by induction on k in [y, D, z]⇒k
G w.

⇐: Suppose y⇒k
R wz and w∈D2(X). There is a sequence

yi0 ≥w1yi1 , yi1 ≥w2yi2 , . . . , yik−1 ≥wkyik

such that y = yi0 , w = w1 · · ·wk ∈D2(X) and yik = z. We show by induction on k that

[yi0 , D, yik ]⇒∗G w1 · · ·wk.

If k = 0, then w = 1, and [yi0 , D, yi0 ]⇒G 1. If k = 1, then yi0 ≥wyi1 and w∈ X ∪ ∆2. From
w∈D2(X) we get w∈ X , hence [yi0 , D, yi1 ]⇒G w.

Suppose k > 1. By the construction of D2(X), there either is j < k with u := w1 · · ·w j, v :=
w j+1 · · ·wk ∈D2(X) and w = uv, or w = p0uq0 or w = p1uq1 with u := w2 · · ·wk−1 ∈D2(X).

In the first case, we have yi0 ⇒∗R uyi j and yi j ⇒∗R vyik in less than k steps, hence [yi0 , D, yi j ]⇒∗G u
and [yi j , D, yik ]⇒∗G v by induction, hence

[yi0 , D, yik ]⇒G [yi0 , D, yi j ][yi j , D, yik ]⇒∗G uv = w.
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In the second case, we have yi1 ⇒∗R uyik−1 in less than k steps, hence [yi1 , D, yik−1 ]⇒∗G u by
induction, hence for j ∈ {0, 1},

[yi0 , D, yik ]⇒G [yi0 , p j, yi1 ][yi1 , D, yik−1 ][yik−1 , q j, yik ]

⇒2
G p j[yi1 , D, yik−1 ]q j⇒∗G p juq j = w. /

It follows that G defines R∩D2(X): If w∈ L(G), then S⇒∗G w∈M[∆2], so by the claim, w∈
R∩D2(X). Conversely, if y⇒∗R wz and y is the main variable of (11), then S⇒G [y, D, z]⇒∗G w,
so w∈ L(G).

As with the CST, a version of the reverse CST for arbitrary monoids follows:

Corollary 19 (Reverse CST for monoids). For any monoid M and R∈R(M × ∆∗2),

{m | (m, d)∈ R, d ∈D2 } ∈C M.

Proof. If R∈R(M × ∆∗2), there is a finitely generated submonoid N ⊆M with R∈R(N × ∆∗2).
The homomorphism 〈hN , h∆∗2〉 : N[∆2]→N × ∆∗2 is surjective and lifts to a surjective homomor-
phism h : RN[∆2]→R(N × ∆∗2), by Theorem 1. So there is S ∈RN[∆2] with R = h(S). For
any (m, d)∈ R there is w∈ S with (m, d) = 〈hN , h∆∗2〉(w) = (hN(w), h∆∗2(w)). Then d ∈D2 iff
w∈D2(N) iff w∈ S ∩D2(N) iff m∈ hN(S ∩D2(N)). Hence

{m | (m, d)∈ R, d ∈D2 }= hN(S ∩D2(N))∈C N ⊆C M,

using Theorem 18.

Using the first projection π1 : M × ∆∗2→M, Corollaries 16 and 19 combine to:

C M = { π1(R∩ (M ×D2)) | R∈R(M × ∆
∗
2) }, for any monoid M.

We can simplify this further by going from strings in ∆∗2 to their normal forms in the polycyclic
monoid P′2 ' (Q∗2P∗2 ∪ {0}, ·, 1) where u · v = nf2(uv) for u, v∈Q∗2P∗2 ∪ {0}: g

Proposition 20. For any monoid M,

C M = { {m | (m, 1)∈ R } | R∈R(M × P′2) }.

Proof. Let η : ∆∗2→ (∆2 ∪ {0})∗ be the inclusion homomorphism. Clearly nf2 : (∆2 ∪ {0})∗→ P′2
is a homomorphism, and surjective since 0 = nf2(p0q1). Therefore, the lifting of IdM × (nf2 ◦ η) :
M × ∆∗2→M × P′2 to the set level is a surjective homomorphism

h : R(M × ∆
∗
2)→R(M × P′2).

For d ∈ ∆∗2, nf2(d) = 1 iff d ∈D2. So if S ∈R(M × ∆∗2) and R∈R(M × P′2) with R = h(S), then

{m | (m, 1)∈ R }= {m | (m, d)∈ S, d ∈D2 }= π1(S ∩ (M ×D2)).

Since h is surjective, the claim follows from the above combination of Corollaries 16 and 19.

Intuitively, since each w∈ P′2 defines a binary transition relation { (u, v) | u ·w = v } ⊆ P′2 × P′2,
each (m, w)∈M × P′2 gives a transition m

=⇒w on P′2 with output in M, via
m

=⇒w := { (u, m, v) | u ·w = v } ⊆ P′2 ×M × P′2.

gThe following proposition and properties of P′2 and RP′2 have been developed independently of the work of Render and
Kambites (2009), who mention that the subsets of X∗ accepted by P′2-valence automata over a finite set X coincide with C X∗.
This seems closely related to Proposition 20.
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If (m, w) = (m, nf2(d)) or (m, w) = (hM(α), nf2(h∆∗2(α))), the same relation is obtained from
(m, d)∈M × ∆∗2 or α ∈M[∆2]. From R∈R(M × P′2) an S ∈R(M × ∆∗2) with R = h(S) as in the
proof above can be obtained by induction on the construction of R, using S = R for R of size 0 or 1,
except S = /0 for R = {(m, 0)}. Similarly, when M is finitely generated we can obtain S ∈RM[∆2]
with {m | (m, 1)∈ R }= hM(S ∩D2(M)) by induction on the construction of R, using S = {mw}
for R = {(m, w)} in the singleton case, except again S = /0 for R = {(m, 0)}.

Since, by Corollary 13, RM ⊗R C′2 is a quotient of R(M × P′2), the above proposition can be
used below to show ZC′2

(RM ⊗R C′2)
⊂∼ C M.

4.2 Algebraic Version of the Reverse CST for Monoids
To prove an algebraic form of the reverse CST for monoids, i.e. that ZC′2

(RM ⊗R C′2) embeds
into C M, we need to know which elements of RM ⊗R C′2 belong to the centralizer of C′2. For this
it is convenient to represent C′2 by C′2 =RP′2/ν as in Proposition 9 and to first characterize the
elements of C′2 that commute with all generators of C′2 in C′2, i.e.

Z∆2(C
′
2) := { X/ν ∈RP′2/ν | {δ}/ν · X/ν = X/ν · {δ}/ν for each δ ∈ ∆2 }.

Let I be the set of idempotent elements of P′2, i.e. the set of those w∈ P′2 such that ww = w.

Proposition 21. The set of idempotent elements of P′2 is

{~q~p | ~q∈Q∗2, ~p∈ P∗2 , ~p~q = 1 } ∪ {0}.

Proof. Let I′ := {~q~p | ~q∈Q∗2, ~p∈ P∗2 , ~p~q = 1 } ∪ {0}. Clearly, 0∈ I. Suppose ~q = qi1 · · · qik ∈
Q∗2, ~p = p jm · · · p j1 ∈ P∗2 and~q~p∈ I′. Then ~p~q = 1, so~q~p ·~q~p =~q(~p~q)~p =~q~p, so~q~p∈ I.

Suppose w∈ P′2 = Q∗2P∗2 ∪ {0} is idempotent. As 0∈ I′, we may assume that w =~q~p with ~q =
qi1 · · · qik ∈Q∗2 and ~p = p jm · · · p j1 ∈ P∗2 for some k, m≥ 0. Suppose k > m. Since ww = w 6= 0,
we have p j1qi1 = 1, . . . , p jmqim = 1 and

~q~p~q~p =~qp jm · · · p j1qi1 · · · qik~p =~qqim+1 · · · qik~p =~q~p,

which is impossible. So k≤m, and by symmetry, k = m. It follows that ~p~q = 1, hence~q~p∈ I′.

Proposition 22. If R⊆ P′2 satisfies {δ}R \ {0}= R{δ} \ {0}, for all δ ∈ ∆2, then R⊆ I. If
additionally R 6⊆ {0, 1}, then I0 ⊆ R or I1 ⊆ R, where

I j := {~qq j p j~p | ~q∈Q∗2, ~p∈ P∗2 , ~p~q = 1 } ∪ {1} for j ∈ {0, 1}.

