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ABSTRACT

Neurosymbolic programming combines the otherwise com-
plementary worlds of deep learning and symbolic reason-
ing. It thereby enables more accurate, interpretable, and
domain-aware solutions to AI tasks. We introduce Scallop, a
general-purpose language and compiler toolchain for develop-
ing neurosymbolic applications. A Scallop program specifies
a suitable decomposition of an AI task’s computation into
separate learning and reasoning modules. Learning modules
are built using existing machine learning frameworks and
range from custom neural models to foundation models for
language, vision, and multi-modal data. Reasoning modules
are specified in a declarative logic programming language
based on Datalog which supports expressive features such
as recursion, aggregation, negation, and probabilistic pro-
gramming over structured relations.

Scallop’s compiler enables to automatically train neurosym-
bolic programs in a data- and compute-efficient manner using
an end-to-end differentiable reasoning framework. Scallop
also supports features useful for building real-world applica-
tions such as user-defined data types, and foreign interfaces.

Ziyang Li, Jiani Huang, Jason Liu and Mayur Naik (2024), “Neurosymbolic
Programming in Scallop: Principles and Practice”, Foundations and Trends® in
Programming Languages: Vol. 8, No. 2, pp 118–249. DOI: 10.1561/2500000059.
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We demonstrate programming in Scallop for applications
that span the domains of image and video processing, natu-
ral language processing, planning, and information retrieval
in a variety of learning settings such as supervised learning,
reinforcement learning, rule learning, contrastive learning,
and in-context learning.



1
Introduction

1.1 Neurosymbolic Programming

Classical algorithms and deep learning embody two prevalent paradigms
of modern programming. Classical algorithms are well suited for exactly-
defined tasks, such as sorting a list of numbers or finding a shortest
path in a graph. Deep learning, on the other hand, is well suited for
tasks that are not tractable or feasible to perform procedurally, such as
detecting objects in an image or parsing natural language text. These
tasks are typically specified using a set of input-output training data,
and solving them involves learning the parameters of a deep neural
network to fit the data using gradient-based methods.

The two paradigms are complementary in nature. For instance, a
classical algorithm such as the logic program λ shown in Figure 1.1a
is interpretable but operates on limited, structured input r. On the
other hand, a deep neural network such as Mθ shown in Figure 1.1b can
operate on rich, unstructured input x but is not interpretable. Modern
applications demand the capabilities of both paradigms. Examples
include question answering (Rajpurkar et al., 2016), code completion
(Chen et al., 2021), and mathematical problem solving (Lewkowycz
et al., 2022), among many others. For instance, code completion requires

120
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(a) Logic program.

x Mθ y
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(b) Neural model.

x Mθ r λ y
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∂r

∂r
∂θ

(c) A basic neurosymbolic program.

Figure 1.1: Comparison of different paradigms. Logic program λ accepts only
structured input r whereas neural model Mθ with parameter θ can operate on
unstructured input x. Supervision is provided on data indicated in double boxes.
Under algorithmic supervision, a neurosymbolic program must learn θ without
supervision on r.

deep learning to comprehend programmer intent from the code context,
and classical algorithms to ensure that the generated code is correct.
A natural and fundamental question then is how to program such
applications by integrating the two paradigms.

Neurosymbolic programming is an emerging paradigm that aims to
fulfill this goal (Chaudhuri et al., 2021). It seeks to integrate symbolic
knowledge and reasoning with neural architectures for better efficiency,
interpretability, and generalizability than the neural or symbolic coun-
terparts alone. Consider the task of handwritten formula evaluation (Li
et al., 2020), which takes as input a formula as an image, and outputs
a number corresponding to the result of evaluating it. An input-output
example for this task is ⟨x = , y = 1.6⟩. A neurosymbolic
program for this task, such as the one shown in Figure 1.1c, might first
apply a convolutional neural network Mθ to the input image to obtain a
structured intermediate form r as a sequence of symbols [‘1’, ‘+’, ‘3’, ‘/’,
‘5’], followed by a classical algorithm λ to parse the sequence, evaluate
the parsed formula, and output the final result 1.6.

Despite significant strides in individual neurosymbolic applications
(Yi et al., 2018; Mao et al., 2019; Chen et al., 2020; Li et al., 2020; Min-
ervini et al., 2020a; Wang et al., 2019), there is a lack of a language with
compiler support to make the benefits of the neurosymbolic paradigm
more widely accessible. We set out to develop such a language and
identified five key criteria that it should satisfy in order to be practi-
cal. These criteria, annotated by the components of the neurosymbolic
program in Figure 1.1c, are as follows:
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1. A symbolic data representation for r that supports diverse kinds
of data, such as image, video, natural language text, tabular data,
and their combinations.

2. A symbolic reasoning language for λ that expresses common rea-
soning patterns such as recursion, negation, and aggregation.

3. An automatic and efficient differentiable reasoning engine for learn-
ing (∂y∂r ) under algorithmic supervision, i.e., supervision on observ-
able input-output data (x, y) but not r.

4. The ability to tailor learning (∂y∂r ) to individual applications’ charac-
teristics, since non-continuous loss landscapes of symbolic programs
hinder learning using a one-size-fits-all method.

5. A mechanism to leverage and integrate with existing training
pipelines (∂r∂θ ), implementations of neural architectures and models
Mθ, and hardware (e.g. GPU) optimizations.

1.2 Scallop: What and Why

We have developed Scallop, a programming language that realizes all of
the above criteria. The key insight underlying Scallop is its choice of
three inter-dependent design decisions: a relational model for symbolic
data representation, a declarative language for symbolic reasoning, and
a provenance framework for differentiable reasoning.

Our design choices were inspired by the following key observations.
First, much of the world’s data is stored in relational databases. Rela-
tions are also flexible enough to represent diverse kinds of data ranging
from high-level visual and language features, to formal programs, to
molecular structures. Second, a declarative language for symbolic rea-
soning allows computation to be expressed concisely via high-level rules,
thereby alleviating programmer effort. Finally, the relational paradigm
offers a suitable abstraction for various advanced features needed for
neurosymbolic programming, such as query planning, hardware acceler-
ation, and probabilistic and differentiable reasoning.

Our aim with Scallop is to provide a cohesive language and frame-
work for integrating neural and symbolic components. In doing so, we
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seek to enable programmers to build neurosymbolic solutions that are
more efficient, generalizable, and interpretable.

1.3 Building Blocks of Neurosymbolic Solutions

A language that integrates neural and symbolic components can be
applied to construct diverse and adaptable solutions. Broadly, a neu-
rosymbolic solution to any given task involves the flexible interplay
of neural and symbolic components, each serving distinct yet comple-
mentary roles in problem-solving. From the existing literature, several
building blocks have emerged as crucial for effective neurosymbolic
solutions, as depicted in Figure 1.2. We proceed to discuss each of these
core building blocks in detail.

x λ Mθ y

(a) Feature Extraction

x Mθ λ y

(b) Symbolic Inference

x Mθ λ y

(c) Algorithmic Supervision

x λ y
Mθ

(d) Neurosymbolic Program Synthesis

x
λ

Mθ

y

(e) Neural Relaxation

x
λ

Mθ

y

(f) Symbolic Distillation

Figure 1.2: Neurosymbolic compositions of neural component (Mθ) and symbolic
component (λ), which serve as building-blocks for more complex neurosymbolic
applications. We use solid arrows to denote forward data-flows, and dashed arrows to
denote backward data-flows used to supervise the learning of the target component.

Feature Extraction The feature extraction process involves deriving
symbolic features from an input x through a symbolic component,
denoted here as λ, before passing these features to a neural model
Mθ for training. Although feature extraction is an established practice
in machine learning and typically not classified as neurosymbolic, it
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nevertheless exemplifies a functional integration of symbolic and neural
elements. In this approach, learning is confined to the neural component,
while the symbolic aspect serves to pre-process the input data.

Notably, advanced feature extraction goes beyond simple tabular
data and often incorporates sophisticated reasoning mechanisms to
construct complex data structures. For instance, in program analysis,
source code can be pre-processed into intricate structures such as ab-
stract syntax trees (ASTs), data-flow graphs, symbolic constraints, or
relational databases (Dinella et al., 2020; Li et al., 2021; Zhu et al.,
2024). Neural networks may thus benefit from more comprehensive,
structured information for downstream tasks, such as proposing bug
fixes, detecting vulnerabilities, and analyzing type information even
within binary code.

Symbolic Inference Symbolic inference involves performing poste-
rior analysis on the outputs of a neural network Mθ using a symbolic
component λ provided by a programmer. This analysis can serve var-
ious purposes, such as filtering nonsensical outputs, verifying output
integrity, or combining multiple information sources symbolically to de-
rive additional insights. Though straightforward in concept, an advanced
symbolic inference component λ may handle probabilistic information,
deriving a distribution rather than just the most likely output.