Proof. Clearly, if R⊆ {0, 1}, then R⊆ I. So suppose w∈ R \ {0, 1}. By symmetry, we may
assume w∈Q+

2 P∗2 , say w = q0~q~p′ for some~q∈Q∗2 and ~p′ ∈ P∗2 . Then

0 6=~q~p′ = p0q0~q~p′ ∈ p0R \ {0} ⊆ Rp0 \ {0},
so there is w′ ∈ R such that ~q~p′ = w′p0. It follows that ~p′ = ~pp0 for some ~p∈ P∗2 , so w = q0~q~pp0.
By induction on the length of w′ =~q~p∈ R \ {0}, it follows that ~p is the inverse of~q, so w′ ∈ I and
w∈ I. Hence R⊆ I. We have also seen that when q0wp0 ∈ R, then w∈ R; in particular, if R 6⊆ {0},
then 1∈ R.

Finally, suppose w∈ R \ {0, 1}. By the above argument, we may assume w = q j p j with j ∈
{0, 1}. For each i∈ {0, 1}, qiw∈ qiR \ {0} ⊆ Rqi \ {0}, hence there is w′ ∈ R with qiw = w′qi,
and since w∈Q+

2 P+
2 , we must have w′ = qiwpi. By induction, it follows that {~qw~p | ~q∈Q∗2, ~p∈

P∗2 , ~p~q = 1 } ⊆ R, so I j ⊆ R.

We next want to see that the infinite sets R with I j ⊆ R⊆ I = I0 ∪ I1 ∪ {0} of Proposition 22 are
not regular, i.e. do not belong to RP′2. In order to show, say, I /∈RP′2, we want to apply a pumping
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lemma, representing I as the homomorphic image S/ρ2 of some regular set S of the free monoid
(∆2 ∪ {0})∗ by the monoid congruence

ρ2 = 〈{ piq j = δi, j | i, j < 2 } ∪ { x0 = 0 = 0x | x∈ ∆2 ∪ {0} }〉.
But if w = uv∈ S is a “long” word with a splitting w = xyzv with xykzv∈ S for all k≥ 0, the images
nf2(xykzv) of the “pumped strings” xykzv need not be outside of I: for example, if w = u.v =
qpqbdq.pp with nf2(w) = qqpp∈ I and u = x.y.z = qp.qb.dq, then for all k 6= 1, nf2(xykzv) = 0∈
I, since from pd = 0 = bq we get nf2(xz) = nf2(qpdq) = 0 and nf2(y

2) = nf2(qbqb) = 0. So a little
care is needed to transfer the pumping of S to a pumping of nf2(S) = S/ρ2.

Proposition 23. If R∈RP′2 and R⊆ I, then R is finite.

Proof. Let ∆ = ∆2 ∪ {0}. The polycyclic monoid P′2 is the quotient of the free monoid ∆∗ by the
monoid congruence ρ2 above. Since ·/ρ2 : ∆∗→ P′2 is a surjective homomorphism, every R∈RP′2
is the image under ·/ρ2 of some S ∈R∆∗, i.e. R = nf2(S) = { nf2(w) | w∈ S }.

We first show that we may assume R⊆ S. Let

A = (A, 〈 x−→ | x∈ ∆∪ {1}〉, IA , FA )

be a finite automaton over ∆ that recognizes S, with transition relations x−→ ⊆ A× A for x∈ ∆

and identity relation 1−→ ⊆ A× A, and sets IA ⊆ A of initial and FA ⊆ A of final states. Let

A ′ = (A, 〈 x−→ ′ | x∈ ∆∪ {1}〉, IA , FA )

be the automaton obtained from A by “path-compression”, i.e. the relations x−→ ′ ⊇ x−→ are
obtained as follows: for edges s

pi−→ t
qi−→ u, i < 2, add an edge s 1−→ u, for edges s x−→ t 1−→ u or

s 1−→ t x−→ u, add an edge s x−→ u. Likewise, for edges s
pi−→ t

q1−i−→ u, i < 2, add an edge s 0−→ u,
and for edges s x−→ t 0−→ u or s 0−→ t x−→ u add s 0−→ u. Let S′ ∈R∆∗ be the set recognized by
A ′. As each accepting path of A ′ is the compression of an accepting path of A , we have S⊆ S′,
and as their labellings have the same normal form, nf2(S

′) = nf2(S) = R. Since for each ~q~p∈ R
there is some w∈ S with nf2(w) =~q~p, there is an accepting path in A ′ labelled by ~q~p, likewise
for 0∈ R, so R⊆ S′. Henceforth, we assume S = S′ and A =A ′.

We can now show that R cannot be infinite, by applying the pumping lemma. Let m be the
number of states of an automaton A recognizing a set S ∈R∆∗ with nf2(S) = R⊆ S. Suppose
R⊆ I is infinite. Then there is ~q~p∈ R⊆ S with |~q|> m, ~q∈Q∗2, ~p∈ P∗2 and ~p~q = 1. Since A
has an accepting path labelled ~q~p and m > |~q|, by the pumping lemma for S there is a splitting
~q = xyz with x, y, z∈Q∗2 with 0 < |y| ≤m such that xykz~p∈ S for all k≥ 0. But since xz∈Q∗2,
~p∈ P∗2 and xz~p∈ S, we have nf2(xz~p) = xz~p (and 6= 0), which is impossible since |xz|< |~q|= |~p|
and nf2(S) = R⊆ I. It follows that R cannot be infinite.

When using C′2 'RP′2/ν according to Proposition 9, we write 0′ and 1′ for the neutral elements
of + and · in C′2, respectively, to distinguish them from the elements 0 and 1 of P′2. The following
lemmata characterize the elements of the centralizer of C′2 in C′2 and in RM ⊗R C′2, respectively:

Lemma 24. ZC′2
(C′2) = {0′, 1′}= Z∆2(C

′
2).

Proof. {0′, 1′} ⊆ ZC′2
(C′2)⊆ ZP′2

(C′2)⊆ Z∆2(C
′
2): Clearly, 0′ = /0/ν = {0}/ν and 1′ = {1}/ν =

{0, 1}/ν commute with R/ν for every R∈RP′2. The other two inclusions follow from the
representations of w∈ P′2 and δ ∈ ∆2 in C′2 by {w}/ν and {δ}/ν .

Z∆2(C
′
2)⊆ {0′, 1′}: Suppose R∈RP′2 and R/ν commutes with {δ}/ν for every δ ∈ ∆2. Then,

by Proposition 9, {δ}R \ {0}= R{δ} \ {0} for every δ ∈ ∆2, so R⊆ I by Proposition 22, then



27

R is finite by Proposition 23, and so by Proposition 22 again, R⊆ {0, 1}. It follows that R/ν =
/0/ν = {0}/ν = 0′ or R/ν = {1}/ν = {0, 1}/ν = 1′, hence Z∆2(C

′
2)⊆ {0′, 1′}.

Lemma 25. ZC′2
(RM ⊗R C′2) = { [R] | R∈R(RM ×C′2), R⊆RM × {0′, 1′} }.

Proof. ⊇: For each c∈C′2, cb = bc for b∈ {0′, 1′}, so by R-distributivity,

({1} ⊗ c)[R] = ({1} ⊗ c)∑{ A⊗ b | (A, b)∈ R }
= (∑{ A⊗ b | (A, b)∈ R })({1} ⊗ c) = [R]({1} ⊗ c).

⊆: Every element of RM ⊗R C′2 is of the form [Rν ] with R∈R(RM ×RP′2) and Rν =
{ (A, B/ν) | (A, B)∈ R }. The isomorphism

RM ⊗R C′2 'R(M × P′2)/ν̃

of Corollary 13 maps [Rν ] to (SR)/ν̃ , where SR =
⋃{ A× B | (A, B)∈ R }. Suppose [Rν ]∈

ZC′2
(RM ⊗R C′2). Then for every w∈ P′2 \ {0}, [Rν ] commutes with [Tν ] for T = {({1}, {w})},

so the image (SR)/ν̃ of [Rν ] commutes with the image (ST )/ν̃ = {(1, w)}/ν̃ of [Tν ]. Therefore,
(SR)/ν̃ ∈ ZP′2

(R(M × P′2)/ν̃). In particular, (SR)/ν̃ ∈ Z∆2(R(M × P′2)/ν̃), which is equivalent to

{(1, δ )}SR \ (M × {0}) = SR{(1, δ )} \ (M × {0}), for all δ ∈ ∆2.

Let X ∈RP′2 be the second projection of SR ∈R(M × P′2). Then

{δ}X \ {0}= X{δ} \ {0}, for all δ ∈ ∆2,

i.e. X/ν ∈ Z∆2(C
′
2), and by the proof of Lemma 24, X ⊆ {0, 1}, hence SR ⊆M × {0, 1}. So for

(A, B)∈ R, B⊆ {0, 1}, which implies Rν ⊆RM × {0′, 1′}.
We can now prove the algebraic form of the reverse CST for monoids:

Theorem 26 (Algebraic reverse CST for monoids). For any monoid M and R∈R(RM ×C′2),⋃
{ A | (A, 1′)∈ R } ∈C M.