For instance, in the task of handwritten formula recognition ⟨x =
, y = 1.6⟩, after the neural network generates probability

distributions for individual symbols, a probabilistic symbolic inference
engine could synthesize a distribution over possible rational numbers.
Another example is RNA secondary structure prediction, where a neural
network predicts per-nucleotide structures, and a probabilistic RNA
folding algorithm then parses this probabilistic sequence to generate
the top-k most likely structural parses. In Section 5, we cover many
symbolic inference solutions where the Mθ are foundation models.

Algorithmic Supervision Algorithmic supervision extends symbolic
inference by enabling the symbolic component λ to propagate learning
signals to the neural network Mθ. As before, we assume that λ is pro-
vided by the programmer. While Figure 1.1 demonstrates one example
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of algorithmic supervision through differentiability in λ, it generally
suffices for λ to propagate the learning signal. In this way, the symbolic
“algorithm” λ serves as a guiding supervisor for the neural network Mθ.

Algorithmic supervision also functions as a form of weak supervision,
as it does not require direct, fully supervised labels for Mθ; only the
end label y is needed. This reduces the need for extensive data labeling
or feature engineering, simplifying the training process. Numerous ap-
plications in Scallop leverage this approach, including the previously
mentioned task of learning to evaluate handwritten formulas (Li et
al., 2020; Li et al., 2023). This tutorial explores additional, advanced
examples of algorithmic weak supervision in Section 6.

Neurosymbolic Program Synthesis Neurosymbolic program synthesis
involves learning the symbolic program λ with the support of neural
networks. This paradigm resembles the classical syntax-guided synthesis
task (Alur et al., 2013), but replaces the traditional algorithmic synthesis
procedure with a neural network Mθ. Here, the symbolic program λ is
responsible for generating the expected outputs, and it may be iteratively
refined to better align with a dataset.

This approach offers the advantage of interpretability, as the learned
symbolic component is a white-box program that can be inspected
and verified by humans (Ellis et al., 2022). Traditionally, synthesizing
λ requires defining a limited domain-specific language (Ellis et al.,
2020) since general-purpose languages render synthesis computationally
intractable. However, with the recent development of large language
models (LLMs) capable of generating programs in general-purpose
languages like Python, the synthesis of λ can now be achieved more
efficiently (Ma et al., 2024).

Neural Relaxation Neural relaxation involves relaxing a deterministic
and discrete symbolic reasoning component λ by replacing certain
components in the pipeline with neural networks Mθ. This enables
portions of previously symbolic components to be approximated by
neural networks, improving adaptability to unseen scenarios.

For instance, consider the challenge of designing a neurosymbolic
controller for drones: while effective deterministic controllers exist for
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standard maneuvers, they may struggle to adapt to out-of-domain
scenarios, such as operating near the ground, in strong winds, or in
proximity to other drones. By relaxing certain aspects of the controller
into a neural network Mθ, the system gains greater flexibility and
responsiveness in handling such scenarios, while being able to learn
rapidly (O’Connell et al., 2022; Csomay-Shanklin et al., 2024).

Symbolic Distillation Symbolic distillation extracts information from
a black-box neural network and converts it into a symbolic form λ.
Although this process involves generating and refining λ, similar to
neurosymbolic program synthesis, symbolic distillation focuses on trans-
lating otherwise uninterpretable weights from a well-trained neural
network Mθ into an interpretable form.

This technique has been applied to scientific discovery in fields such
as animal behavior analysis (Sun et al., 2022). A symbolic program
describing behaviors like “two mice running towards each other” can be
distilled from a neural network trained on data of mice interactions. An-
other application is explanation synthesis for predicting cancer patient
mortality (Wu et al., 2024). For a model trained to predict 6-month
mortality, symbolic distillation can generate explanations of specific
predictions, providing clearer insights for clinical decision-making sup-
ported by machine learning systems.

Other Compositions In addition to the primary building blocks, there
are other notable neurosymbolic compositions. For example, AlphaGo
(Silver et al., 2016) is centered around a symbolic algorithm—Monte
Carlo Tree Search—with neural networks for policy evaluation and
move selection, creating a synergistic decision-making process. On the
other hand, ChatGPT plugins (OpenAI, 2023a) use a large language
model as the primary system, which can invoke symbolic components
like a Python interpreter, database retrieval, or web search to enhance
functionality. As the field of neurosymbolic AI continues to evolve, we
anticipate that more diverse and innovative compositions will emerge,
broadening the scope and applications of neurosymbolic approaches.
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1.4 Application Domains

In this section, we discuss the data modalities for which Scallop is best
suited and explore the application domains where Scallop has shown
effectiveness. We also identify the limitations of Scallop, highlighting
tasks where it may be less effective.

Scallop can be broadly applied to applications that require both
neural models and programmatic reasoning modules. It is particularly
useful when the neural model requires additional training. With a fully
differentiable, end-to-end neurosymbolic pipeline, strong supervision is
not necessary for the neural model. Instead, algorithmic supervision can
be used, offering benefits such as data efficiency and generalizability.

Data Modalities Scallop is capable of handling diverse data modalities
by virtue of being based on the relational data model. The relational
paradigm enables it to work seamlessly with existing relational databases
and tabular data, encompassing information from knowledge bases,
electronic health records, and internet documents. Additionally, natural
language data from NLP tasks can be ingested in various forms: as
raw sentences, embeddings (tensors), or structured representations
such as relational databases or functional programs. Image data from
computer vision can be converted into semantic representations like
scene graphs. Videos, which extend images with a temporal dimension,
can similarly be represented as spatio-temporal scene graphs for analysis
in Scallop. Computer programs can be transformed into relational
databases, capturing detailed information such as abstract syntax trees
and control-flow graphs.

Application Domains We have applied Scallop across diverse domains,
including natural language processing (NLP), computer vision (CV),
planning, program and security analysis, bioinformatics, and healthcare.
In the domain of NLP, we have applied Scallop to tasks that require
reasoning, such as retrieving documents in a database, or analyzing data
from sources such as electronic health records or legal documents. In the
domain of computer vision, rather than focusing on low-level perception
tasks like object segmentation and tracking, we have applied Scallop
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to hybrid tasks such as visual question answering and for supporting
the training of scene graph generation models. In security analysis, we
have applied Scallop to tasks like taint analysis, vulnerability detection,
and fault localization. In bioinformatics, we have employed Scallop in
applications such as predicting RNA secondary structures and RNA
splicing. It is important to note that not all Scallop solutions follow a
uniform architecture. We adapt different building blocks (Figure 1.2)
depending upon each task’s unique characteristics.

Applications Where Scallop May Be Less Effective We identify three
examples where Scallop may not significantly enhance the task-solving
process due to challenges in defining the reasoning component or the
appropriate intermediate representation.

1. Generating Text with Subjective Criteria. A common use-case of
language models like GPT is generating text that satisfies sub-
jective criteria in style or content, such as empathy or political
neutrality. While language models can generate coherent para-
graphs, identifying specific logical components for integration is
challenging. The abstract nature of such tasks makes it difficult
to pinpoint areas where logical reasoning would offer substantial
value beyond what current language models provide.

2. Basic Math Calculations (e.g., +, −, ×, ÷). This task is inher-
ently symbolic and straightforward. Existing tools like Python or
MATLAB can perform these operations directly, and there is no
clear need for a perceptual model. The task is purely logical and
lacks components that would benefit from Scallop’s relational or
perceptual capabilities.

3. Low-Level Motor Control for Robots. Scallop’s syntax is more
suited to defining high-level discrete logical rules rather than
handling low-level numerical processing of sensory signals. Thus,
for tasks like motor control based on raw sensor inputs, imperative
languages such as C or Python may be more effective for specifying
the numerical algorithms.
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1.5 Intended Audience

Scallop is built on the logic programming paradigm and integrates
seamlessly with machine learning frameworks like PyTorch through
Python bindings. As such, we assume readers are familiar with founda-
tional concepts in logic, machine learning, basic calculus (specifically
differentiation), and the Python programming language. This tutorial
covers topics including programming language syntax and semantics,
probabilistic theories and approximations, and the design and implemen-
tation of machine learning systems. While it also explores applications
in natural language processing and computer vision, we provide acces-
sible introductions to each task. Overall, this tutorial is designed for
readers seeking a practical, foundational understanding of neurosym-
bolic programming with Scallop, covering both theoretical concepts and
real-world applications.

1.6 Outline

We cover the core Scallop language in Section 2 starting from the basics
of relational programming. We then describe our core reasoning module
in Section 3 which dives deeper into the internals of Scallop and our
provenance framework. We show the core programming constructs in
Scallop that allow for scalable differentiable reasoning. Next, Section 4
presents a few motivating tasks showcasing Scallop’s ability to concisely
and effectively define neurosymbolic applications. Section 5 connects
Scallop with foundation models. We present a few more advanced
neurosymbolic applications in Section 6. Finally, Section 7 concludes
with a discussion of limitations and future directions.