In fact, there is an injective, monotone map ∨ : ZC′2
(RM ⊗R C′2)→C M defined by

[R] 7→ [R]∨ :=
⋃
{ A | (A, 1′)∈ R } for R∈R(RM ×C′2).

Proof. We switch the notation and use [Rν ] for the [R] of the statement above, where

Rν = { (A, B/ν) | (A, B)∈ R } ∈R(RM ×C′2)

for some R∈R(RM ×RP′2). For these R, put

LR :=
⋃
{ A | (A, B)∈ R, 1∈ B }.

By Lemma 25, if [Rν ]∈ ZC′2
(RM ⊗R C′2), then Rν ⊆RM × {0′, 1′} and R⊆RM ×P{0, 1}.

Claim 1. The map ·∨ : ZC′2
(RM ⊗R C′2)→PM, given by

[Rν ]
∨ =

⋃
{ A | (A, 1′)∈ Rν }

for R∈R(RM ×RP′2), is well-defined and has values in C M.

Proof of Claim 1. Clearly,
⋃{ A | (A, 1′)∈ Rν }= LR. Suppose there is T ∈R(RM ×RP′2) with

[Rν ] = [Tν ]. By the isomorphism [Rν ] 7→ (SR)/ν̃ of Corollary 13, (SR)/ν̃ = (ST )/ν̃ , hence

SR \ (M × {0}) = ST \ (M × {0}).
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Therefore, using the fact that SR, TR ⊆M × {0, 1},
LR =

⋃
{ A | (A, B)∈ R, 1∈ B }

= {m | (A, B)∈ R, (m, 1)∈ A× B }
= {m | (m, 1)∈ SR }
= {m | (m, w)∈ SR \ (M × {0}), w∈ P′2 }
= {m | (m, w)∈ ST \ (M × {0}), w∈ P′2 }
= LT .

It follows that
⋃{ A | (A, 1′)∈ Rν }= LR = LT =

⋃{ A | (A, 1′)∈ Tν }, and ·∨ is well defined.
Since LR = {m | (m, 1)∈ SR } for SR ∈R(M × P′2), we have LR ∈C M by Proposition 20. /

Claim 2. The map ·∨ : ZC′2
(RM ⊗R C′2)→C M is injective.

Proof of Claim 2. We show that the map ·̂ : C M→ ZC′2
(RM ⊗R C′2) of Theorem 17 is an inverse

to ·∨. It maps [Rν ]
∨ = LR ∈C M back to [Rν ], because

[̂Rν ]∨ = L̂R =∑{ {m} ⊗ 1′ | m∈ LR }
= ∑{ A⊗ 1′ | (A, B)∈ R, 1∈ B }
= ∑{ A⊗ 1′ | (A, 1′)∈ Rν }
= [Rν ]

since Rν ⊆R(RM × {0′, 1′}) and A⊗ 0′ = 0. /

Claim 3. The map ·∨ : ZC′2
(RM ⊗R C′2)→C M is monotone.

Proof of Claim 3. Suppose R, S ∈R(RM ×RP′2) such that [Rν ], [Sν ]∈ ZC′2
(RM ⊗R C′2) and

[Rν ]≤ [Sν ]. By the definition of ≤ on RM ⊗R C′2, [Rν ∪ Sν ] = [Sν ], hence with Claim 1,

[Rν ]
∨ ⊆

⋃
{ A | (A, 1′)∈ Rν ∪ Sν }=

⋃
{ A | (A, 1′)∈ Sν }= [Sν ]

∨,

so ·∨ is monotone. /

5. Algebraic Representation of the C -Closure C M of RM
We can now prove our first main result, which combines the algebraic Chomsky-Schützenberger
theorem for monoids M and its reverse, Theorems 17 and 26, to an algebraic representation of the
µ-continuous Chomsky algebra C M in the ∗-continuous Kleene algebra RM ⊗R C′2:

Theorem 27. For any monoid M, ZC′2
(RM ⊗R C′2) is a C -dioid, and the maps

·̂ : C M � ZC′2
(RM ⊗R C′2) : ·∨

form a C -isomorphism, where for L∈C M and R∈R(RM ×C′2) with [R]∈ ZC′2
(RM ⊗R C′2),

L̂ :=∑{ {m} ⊗ 1′ | m∈ L } and [R]∨ :=
⋃
{ A | (A, 1′)∈ R }.

Proof. We use D := ZC′2
(RM ⊗R C′2) to simplify the notation.

Claim 1. The maps ·∨ : D→C M and ·̂ : C M→D are inverse to each other.
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Proof of Claim 1. In the proof of Theorem 17 we already showed that ·̂ is an inverse of ·∨. For
L∈C M there is R∈R(RM ×RP′2) with Rν ⊆RM × {0′, 1′} and L̂ = [Rν ], hence

(L̂)∨ = (∑{ {m} ⊗ 1′ | m∈ L })∨ = [Rν ]
∨ =

⋃
{ A | (A, 1′)∈ Rν }= LR.

By applying ·̂ , we get L̂ = L̂R, and since ·̂ is injective by Theorem 17, (L̂)∨ = LR = L. /
It remains to be shown that the bijection between C M and D given by the maps ·̂ and ·∨ is a

C -isomorphism.

Claim 2. The maps ·̂ : C M � D : · ∨ are monotone homomorphisms.

Proof of Claim 2. Obviously, ·̂ is monotone; the monotonicity of ·∨ is noted in Theorem 17.
1. The map ·∨ : D→C M is a homomorphism: first,

1∨ = ({1} ⊗ 1′)∨ = [{({1}, 1′)}]∨ = {1},
and, second, for [R], [S]∈D represented by R, S ∈R(RM ×C′2) with R, S⊆RM × {0′, 1′} ,

([R] · [S])∨ = [RS]∨

=
⋃
{C | (C, 1′)∈ RS }

=
⋃
{ AB | (A, 1′)∈ R, (B, 1′)∈ S }

=
⋃
{ A | (A, 1′)∈ R } ·

⋃
{ B | (B, 1′)∈ S }

= [R]∨ · [S]∨,
because (C, 1′) = (A, a)(B, b) iff AB =C and a = 1′ = b, since a, b∈ {0′, 1′}.

2. The map ·̂ : C M→D is a homomorphism: clearly {̂1}= {1} ⊗ 1′ = 1, and for L1, L2 ∈
C M, since ·∨ is a homomorphism and inverse to ·̂ by Claim 1, we have

(L̂1 · L̂2)
∨ = (L̂1)

∨ · (L̂2)
∨ = L1 · L2 = L̂1 · L2

∨
;

by the injectivity of ·∨, we get L̂1 · L̂2 = L̂1 · L2. /

Claim 3. D is a C -dioid.

Proof of Claim 3. By Theorem 17, for L∈C M, L̂ = ∑{ {m} ⊗ 1′ | m∈ L } is the least upper
bound of the image f̃ (L) of L under the homomorphism f : M→D given by f (m) = {m} ⊗ 1′.
By the previous claims, ·̂ : C M→D is a surjective homomorphism. By Proposition 14, D is an
R-dioid, hence a dioid, and so by Lemma 3, D is a C -dioid. /

Claim 4. ·̂ : C M→D and ·∨ : D→C M are C -morphisms.

Proof of Claim 4. Since ·̂ is a homomorphism, so is C ( ·̂ ) : C C M→C D. Hence for U ∈C C M,
{ L̂ | L∈U } ∈C D, and by the proof of Lemma 3, its least upper bound is ∑{ L̂ | L∈U }= ⋃̂

U .
Since ·̂ is a monotone homomorphism, this shows that ·̂ is a C -morphism.

For ·∨, for each V ∈C D there is U ∈C C M such that V = { L̂ | L∈U } and ∑ V =
⋃̂

U .
Hence, since ·̂ : C M � D : ·∨ is a bijection, (L̂)∨ = L for each L∈C M. With

⋃
U ∈C M, it

follows that

(∑V )∨ = (
⋃̂

U)∨ =
⋃

U =
⋃
{ L̂∨ | L∈U }=

⋃
{ v∨ | v∈V }.

As ·∨ is a monotone homomorphism, this shows that it is a C -morphism. /
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Before considering an algebraic representation of the fixed-point closure of an arbitrary R-
dioid K, we remark that the case K =RM treated so far is sufficient to provide a semantics to
regular-expression tools for context-free languages, like the one proposed by Hopkins (2007).

The results proven for n = 2 hold as well for n > 2, which is convenient to treat 〈0|, |0〉 as a
fresh, unused pair of brackets. If X is a finite set disjoint from ∆n, all regular expressions over
X ∪ ∆n have an interpretation in RX∗ ⊗R C′n. Using the tensor product embeddings, atoms x∈ X
are interpreted by {x} ⊗ 1 and atoms δ ∈ ∆n by {1} ⊗ {δ}/ρn, as in Example 5. A subset of
the regular expressions over X ∪ ∆n that are sufficient to name all context-free sets of C X∗ '
ZC′n(RX∗ ⊗R C′n) is easily selected as follows.