2
Basics of Programming in Scallop

In this section, we present Scallop as a relational logic programming
language. It is a Datalog-based language extended with features such as
negation, aggregation, disjunctive heads, algebraic data types, foreign
functions, and foreign predicates. We provide a comprehensive overview
of the core language encompassing all of these constructs.

2.1 Relations, Data Types, and Facts

The fundamental data type in Scallop is a relation which comprises a set
of tuples of statically-typed primitive values. The primitive data types
include signed and unsigned integers of various sizes (e.g. i32, usize),
single- and double-precision floating point numbers (f32, f64), boolean
(bool), character (char), and string (String). A comprehensive list
is provided in Table 2.1. For example, Listing 2.1 declares two binary
relations, mother and father. Note that we declare multiple relations
with one type keyword. Values of relations can be specified via individual
tuples or a set of tuples of constant literals, as shown in lines 5 and 8
in Listing 2.1. The type of facts must conform to the statically declared
relation type. All the tuples under mother and father are of arity 2
and both elements are strings. Note that the keyword rel is chosen as
a shorthand for relation, which is used to define relations.

130
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1 type mother (m: String , c: String ),
2 father (f: String , c: String )
3
4 // Christine is Bob 's mother
5 rel mother (" Christine ", "Bob")
6
7 // Bob is father of two kids , Alice and John
8 rel father = {("Bob", "Alice"), ("Bob", "John")}

Listing 2.1: Basic relation and fact definitions representing a family.

Table 2.1: The list of primitive types in Scallop along with their descriptions.

Type Primitive Types in Scallop

Unsigned Integers u8, u16, u32, u64, u128, usize
Signed Integers i8, i16, i32, i64, i128, isize
Floating Points f32, f64
Character char
Boolean bool
String String
Time Duration, DateTime

As a shorthand, primitive values can be named and declared as
constant variables, as shown in line 2 in Listing 2.2. Type declarations
are optional since Scallop supports type inference. The type of the
composition relation is inferred as (usize, usize, usize) since the
default type of constant unsigned integers is usize. Similarly, the type
of the kinship relation will be inferred as (String, usize, String).
We note that this new representation of family graph is equivalent to
the one defined in Listing 2.1, albeit just using one relation (kinship)
instead of two (father and mother).

2.1.1 Nullary, Unary, and Binary Relations

Nullary or Boolean Relations Many things can be represented as
relations. We start with the most basic programming construct, boolean.
While Scallop allows values to have the boolean type, relations them-
selves can encode boolean values. The example shown in Listing 2.3
contains an arity-0 relation named is_target. There is only one pos-
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1 // Relationships declared as constants
2 const FATHER = 0, MOTHER = 1, GRANDMOTHER = 2, ...
3
4 // father 's mother is grandmother
5 rel composition (FATHER , MOTHER , GRANDMOTHER )
6 // mother 's brother is uncle
7 rel composition (MOTHER , BROTHER , UNCLE)
8
9 // A family kinship graph

10 rel kinship = {
11 // Bob 's mother is Christine
12 (" Christine ",MOTHER ,"Bob"),
13 // Alice 's father is Bob
14 ("Bob",FATHER ,"Alice"),
15 // John 's father is also Bob
16 ("Bob",FATHER ,"John"),
17 }

Listing 2.2: An alternative way to declare kinship relations. Here, kinship relations
are abstracted into constant integers. We use the relation composition to represent
higher-order kinship rules.

1 // Declaration of the type of a 0-arity relation
2 type is_target ()
3
4 rel is_target () // Fact declaration
5 rel is_target = {()} // Set containing an empty tuple

Listing 2.3: Declaration of type and fact for a 0-arity (or boolean) relation.

sible tuple that could form a fact in this relation, that is the empty
tuple (). Consider the relation is_target as a set. If the set contains
no element (i.e., empty), then it encodes boolean “false”; otherwise,
the set could contain at most and exactly one tuple, and the relation
encodes the boolean “true”.

Unary Relations Unary relations are relations of arity 1. We can
define unary relations for “variables” as we see in other programming
languages. Listing 2.4 declares a relation named greeting containing one
single string of “hello world!”. It shows three ways of declaring a single
fact in the relation. The first two were introduced earlier but the third
one omits the parenthesis since the relation is unary.
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1 rel greeting ("hello world!")
2 // or
3 rel greeting = {("hello world!" ,)}
4 // or
5 rel greeting = {"hello world!"}

Listing 2.4: Declaration of a unary relation greeting.