Corollary 28. For n > 2, an element e∈RX∗ ⊗R C′n belongs to ZC′n(RX∗ ⊗R C′n) iff e is the
value of a regular expression 〈0|r|0〉 over X ∪ ∆n where 〈0| and |0〉 do not occur in r.

Proof. ⇒: Suppose e∈ ZC′n(RX∗ ⊗R C′n). By Theorem 27, there is L∈C X∗ with L = e∨. Let

y1 ≥ p1, . . . , yk ≥ pk

be a context-free grammar for L, i.e. L is the first component L1 of its least solution L1, . . . , Lk ∈
C X∗. Construct the right-linear grammar

y1 ≥ p′′1 , . . . , pk ≥ p′′k , yF
1 ≥ pF

1 + 1, yF
2 ≥ pF

2 , . . . , yF
k ≥ pF

k

as in the proof of Theorem 15. We can assume that 〈1|, . . . , 〈n|, |1〉, . . . , |n〉 are sufficient to wrap
each occurrence of a variable y1, . . . , yk in p1, . . . , pk by a different bracket pair 〈i|, |i〉, otherwise
use the two pairs 〈1|, |1〉 and 〈2|, |2〉 to encode new bracket pairs. Let r be the regular expression
over X ∪ ∆n for the least solution in y1 of the right-linear grammar; r does not contain 〈0| and
|0〉. The corresponding regular set R∈R(X∗[∆n]) satisfies L = hX∗(R∩Dn(X)), and the value of
〈0|r|0〉 in RX∗ ⊗R C′2 is e = L̂∈ ZC′n(RX∗ ⊗R C′n). We can see 〈0|r|0〉 as the solution term for ŷ
of the right-linear grammar

ŷ≥ 〈0|y1, y1 ≥ p′′1 , . . . , y′′k ≥ p′′k , yF
1 ≥ pF

1 + |0〉, yF
2 ≥ pF

2 , . . . , yF
k ≥ pF

k .

(Cf. the automata in Example 6.)
⇐: Let r be a regular expression over X ∪ ∆n not containing 〈0|, |0〉. By Corollary 13,

RM ⊗R C′2 'RX∗ ⊗R(RP′n/ν)'R(X∗ × P′n)/ν̃ ,

where ν̃ is the R-congruence generated by {(1, 0)}= /0. So the value of r in RM ⊗R C′2 can
be represented by T/ν̃ with T ∈R(X∗ × P′n). By the choice of r, for no (m, w)∈ T do 〈0| or
|0〉 occur in its second component w∈ P′n = Q∗nP∗n ∪ {0}. So the value of 〈0|r|0〉 is S/ν̃ for S =
{(1, 〈0|)}T{(1, |0〉)}, and S⊆ X∗ × {0, 1} due to bracket mismatches in the second components.
The isomorphisms of Theorem 12 and Proposition 9 map S/ν̃ to some [R]∈RM ⊗R C′2 with
R⊆RX∗ × {0′, 1′}. By Lemma 25, the value [R] of 〈0|r|0〉 belongs to the centralizer of C′n.

Notice that regular combinations of expressions of the above form 〈0|r|0〉 are no longer of this
form, but of course also denote sets in C X∗.

There is another way to find, for L∈C X∗, a regular expression r such that 〈0|r|0〉 evaluates
to L̂ in RM ⊗R C′n, which is perhaps more appealing than the one in the proof above: a non-
deterministic bottom-up, top-down or Earley parser (cf. Sikkel (1998)) for a context-free grammar
G = (X ,Y, P, S) for L is an iterative program, i.e. a regular expression r over an alphabet of basic
commands. Suppose that ∆n contains, besides 〈0| and |0〉, an opening bracket 〈z| and a closing
bracket |z〉 for each z∈ X ∪Y . The bottom-up parser, for example, can then be expressed by

r = (∑{ shiftx | x∈ X }+∑{ reduce(A,α) | (A, α)∈ P })∗

with shiftx = x〈x| and reduce(A,α) = |α〉〈A|, where |z1 . . . zk〉= |zk〉 . . . |z1〉 for zi ∈ X ∪Y . Then
L̂ = ∑{ {m} ⊗ 1 | m∈ L }= 〈0|r|S〉|0〉. If G is the grammar of Example 6, the word baac is
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accepted by the shift-reduce sequence

shiftb; shifta; reduce(y,a); shifta; reduce(y,a); reduce(z,yy); shiftc; reduce(y,bzc);

its value in RX∗ ⊗R C′n is {baac} ⊗ {〈y|}, and since y was the start symbol S, {baac} ⊗ 1≤
〈0|r|S〉|0〉= L̂. This indicates that RX∗ ⊗R C′2 may be useful to study parsing algebraically.

6. Algebraic Representation of the C -Closure of an Arbitrary R-Dioid K
We can now generalize Theorem 27, the algebraic representation of the C -closure of R-dioids
RM with monoid M to an algebraic construction of the C -closure QC

R : DR→DC on the
Eilenberg-Moore category DR of all R-dioids. We need a series of steps.

Lemma 29. For any R-dioid K,

C K = { {m | (m, 1)∈ R } | R∈R(K ×C′2), R⊆K × {0, 1} }.

Proof. ⊆: For ∆2 = {p0, q0, p1, q1}, let ρ2 be the R-congruence on R∆∗2 generated by the
semiring equations

piq j = δi, j, 0≤ i, j≤ 1,

and ·/ρ2 : R∆∗2→C′2 =R∆∗2/ρ2 the canonical R-morphism. By Corollary 16 there is a set S ∈
R(M × ∆∗2) such that

L = {m | (m, d)∈ S, d ∈D2 },
and for each (m, d)∈ S,

{d}/ρ2 =

{
1 d ∈D2,

0, d /∈D2.
(12)

The isomorphism R(K × ∆∗2)'RK ⊗R R∆∗2 of Proposition 11 maps S to [RS], where

RS = { ({m}, {d}) | (m, d)∈ S } ∈R(RK ×R∆
∗
2).

The lifting of the homomorphism ∑×(·/ρ2) : RK ×R∆∗2→K ×C′2, maps RS to

R := { (m, {d}/ρ2) | (m, d)∈ S } ∈R(K ×C′2).

By (12), R is a subset of K × {0, 1} such that

L = {m | (m, d)∈ S, d ∈D2 }= {m | (m, 1)∈ R }.
⊇: Suppose R∈R(K ×C′2) and R⊆K × {0, 1}. Then for R′ = { ({m}, c) | (m, c)∈ R }, we

have R′ ∈R(RK ×C′2) and R′ ⊆RK × {0, 1}, so [R′]∈ ZC′2
(RK ⊗R C′2) by Lemma 25, hence

{m | (m, 1)∈ R }=
⋃
{ A | (A, 1)∈ R′ }= [R′]∨ ∈C K.

by Theorem 26.

Since for L∈C K, >̃1(L) = {m⊗ 1 | m∈ L } ∈C (ZC′2
(K ⊗R C′2)), the next lemma is a step

towards the C -completeness of ZC′2
(K ⊗R C′2).

Lemma 30. For each R-dioid K, there is a surjective homomorphism

·̂ : C K→ ZC′2
(K ⊗R C′2),
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that assigns to each L∈C K a least upper bound of >̃1(L) in K ⊗R C′2,

L̂ =∑ >̃1(L) =∑{m⊗ 1 | m∈ L }.

Proof. For each L∈C K there is, by Lemma 29, a set R∈R(K ×C′2) with R⊆K × {0, 1} and
L = {m | (m, 1)∈ R }. As m⊗ 0 = 0 for all m∈K, it follows that

[R] =∑{m⊗ d | (m, d)∈ R }=∑{m⊗ 1 | (m, 1)∈ R },

showing that >̃1(L) = {m⊗ 1 | m∈ L } has a least upper bound in K ⊗R C′2, namely

L̂ :=∑{m⊗ 1 | m∈ L }= [R].

Since all m⊗ d with (m, d)∈ R belong to ZC′2
(K ⊗R C′2), we have [R]∈ ZC′2

(K ⊗R C′2) by
Proposition 14. This defines a map ·̂ : C K→ ZC′2

(K ⊗R C′2).

The map ·̂ is a homomorphism: {̂1}= ∑{1⊗ 1}= 1⊗ 1 = 1 and for L1, L2 ∈C K, by
Lemma 29 there are R1, R2 ∈R(K ×C′2) such that Ri ⊆K × {0, 1} and Li = {m | (m, 1)∈ Ri }
for i = 1, 2. Therefore,

L̂1 · L̂2 = [R1][R2] = [R1R2]

= [{ (m1m2, 1) | (m1, 1)∈ R1, (m2, 1)∈ R2 }]
= [{ (m1m2, 1) | m1 ∈ L1, m2 ∈ L2 }]
= ∑{m⊗ 1 | m∈ L1L2 }
= L̂1L2,

as summands m1m2 ⊗ 0 = 0 in [R1R2] can be ignored.
We still have to show that ·̂ is surjective. We use ∑ and⊗ for the given operations of K ⊗R C′2,

∑
′ and⊗′ for those of RK ⊗R C′2. By the universal property of RK ⊗R C′2, the given ∑ : RK→K

induces an R-morphism h = h f ,g for f =>1 ◦∑ and g =>2 such that f = h ◦ >′1 and g = h ◦ >′2:

K
>1- K ⊗R C′2

6 6······∑

�
�
�

f �
�
��

·····
h

I@
@
@ g
@
@
@

RK
>′1
- RK ⊗R C′2 �

>′2
C′2

Since h is a homomorphism and h(>′2(c)) =>1(c) for c∈C′2, h preserves commutativity relations
with C′2, so its restriction is an R-morphism

h : ZC′2
(RK ⊗R C′2)→ ZC′2

(K ⊗R C′2).

Clearly, h : RK ⊗R C′2→K ⊗R C′2 is surjective: if R∈R(K ×C′2) we have

[R] = ∑{m⊗ c | (m, c)∈ R }
= ∑{ (∑{m})⊗ c | (m, c)∈ R }
= h(∑

′{ {m} ⊗′ c | (m, c)∈ R })
= h([R′])

for R′ = { ({m}, c) | (m, c)∈ R } ∈R(RK ×C′2). And if [R]∈ ZC′2
(K ⊗R C′2), then [R′]∈

ZC′2
(RK ⊗R C′2), so the restriction h : ZC′2

(RK ⊗R C′2)→ ZC′2
(K ⊗R C′2) also is surjective.
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Now take [R]∈ ZC′2
(K ⊗R C′2) with R∈R(K ×C′2), and let R′ = { ({m}, c) | (m, c)∈ R }. By

Theorem 27, for [R′]∈ ZC′2
(RK ⊗R C′2) there is L∈C K such that

[R′] =∑
′>̃′1(L) =∑

′{ {m} ⊗′ 1 | m∈ L }.
We claim that [R] = L̂ = ∑{m⊗ 1 | m∈ L }. By Lemma 29, there is S ∈R(K ×C′2) with S⊆
K × {0, 1} and L = {m | (m, 1)∈ S }. Then S′ = { ({m}, c) | (m, c)∈ S } ∈R(RK ×C′2) and

[S′] =∑
′{ {m} ⊗′ 1 | m∈ L }= [R′],

hence [R] = h([R′]) = h([S′]) = [S] = ∑{m⊗ c | (m, c)∈ S }= ∑ >̃1(L) = L̂.

In contrast to Theorem 17, the map ·̂ : C K→ ZC2(K ⊗R C2) need not be injective:

Example 7. Take K =RM for M = {a, b}∗. For L∈K, { {m} | m∈ L } ∈R(RM), and since
L 7→ L⊗ 1 is the R-morphism >1 : K→K ⊗R C′2, we have

L⊗ 1 = (
⋃
{ {m} | m∈ L })⊗ 1 =∑{ {m} ⊗ 1 | m∈ L }.

It follows that for U ∈C K,

Û =∑{ L⊗ 1 | L∈U }=∑{ {m} ⊗ 1 | m∈
⋃

U }.
Consider the following two polynomial systems over K:

x ≥ {{1, ab}} ∪ x∪ {{a}}x{{b}} ∪ {{a2}}x{{b2}},
x ≥ {{1, a2b2}, {ab, a3b3}} ∪ x∪ {{a2}}x{{b2}}

The least solutions U1,U2 ∈C K of these are, respectively,

U1 = { {anbn, an+1bn+1} | n∈N } and U2 = { {anbn, an+2bn+2} | n∈N }.
But while U1 6=U2, we have

⋃
U1 =

⋃
U2 = { anbn | n∈N }, hence Û1 = Û2. �

Lemma 31. For each R-dioid K, ZC′2
(K ⊗R C′2) is a C -dioid. Moreover,

ZC′2
(K ⊗R C′2) = { [R] | R∈R(K ×C′2), R⊆K × {0, 1} }.

Proof. By Lemma 30, the map ·̂ : C K→ ZC′2
(K ⊗R C′2) is a surjective homomorphism that

assigns to L∈C K the least upper bound of the image of L under the homomorphism >1 : K→
K ⊗R C′2, L̂ = ∑ >̃1(L). By Lemma 3, ZC′2

(K ⊗R C′2) is a C -dioid, i.e. there is a C -distributive
least-upper-bound operator

∑ : C (ZC′2
(K ⊗R C′2))→ ZC′2

(K ⊗R C′2),

where for V ∈C (ZC′2
(K ⊗R C′2)), ∑ V =

⋃̂
U for any U ∈C C K such that V = { L̂ | L∈U }.

For ⊇ of the equation, suppose R∈R(K ×C′2) and R⊆K × {0, 1}. By ⊇ of Lemma 29,

L := {m | (m, 1)∈ R } ∈C K.

But then [R] = L̂∈ ZC′2
(K ⊗R C′2) by Lemma 30. The reverse inclusion ⊆ follows from the

surjectivity of ·̂ and ⊆ of Lemma 29, as shown at the beginning of the proof of Lemma 30.

Before we can present the second main result, that for any R-dioid K, ZC′2
(K ⊗R C′2) is the

C -closure of K, we have to consider a special caseh:

hThe next two proofs elaborate proofs of Hopkins (2006), Section 3.6
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Theorem 32. Let C be a C -dioid and K its restriction to an R-dioid. The R-morphism >1 : K→
K ⊗R C′2 is a C -isomorphism

C '−→ ZC′2
(K ⊗R C′2).

Proof. By Lemma 31, D := ZC′2
(K ⊗R C′2) is a C -dioid, so let ∑ : C D→D be its supremum oper-

ator. Since C and K have the same multiplicative monoid, CC =C K, so let ∑
′ : C K→K be the

supremum operator of the C -dioid C. We show that the R-morphism >1 of the tensor product

>1 : K −→K ⊗R C′2←−C′2 :>2,

is a surjective C -morphism >1 : C→D, and its inverse m⊗ 1 7→m is a C -morphism j : D→C.
With η : K→C K, η(m) = {m} for m∈K, we have

>1(m) = m⊗ 1 =∑{m⊗ 1}=∑ >̃1({m}) = (∑ ◦>̃1 ◦ η)(m),

and consider the following diagram:

K
�

j

>1

- D ⊆ K ⊗R C′2
I@
@
@

∑
′ @
@
@

@
@
@ η

@
@
@R �

�
� ·̂
�
�
�� I@

@
@
∑ @@

@
C K

>̃1

- C D

To show that >1 : K→D is a C -morphism, we must show that for every L∈C K,

(∑
′L)⊗ 1 =∑{m⊗ 1 | m∈ L }. (13)

Clearly, (∑′ L)⊗ 1 is an upper bound of {m⊗ 1 | m∈ L }= >̃1(L), so

L̂ :=∑{m⊗ 1 | m∈ L } ≤ (∑
′L)⊗ 1.

For the reverse inequation L̂≥ (∑′ L)⊗ 1, recall that C′2 =R∆∗2/ρ2 embeds into the polycyclic
C -dioid C′2,C =C ∆∗2/ρ2 of Section 2.2. Consider the tensor product

>′1 : C−→C⊗C C′2,C ←−C′2,C :>′2
in the category of C -dioids. Since >′1 is a C -morphism,

(∑
′L)⊗′ 1′ =>′1(∑

′L) =∑
′>̃′1(L) =∑

′{m⊗′ 1′ | m∈ L },
where we write 1′ for the unit in C′2,C , >′1(c) = c⊗′ 1′ for c∈C, and on the right, ∑

′ also for the
supremum operator of C⊗C C′2,C . Combined with the identity from K to C, the embedding of C′2
into C′2,C gives a monotone embedding R-morphism h : K ⊗R C′2→C⊗C C′2,C . Therefore,

h((∑′L)⊗ 1) = (∑′L)⊗′ 1′

= ∑
′{m⊗′ 1′ | m∈ L }

= ∑
′{ h(m⊗ 1) | m∈ L }

= ∑
′ h̃(>̃1(L))

≤ h(L̂),

where the inequation holds since L̂ is an upper bound of >̃1(L). Together with L̂≤ (∑′ L)⊗ 1, this
gives h((∑′ L)⊗ 1) = h(L̂), and as h is injective, (13). So >1 : K→D is a C -morphism.
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It follows that ·̂ =>1 ◦∑
′ : C K→D is a C -morphism, because ∑

′ : CC→C and >1 : C→D
are C -morphisms. Since ·̂ : C K→D is surjective, so is >1 : K→D, by (13), hence

D = {m⊗ 1 | m∈K }.