A

B C

Figure 2.1: A graph
with three nodes.

1 // An enum type Node
2 type Node = A | B | C
3 // Graph relation
4 rel node = {A, B, C}
5 rel edge = {(A, B), (B, A), (B, C)}

Listing 2.5: The relations and facts representing the
graph shown in Figure 2.1.

Binary Relations As the name suggests, binary relations are relations
of arity 2. We demonstrate binary relations using a graph (Figure 2.1)
and its Scallop representation (Listing 2.5). As shown in the code, we
define an enum type named Node containing three variants, A, B, and
C, corresponding to the three nodes in the graph. The unary relation
node is thus a set containing the three nodes, and the edge relation is
a binary relation containing directed edges in the graph.

2.1.2 Type Inference

Scallop supports type inference, meaning that not all types need to
be explicitly annotated. In Scallop, types are inferred during the com-
pilation process. When taking the code shown in Listing 2.5, Scallop
is capable of inferring that node relation is of type (Node,), while
the edge relation is of type (Node, Node). Type inference will fail if
conflicts are detected. For instance, the Listing 2.6 shows one piece of
Scallop code which results in an error message during compilation. This
is due to that both a value of type Node and one of String are observed
as the second element of the edge relation.
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1 > rel edge = {(A, B), (B, "1")}
2
3 [Error] cannot unify types `Node ` and `String `, where
4 the first is declared here
5 REPL :0 | rel edge = {(A, B), (B, "1")}
6 | ^
7 and the second is declared here
8 REPL :0 | rel edge = {(A, B), (B, "1")}
9 | ^^^

Listing 2.6: A piece of Scallop code that has a conflict detected by type inference.
We also show the error message thrown when compiling the code.

2.2 Logic Rules

Since Scallop’s language is based on Datalog, it supports “if-then”
rule-like Horn clauses. Each rule is composed of a head atom and
a body, connected by the symbol =. If the body “holds”, then we
derive the atom of the head. Listing 2.7 shows three rules defining
the grandmother relation. We say that the body of a rule can be
grounded if every single variable can be substituted by values in existing
facts in the database. For instance, the body of the rule on line 6 in
Listing 2.7 can be grounded by two facts, father("Bob", "Alice") and
mother("Christine", "Bob"). The variable c can be grounded with
“Christine”, b can be grounded with “Bob”, while a can be grounded
with “Alice”. Notably, the variable b appears in both the mother(c, b)
atom as well as the father(b, a) atom, meaning that the value being
used to ground the variable b has to appear in both facts.

In a rule, conjunction is specified using and-separated atoms within
the rule body whereas disjunction can be specified by multiple rules
with the same head predicate. Each variable appearing in the head
must also appear in some positive atom in the body. Conjunctions and
disjunctions can also be expressed using logical connectives like and, or,
and implies. For instance, the last rule (lines 13–14 of Listing 2.7) is
equivalent to the two rules above combined.

Scallop performs a few compilation checks to ensure that the program
is well-formed. First of all, the rules need to type check. In the case
of Listing 2.7, all the shown relations are binary String relations, and
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1 // A few facts under the base relations
2 rel father = {("Bob", "Alice"), ("John", "Harry")}
3 rel mother = {(" Christine ", "Bob")}
4
5 // Father 's mother is grandmother
6 rel grandmother (c, a) = mother (c, b) and father (b, a)
7 // Mother 's mother is also grandmother
8 rel grandmother (c, a) = mother (c, b) and mother (b, a)
9

10 // is equivalent to ...
11
12 // Mother or father 's mother is grandmother
13 rel grandmother (c, a) = mother (c, b) and
14 ( mother (b, a) or father (b, a))

Listing 2.7: A set of logic rules computing the grandmother relation from father
and mother relations. Given the facts declared at the top, we can derive the
fact grandmother("Christine", "Alice"), which means that “Christine is the
grandmother of Alice.”

therefore type inference succeeds. Moreover, all the variables appearing
in the head atom must be bounded by atoms in the body. Consider the
first rule (line 6) as an example, in which variable a is bounded by the
father relation, while variable c is bounded by mother. Therefore, the
head atom of the rule is bounded and well-formed. For the last rule
(lines 13–14) where the body contains disjunctions, head variables need
to be bounded for all branches in the body. This is indeed true since a
is bounded by both atoms in the disjunction.

Scallop supports value creation by means of foreign functions (FFs).
FFs are polymorphic and include arithmetic operators such as + and -,
comparison operators such as != and >=, type conversions such as [i32]
as String, and built-in functions like $hash and $string_concat.
They only operate on primitive values but not relational tuples or
atoms. Listing 2.8 shows a few examples. Specifically, the first shows
that floating point weight and height can be used to compute body
mass index (BMI). In the second example, strings are concatenated
together using FF, producing the result full_name("John Doe").

Note that FFs can fail due to runtime errors such as division-by-zero
and integer overflow, in which case the computation for that single
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1 // E1: Computing body mass index (BMI) by arithmetic
2 type person (name: String , mass_kg : f32 , height_m : f32)
3 rel bmi(name , m / (h * h)) = person (name , m, h)
4
5 // E2: Computing ful name by concatenating strings
6 rel first_name ("John"), last_name ("Doe")
7 rel full_name ( $string_concat (x, " ", y)) =
8 first_name (x) and last_name (y)
9

10 // E3: Potentially failing
11 rel denominator = {0, 1, 2} // 3 denominators
12 rel result (6 / x) = denominator (x) // results = {3, 6}

Listing 2.8: A set of logic rules that make use of the foreign functions in Scallop.

fact is omitted. In the last example shown in Listing 2.8 (lines 10–
12), when dividing 6 by denominator, the result is not computed for
denominator 0 since it causes a FF failure. The purpose of this semantics
is to support probabilistic extensions rather than silent suppression of
runtime errors. When dealing with floating-point numbers, tuples with
NaN (not-a-number) are also discarded.

2.3 Recursion, Negation, and Aggregation

In this section we discuss some slightly advanced features of logic rules
in Scallop, namely recursion, negation, and aggregation. These features
are key to an expressive language for Scallop and making it applicable
to a diverse set of applications.

2.3.1 Recursion

A powerful programming construct in Scallop is to declaratively define
recursion. Within a rule, if a relational predicate appearing in the head
appears in the body, the rule is recursive. More generally, a relation r

is dependent on s if an atom s appears in the body of a rule with head
atom r. A recursive relation is one that depends on itself, directly or
transitively. For instance, Listing 2.9 shows a program with recursion.
In the program, path depends on edge (lines 4–6) and path itself (line
6). Based on this information, we can draw a dependency graph for the
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edge path

Figure 2.2: The de-
pendency graph of the
edge-path program.

1 // Type declaration
2 type edge(x: Node , y: Node)
3 // Transitive closure
4 rel path(x, y) = edge(x, y)
5 rel path(x, z) = path(x, y) and

edge(y, z)

Listing 2.9: The edge-path program defining a
transitive closure that yields paths given a set of edges.

1 type fib(bound x: i32 , y: i32) // type definition
2 rel fib = {(0, 1), (1, 1)} // base cases
3 rel fib(x, y1 + y2) = // recursive case
4 fib(x - 1, y1) and fib(x - 2, y2) and x > 1
5 query fib (5, y) // result : fib (5, 8)

Listing 2.10: Definition of Fibonacci number in Scallop. We note that fib is by
definition an infinite relation. To make computations feasible, we add the bound
keyword on the first line, which we delay the discussion till Section 2.5.

program, shown in Figure 2.2. Since there is a self-loop on the path
relation, we say that the program is recursive.

Recursion is also very useful in recursive mathematical definitions.
For example, the definition of Fibonacci numbers is recursive. Recall
the formal definition of Fibonacci numbers:

fib(x) =
{

fib(x− 1) + fib(x− 2) if x > 1,
1 otherwise

In Scallop, we encode the function fib as a binary relation between the
integer input and output, shown in Listing 2.10. On line 2, we define the
base cases for fib(0) and fib(1). In terms of the recursive case, we obtain
the results of y1 = fib(x− 1) and y2 = fib(x− 2) and compute the sum
y1 + y2. This almost literally translates to the recursive rule on lines
3–4. We note that an extra constraint x > 1 must be added in order
for the computation to terminate. At the end, when the atom fib(5,
y) is queried, Scallop will return that a fact fib(5, 8) suggesting that
8 is the result of computing fib(5).
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2.3.2 Negation

Scallop supports stratified negation using the not operator on atoms in
the rule body. Listing 2.11 shows a rule defining the has_no_children
relation as any person p who is neither a father nor a mother (lines
9–10). In the rule, the underscore (_) stands for wildcard which is
used to match any value. Note that we need to bound p by a positive
atom person in order for the rule to be well-formed. In the rule that
does not compile, the variable p can be anything other than "Bob" or
"Christine", meaning that it is impossible to enumerate the values.
Scallop rejects these kinds of programs by ensuring that all variables
that occur in the head are bounded by positive atoms in the body. At
the end, we have the relation has_no_children containing one single
tuple ("Alice"), since according to the facts defined above, "Alice"
is not a parent of anyone.