It remains to be shown that its inverse j : D→K, m⊗ 1 7→m, is a C -morphism. The surjective
homomorphism ·̂ : C K→D lifts to a surjective homomorphism from C C K to C D. Hence for
V ∈C D there is U ∈C C K with V = { L̂ | L∈U }, and since

⋃
U ∈C K and ·̂ is a C -morphism,

∑V =∑{ L̂ | L∈U }=
⋃̂

U = (∑
′⋃U)⊗ 1

by (13). By applying j and using (13) for each L∈U ,

j(∑V ) = ∑
′⋃U

= ∑
′{∑

′L | L∈U }
= ∑

′{ j((∑
′L)⊗ 1) | L∈U }

= ∑
′{ j(L̂) | L∈U }

= ∑
′{ j(v) | v∈V }.

Therefore, j : D→K is C -continuous, i.e. preserves suprema of C -sets.

Under the assumptions of Theorem 32, { (L, {∑
′L}) | L∈C K } ⊆ ker( ·̂ ), because by (13)

L̂ = (∑
′L)⊗ 1 =∑{m⊗ 1 | m∈ {∑′L} }= {̂∑′ L}.

We can now prove our second main result, which will imply that C K/ ker( ·̂ )'QC
R(K):

Theorem 33 (Algebraic representation of C -closure). For any R-dioid K there is a C -
isomorphism

QC
R(K)' ZC′2

(K ⊗R C′2).

Proof. It is sufficient to prove that D := ZC′2
(K ⊗R C′2) is a C -completion of K. Let η : K→D be

the embedding obtained from >1 : K→K ⊗R C′2,

η(m) :=>1(m) = m⊗ 1∈D for m∈K,

and f : K→C an R-morphism to a C -dioid C. Define f̄ : D→C by

f̄ (L̂) :=∑{ f (m) | m∈ L }=∑ f̃ (L) for L∈C K.

We prove later that f̄ is well-defined and first show the remaining properties.
f = f̄ ◦ η : for m∈K, f̄ (η(m)) = f̄ (∑{m⊗ 1}) = f̄ ({̂m}) = ∑{ f (m)}= f (m).
f̄ is a monotone homomorphism: f̄ (1) = f̄ ({̂1}) = ∑{ f (1)}= f (1) = 1, and since ·̂ : C K→

D is a homomorphism and ∑ ◦ f̃ : C K→C is C -distributive,

f̄ (L̂ · L̂′) = f̄ (L̂L′) =∑ f̃ (LL′) =∑ f̃ (L)∑ f̃ (L′) = f̄ (L̂) f̄ (L̂′).
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f̄ is C -continuous: Suppose V ∈C D. Since ·̂ : C K→D is a surjective homomorphism, so is its
lifting to C C K→C D, hence there is U ∈C C K such that V = { L̂ | L∈U } ∈C D. Therefore,

f̄ (∑V ) = f̄ (∑{m⊗ 1 | m∈
⋃

U })

= f̄ (
⋃̂

U)

= ∑ f̃ (
⋃

U)

= ∑
⋃
{ f̃ (L) | L∈U }

= ∑{ f̄ (L̂) | L∈U }.
= ∑{ f̄ (v) | v∈V }.

f̄ is well-defined: Suppose L, L′ ∈C K and L̂ = L̂′. We must show

∑ f̃ (L) =∑ f̃ (L′). (14)

Let K′ = QR
C (C) be the restriction of C to an R-dioid,

>′1 : K′ −→K′ ⊗R C′2←−C′2 :>′2

its tensor product with C′2 in DR, and D′ := ZC′2
(K′ ⊗R C′2). By Theorem 32, >′1 : C→D′ is a

C -isomorphism, with inverse j : D′→C. We write >′1(c) = c⊗′ 1 for c∈K′ and ∑
′ for the least-

upper-bound-operator of D′ or K′ ⊗R C′2.
Consider the commuting R-morphisms f ′ =>′1 ◦ f and g′ =>′2 shown in

K′
>′1- K′ ⊗R C′2

6 6······f

�
�
�

f ′ �
�
��

·····
h f ′,g′

I@
@
@ g′

@
@
@

K
>1

- K ⊗R C′2 �
>2

C′2.

Let h f ′,g′ be the R-morphism with f ′ = h f ′,g′ ◦ >1 and g′ = h f ′,g′ ◦ >2. For R∈R(K ×C′2), put
R f = { ( f (m), c) | (m, c)∈ R } ∈R(K′ ×C′2). Then

h f ′,g′([R]) = h f ′,g′(∑{m⊗ c | (m, c)∈ R })
= ∑{ f ′(m)g′(c) | (m, c)∈ R }
= ∑{ ( f (m)⊗ 1)(1′ ⊗ c) | (m, c)∈ R }
= ∑{ f (m)⊗ c | (m, c)∈ R }
= [R f ].
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The restriction of h f ′,g′ to D⊆K ⊗R C′2 clearly is an R-morphism h′ : D→D′. The situation is
visualized by the following diagram:

C
�

j

>′1
- D′ ⊆ K′ ⊗R C′2

6 6························

6·······················

I@
@
@
∑ @@

@ �
�
� ·̂ ′
�
�
��

C K′

6

f f̃ ······················

h′ ······················

h f ′,g′

C K

�
�
�

ηK �
�
�� @

@
@ ·̂
@
@
@R

K
>1 - D ⊆ K ⊗R C′2

By Lemma 29, there are R, R′ ∈R(K ×C′2) with R, R′ ⊆K × {0, 1} and L = {m | (m, 1)∈
R }, L′ = {m | (m, 1)∈ R′ }, so

[R] = L̂ = L̂′ = [R′].

By an application of h f ′,g′ , [R f ] = [R′f ]. Using f̃ (L)∈C K′, we get

[R f ] =
̂̃f (L)′

= ∑
′{ f (m)⊗′ c | (m, c)∈ R }

= ∑
′{ f (m)⊗′ 1 | (m, 1)∈ R } (R⊆K × {0, 1})

= ∑
′{ f (m)⊗′ 1 | m∈ L } (L = {m | (m, 1)∈ R })

= (∑
′ f̃ (L))⊗′ 1 (by (13) on D′).

Likewise, [R′f ] =
̂̃f (L′)

′
= (∑ f̃ (L′))⊗′ 1, and so

(∑ f̃ (L))⊗′ 1 = [R f ] = [R′f ] = (∑ f̃ (L′))⊗′ 1.
(Hence h′ ◦ ·̂ = ·̂ ′ ◦ f̃ is a C -morphism.) An application of j gives (14).

f̄ is the unique C -morphism h : D→C with f = h ◦ η : Suppose h is such a C -morphism and e
an element of D. By Lemma 30 there is L∈C K such that e = L̂ = ∑{m⊗ 1 | m∈ L }, hence

h(e) = h(L̂)
= h(∑{m⊗ 1 | m∈ L })
= ∑{ h(m⊗ 1) | m∈ L }
= ∑{ h(η(m)) | m∈ L }
= ∑{ f (m) | m∈ L }
= f̄ (L̂) = f̄ (e).

Therefore, h = f̄ .
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Corollary 34. For any R-dioid K, the C -closure of K is C K/ ker( ·̂ ).

Proof. By Theorem 33, D := ZC′2
(K ⊗R C′2) is the C -closure of K, so we must show that

C K/ ker( ·̂ ) is a C -dioid and there is a C -isomorphism between D and C K/ ker( ·̂ ). By
Lemma 30, ·̂ : C K→D is a monotone and surjective homomorphism between C -dioids. It is
a C -morphism, because

⋃̂
U = ∑{ L̂ | L∈U } for U ∈C C K. Hence its kernel ker( ·̂ ) is a C -

congruence on C K, and so C K/ ker( ·̂ ) is a C -dioid. Let us verify that the bijection between
C K/ ker( ·̂ ) and D is a C -isomorphism. In the one direction, the mapping f : C K/ ker( ·̂ )→D,
well-defined by f (L/ ker( ·̂ )) = L̂ for L∈C K, is a C -morphism, since for V ∈C (C K/ ker( ·̂ ))
there is U ∈C C K such that V = { L/ ker( ·̂ ) | L∈U }, and by the definition of ∑ on quotients,
∑ V = (

⋃
U)/ ker( ·̂ ), so f (∑ V ) =

⋃̂
U = ∑{ L̂ | L∈U }= ∑ f̃ (V ). In the other direction, by

Lemma 31 and Lemma 29, elements of D are congruence classes [R] of sets R∈R(K ×C′2)
with R⊆K × {0, 1}, such that [R] = L̂R for LR := {m | (m, 1)∈ R } ∈C K. Hence, a map g : D→
C K/ ker( ·̂ ) is well-defined by

g([R]) = LR/ ker( ·̂ ), for R∈R(K ×C′2) with R⊆K × {0, 1},
and obviously g and f are inverses of each other. To see that g is a C -morphism, suppose V ∈C D.
There is U ∈C C K such that V = { L̂ | L∈U }, and ∑ V =

⋃̂
U . There is R∈R(K ×C′2) with

R⊆K × {0, 1} and
⋃̂

U = [R] = L̂R, and so

g(∑V ) = LR/ ker( ·̂ ) = (
⋃

U)/ ker( ·̂ ) =∑{ L/ ker( ·̂ ) | L∈U }=∑ g̃(V ),

using suitable RL ∈R(K ×C′2) with RL ⊆K × {0, 1} and L̂ = [RL] for the last step.

7. Conclusion
The algebraic abstraction of the regular subsets RM and the context-free subsets C M of a monoid
M are the categories of R-dioids or ∗-continuous Kleene algebras and C -dioids or µ-continuous
Chomsky algebras. Just as C M is the closure of RM under a well-behaved least fixed-point oper-
ator µ , each R-dioid K has a closure K as C -dioid, briefly called its fixed-point closure. We have
shown that K can be represented in the product K ⊗R C′2 of K with C′2 in the category of R-dioids,
where the polycyclic R-dioid C′2 on two generators is a quotient of the regular sets R∆∗2 over an
alphabet ∆2 = {b, d, p, q} of two pairs of brackets, b, d and p, q. Namely, K is isomorphic to the
centralizer ZC′2

(K ⊗R C′2) of C′2 in K ⊗R C′2, which, intuitively, consists of the sums over regular
sets of elements m⊗ c where m∈K and c∈C′2 is restricted to be 0 or 1.

This representation theorem is an algebraic form and categorical generalization of the clas-
sical Chomsky-Schützenberger theorem (and its reverse) of formal language theory. The latter
reduces the set C X∗ of context-free languages over a finite alphabet X to the set R(X ∪ ∆2)

∗

of regular languages over X ∪ ∆2, by means of intersection with the context-free Dyck lan-
guage D2(X)∈C (X ∪ ∆2)

∗ of balanced bracketed strings and the bracket-erasing homomorphism
from (X ∪ ∆2)

∗ to X∗. In the special case K =RX∗ with K =C X∗, the representation theo-
rem intuitively splits bracketed strings u∈ (X ∪ ∆2)

∗ to pairs (w, t)∈ X∗ × ∆∗2 and performs the
balance-checking and bracket-erasure within C′2 by algebraically reducing the second component
of {w} ⊗ {t} ∈K ⊗R C′2 to 1 or 0, depending on whether t belongs to the pure Dyck language
D2 ∈C ∆∗2 or not. The underlying part of deriving from L∈C X∗ a suitable regular set R of
strings u∈ (X ∪ ∆2)

∗ is as in the classical Chomsky-Schützenberger theorem (cf. Theorem 15).
A finite automaton for R⊆ (X ∪ ∆2)

∗ represents L in the sense that the words u∈ R evaluate in
RX∗ ⊗R C′2 to 0 or to the elements {w} ⊗ 1 with w = hX∗(u)∈ L (cf. Figure 3).

The algebra RX∗ ⊗R C′2 is hoped to turn out useful to construct CFG-parsers for context-free
languages over X , for example by simplifying the calculation of item-sets of LR-parsers.



39

Some remarks on the difference between using the bra-ket R-dioid C2 and the polycyclic
R-dioid C′2 are in order. Theorem 5 of Hopkins and Leiß (2018) announced that C M '
ZC2(RM ⊗R C2) for monoids M, indicating that “the equation db + qp = 1 not present in C′2
is needed to encode stack operations in C2”. We here have shown that one can actually do without
this equation and prove the stronger result C M ' ZC′2

(RM ⊗R C′2). One may obtain C2 as the
quotient C′2/〈db + qp = 1〉 of C′2 by the R-congruence generated by the completeness equation.
The quotient map is not injective, but its extension to RM ⊗R C′2 apparently does not identify
different members of ZC′2

(RM ⊗R C′2), so the announced claim with C2 should follow.
The motivation for writing this article came from an effort to understand Hopkins’ unpub-

lished proof that the fixed-point closure K of an R-dioid K can be algebraically represented by
ZC2(K ⊗R C2). An inspection of the proof showed that the completeness assumption db + qp = 1
of C2 was not used for the analog K ⊆ ZC2(K ⊗R C2) of the Chomsky-Schützenberger theorem.
For the reverse ZC2(K ⊗R C2)⊆K, the assumption is used to show that ·̂ : C K→ ZC2(K ⊗R C2)

given by L̂ = ∑{m⊗ 1 | m∈ L } is surjective. The surjectivity follows from an interesting
automata-theoretic Normal Form Theorem for elements of K ⊗R C2, which implicitly assumes
that Matn,n(K ⊗R C2) is an R-dioid and shortly is as follows. For each element e = [R]∈
K ⊗R C2, by induction on the construction of R∈R(K ×C2) there is an automaton 〈S, A, F〉 such
that e is the language accepted by the automaton, i.e. e = SA∗F = ∑{ SAkF | k ∈N }, where for
some n, S ∈ {0, 1}1×n and F ∈ {0, 1}n×1 code the sets of initial and final states and A is a transition
matrix U + X +V ∈Matn,n(K ⊗R C2) with X ∈Kn×n, U ∈ {b, p, 0}n×n, V ∈ {d, q, 0}n×n. It is
then shown that N = b(U p + X + qV )d is a least solution of y≥ (UyV + X)∗ in Matn,n(K ⊗R C2),
a version of Dyck’s language, and N ∈ (ZC2(K ⊗R C2))

n×n. Using the completeness assumption
db + qp = 1, Hopkins proves

e = S(NV )∗N(UV )∗F,

which simplifies to e = SNF for e∈ ZC2(K ⊗R C2). Notice that the Normal Form Theorem pro-
vides us with a description both of elements in the centralizer of C2 and of arbitrary elements
of K ⊗R C2, while the proof of K = ZC′2

(K ⊗R C′2) in Section 6 above only gives us a descrip-
tion of elements of the centralizer of C′2 as equivalence classes [R] of R∈R(K ×C′2) with
R⊆K × {0, 1}. In Section 6, the surjectivity of ·̂ : C K→ ZC′2

(K ⊗R C′2) is reduced to that of
·̂ : C K→ ZC′2

(RK ⊗R C′2), which in turn is shown by giving an inverse. However, it is an inter-
esting question whether the Normal Form Theorem also holds for K ⊗R C′2; Hopkins (personal
communication, 2021) has found a partial positive answer. A least solution N of y≥ (UyV + X)∗

in Matn,n(ZC′2
(K ⊗R C′2)) exists, since ZC′2

(K ⊗R C′2) is a C -dioid and this category is closed
under n× n-matrix semirings.

Another difference of the proofs is that in the case RM ⊗R C′2 we can replace the tensor prod-
uct by a quotient (Corollary 13) and so, strictly speaking, need the tensor product only to represent
the C -closure of arbitrary R-dioids K in K ⊗R C′2.

A minor question is whether our proof for the special case K =RM can be simplified. Since
it is well-known that C X∗ is related to the polycyclic monoids P′n, Propositions 20-23 might
be implicit in existing literature, such as the one referred to by Render and Kambites (2009).
Moreover, it seems inelegant to first show that the maps ·̂ : C M � ZC′2

(RM ⊗R C′2) : ·∨ form a
bijection and then use this to show that they are C -morphisms.
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Ésik, Z., Fahrenberg, U., and Legay, A. 2015. ∗-continuous Kleene ω-algebras. In Developments in Language Theory

– 19th International Conference, July 2015, Liverpool, UK, volume 9168 of Lecture Notes in Computer Science, pp.
240–251. 〈hal-01237648〉.

Grathwohl, N. B. B., Henglein, F., and Kozen, D. 2013. Infinitary axiomatization of the equational theory of context-free
languages. In Baelde, D. and Carayol, A., editors, Fixed Points in Computer Science (FICS 2013), volume 126 of EPTCS,
pp. 44–55.

Hopkins, M. 1993. The Untold Story of Formal Languages. Submissions to USENET forum comp.theory (1993/95) and
sci.math.research Jan./Feb. 1996.

Hopkins, M. 2006. The Theory of Context-Free Expressions. Unpublished Typoscript. Partly based on submissions to
USENET forum comp.theory, May 2004.

Hopkins, M. 2007. CEX - A Context-Free Expression Filter. https://compilers.iecc.com/comparch/article/07-02-067.
Hopkins, M. 2008a. The algebraic approach I: The algebraization of the Chomsky hierarchy. In Berghammer, R., Möller,
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Foundations of Computer Science, Banská Bystrica, 1990, LNCS 452, pp. 26–47. Springer Verlag.

Kozen, D. 1994. A completeness theorem for Kleene algebras and the algebra of regular events. Information and
Computation, 110(2):366–390.

Leiß, H. 2016. The matrix ring of a µ-continuous Chomsky algebra is µ-continuous. In Regnier, L. and Talbot, J.-M.,
editors, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Leibniz International Proceedings in
Informatics, pp. 1–16. Leibniz-Zentrum für Informatik, Dagstuhl Publishing.

Leiß, H. and Hopkins, M. 2018. C-dioids and µ-continuous Chomsky algebras. In Desharnais, J., Guttmann, W., and
Joosten, S., editors, 17th Int. Conf. on Relational and Algebraic Methods in Computer Science, RAMiCS 2018, pp. 21–36,
Cham. Springer Nature Switzerland AG.

Mac Lane, S. 1971. Categories for the Working Mathematician. Springer-Verlag, New York Inc.



41
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8. Appendix
The postponed part of the proof of Theorem 12 is as follows.

Proof. To prove A M ⊗A (A N/ν)'A (M ×N)/ν̃ , it is sufficient to show that

>′1 : A M −→A (M ×N)/ν̃←−A N/ν :>′2
form a tensor product of A M and A N/ν in DA , where >′1 and >′2 are defined by

>′1(A) = (A× {1})/ν̃ and >′2(B/ν) = ({1} × B)/ν̃ .

>1 is an A -morphism, since A 7→ A× {1} and the quotient map ·/ν̃ are. To see that >′2 is
well-defined, we first check that

(1) For B, B′ ∈A N, B/ν = B′/ν ⇐⇒ B \ {0}= B′ \ {0},
(2) for S, S′ ∈A (M ×N), S/ν̃ = S′/ν̃ ⇐⇒ S \ (M × {0}) = S′ \ (M × {0}).

Concerning (1), since {0}/ν = /0/ν is the least element of A N/ν , for B∈A N we have

B/ν =∑{ {n}/ν | n∈ B }=∑{ {n}/ν | n∈ B \ {0} }.
Hence if B, B′ ∈A N with B \ {0}= B′ \ {0}, then B/ν = B′/ν . For the converse, one shows that

ν0 := { (B, B′)∈A N ×A N | B \ {0}= B′ \ {0} }
is an A -congruence on A N containing ({0}, /0), and obviously ν ⊆ ν0.

For (2), notice that for each m∈M,

{(m, 0)}/ν̃ = {(m, 1)}/ν̃ · {(1, 0)}/ν̃ = {(m, 1)}/ν̃ · /0/ν̃ = /0/ν̃ .

Therefore, similar arguments as for (1) apply with S \ (M × {0}) instead of B \ {0}.
By (1) and (2), it follows that >2 is well-defined, since

B/ν = B′/ν ⇐⇒ B \ {0}= B′ \ {0}
⇐⇒ ({1} × B) \ (M × {0}) = ({1} × B′) \ (M × {0})
⇐⇒ ({1} × B)/ν̃ = ({1} × B′)/ν̃ .

>′2 is an A -morphism: it is clearly a monotone homomorphism, and if U ∈A (A N/ν), there is
U ′ ∈A A N such that U = { B/ν | B∈U ′ }, hence

>′2(∑U) = >′2(∑{ B/ν | B∈U ′ }) =>2((
⋃

U ′)/ν)

= ({1} × (
⋃

U ′))/ν̃ = (
⋃
{ {1} × B | B∈U ′ })/ν̃

= ∑{ ({1} × B)/ν̃ | B∈U ′ }=∑{ >′2(B/ν) | B/ν ∈U }.
Clearly, >′1 and >′2 are relatively commuting.
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To show the universal property of a tensor product, let f , g be relatively commuting A -
morphisms to an A -dioid D as shown:

A M
>′1- A (M ×N)/ν̃ �

>′2
A N/ν

˙̇
˙̇
˙̇
˙

@
@
@
f @
@
@R

˙̇
˙̇
?̇

h′f ,g

	�
�
� g
�
�
�

D

We define an A -morphism h′f ,g : A (M ×N)/ν̃→D by

h′f ,g(S/ν̃) =∑{ f ({m}) · g({n}/ν) | (m, n)∈ S }, S ∈A (M ×N).

• h′f ,g is well-defined: Since f and g are relatively commuting, (m, n) 7→ f ({m}) · g({n}/ν)

defines a homomorphism from M ×N to D, so its lifting maps S ∈A (M ×N) to an A -set
{ f ({m}) · g({n}/ν) | (m, n)∈ S } ∈A D, and the ∑ exists.
Since g is a semiring-morphism, for (m, 0)∈ S we have

f ({m}) · g({0}/ν) = f ({m}) · g(0A N/ν) = f ({m}) · 0D = 0D,

whence the value of h′f ,g(S/ν̃) depends on S \ (M × {0}) only, i.e. on S/ν̃ by (2).
• h′f ,g is a homomorphism: clearly

h′f ,g({(1, 1}/ν̃) = ∑{ f ({1}) · g({1}/ν)}= f ({1}) · g({1}/ν) = 1D.

Since f and g are relatively commuting, for S, S′ ∈A (M ×N) the set { f ({m}) · g({n}/ν) |
(m, n)∈ SS′ } is the product in A D of

{ f ({m}) · g({n}/ν) | (m, n)∈ S } and { f ({m}) · g({n}/ν) | (m, n)∈ S′ },

and since ∑ : A D→D is A -distributive, this gives

h′f ,g(S/ν̃ · S′/ν̃) = h′f ,g(SS′/ν̃)

= ∑{ f ({m}) · g({n}/ν) | (m, n)∈ SS′ },
= h′f ,g(S/ν̃) · h′f ,g(S′/ν̃).

• h′f ,g is an A -morphism: If V ∈A (A (M ×N)/ν̃), there is U ∈A (A (M ×N)) such that
V =U/ν̃ := { S/ν̃ | S ∈U }, and ∑ V = (

⋃
U)/ν̃ . So

h′f ,g(∑V ) = h′f ,g((
⋃

U)/ν̃)

= ∑{ f ({m}) · g({n}/ν) | (m, n)∈
⋃

U },
= ∑{∑{ f ({m}) · g({n}/ν) | (m, n)∈ S } | S ∈U },
= ∑{ h′f ,g(S/ν̃) | S ∈U }=∑(A h′f ,g)(V ),

showing that h′f ,g is A -continuous; this implies that it is monotone.
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• f = h′f ,g ◦ >′1 and g = h′f ,g ◦ >′2: for A∈A M and B∈A N,

h′f ,g(>′1(A)) = h′f ,g((A× {1})/ν̃)

= ∑{ f ({m}) · g({n}/ν) | (m, n)∈ A× {1} }
= ∑{ f ({m}) · g({1}/ν) | m∈ A }
= ∑{ f ({m}) | m∈ A }
= f (

⋃
{ {m} | m∈ A }

= f (A),

h′f ,g(>′2(B/ν)) = h′f ,g(({1} × B)/ν̃)

= ∑{ f ({m}) · g({n}/ν) | (m, n)∈ {1} × B }
= ∑{ f ({1}) · g({n}/ν) | n∈ B }
= ∑{ g({n}/ν) | n∈ B }
= g(∑{ {n}/ν | n∈ B })
= g(

⋃
{ {n} | n∈ B }/ν)

= g(B/ν).

• h′f ,g is the only A -morphism h′ with f = h′ ◦ >′1 and g = h′ ◦ >′2: Suppose h′ : A (M ×
N)/ν̃→D is such an A -morphism. Then

h′f ,g(S/ν̃) = ∑{ f ({m}) · g({n}/ν) | (m, n)∈ S }
= ∑{ h′(>′1({m})) · h′(>′2({n}/ν)) | (m, n)∈ S }
= ∑{ h′(>′1({m}) · >′2({n}/ν)) | (m, n)∈ S }
= h′(∑{ >′1({m}) · >′2({n}/ν) | (m, n)∈ S })
= h′(∑{ ({m} × {1})/ν̃ · ({1} × {n})/ν̃ | (m, n)∈ S })
= h′(∑{ ({m} × {n})/ν̃) | (m, n)∈ S })
= h′(∑{ {(m, n)}/ν̃ | (m, n)∈ S })
= h′((

⋃
{ {(m, n)} | (m, n)∈ S })/ν̃)

= h′(S/ν̃).


	Introduction
	The Category of A-Dioids and A-Morphisms
	The CST for Monoids and its Algebraic Version
	The Reverse CST for Monoids and its Algebraic Version
	Algebraic Representation of the C-Closure CM of RM
	Algebraic Representation of the C-Closure of an Arbitrary R-Dioid K 
	Conclusion
	Appendix