1 // A family containing three people
2 rel person = {"Alice", "Bob", " Christine "}
3 // Bob is Alice 's father
4 rel father ("Bob", "Alice")
5 // Christine is Bob 's mother
6 rel mother (" Christine ", "Bob")
7
8 // Compute the person who has no children
9 rel has_no_children (p) = person (p) and

10 not father (p, _) and not mother (p, _)
11
12 // !! This rule does not compile : p is not bounded !!
13 rel error(p) = not father (p, _) and not mother (p, _)

Listing 2.11: A Scallop program that computes the person who has no children
given the kinship relations within a family. Note that we also show one rule (line 13)
which cannot compile due to the existance of an unbounded variable p.

A relation r is negatively dependent on s if a negated atom s appears
in the body of a rule with head atom r. In the example shown in List-
ing 2.11, has_no_children negatively depends on father. A relation
cannot be negatively dependent on itself, directly or transitively, as
Scallop supports only stratified negation. The rule shown in Listing 2.12
is rejected by the compiler, as the negation is not stratified.
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1 // compilation error!
2 rel something_is_true () = not something_is_true ()

Listing 2.12: A rule that has negative circular dependency, causing the compiler to
reject the program.

1 rel person = {"Alice", "Bob", " Christine "}
2
3 // count the number of people , which should be 3
4 rel num_people (n) = n := count(p: person (p))
5
6 // syntax sugar that is equivalent to the above rule
7 rel num_people = count(p: person (p))

Listing 2.13: A simple rule with aggregation counting the number of people.

2.3.3 Aggregation

Scallop also supports stratified aggregation. We use the assignment
symbol := to retrieve the results obtained from aggregations. The set of
built-in aggregators include common ones such as count, sum, max, and
first-order quantifiers forall and exists. Besides the operator, the
aggregation construct specifies the binding variables, the aggregation
body to bound those variables, and the result variable(s) to assign the
result. The rule with aggregation in Listing 2.13 reads, “variable n is
assigned the count of p, such that p is a person”. Specifically, n is the
result of the aggregation, count is the aggregator, p is the qualified
variable for aggregation, and person(p) is the body of the aggregation.
At the end, num_people(3) is derived since there are 3 facts in the
person relation. In the rule, p is the binding variable and n is the result
variable. Depending on the aggregator, there could be multiple binding
variables or multiple result variables. On line 7 we also show a syntax
sugar when the result of the aggregation directly corresponds to the
tuples to be stored in the head relation.

Further, Scallop supports SQL-style group-by operations. If a vari-
able is bounded in the aggregation body and is also used in the head of
the rule, we say that variable is a group-by variable. In Listing 2.14, we
compute the number of children of each person p, which serves as the
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1 // Bob is Alice 's parent , Christine is Bob 's parent
2 rel person = {"Alice", "Bob", " Christine "}
3 rel parent = {("Bob", "Alice"), (" Christine ", "Bob")}
4
5 // Implicit group -by result :
6 // >> {(" Bob", 1), (" Christine ", 1)}
7 rel num_child (p, n) = n := count(c: parent (p, c))
8
9 // Explicit group -by result :

10 // >> {(" Alice", 0), (" Bob", 1), (" Christine ", 1)}
11 rel num_child (p, n) = n := count(c: parent (p, c)
12 where p: person (p))

Listing 2.14: A few examples with group-by aggregation. Notice that the resulting
fact ("Alice", 0) is not derived by the rule with implicit group-by operation.

group-by variable. However, depending on whether we explicitly bound
the group-by variable p, we get different results. On line 12, we explicitly
use a where clause to bound the variable p with everyone in the person
relation. As such, we would also find the number of children of "Alice",
which is 0. For the rule on line 7, on the other hand, we do not explicitly
bound the group-by variable p, meaning that no information is present
other than the parent relation. Since "Alice" is not a parent of anyone,
the entry ("Alice", 0) will not exist in the result.

Finally, quantifier aggregators such as forall and exists return one
boolean variable. For instance, for the aggregation shown in Listing 2.15,
variable sat is assigned the truthfulness (true or false) of the following
statement: “for all a and b, if b is a’s father, then a is b’s son or daughter”.
At the end, we would obtain a fact integrity_constraint(true),
meaning that the constraint is satisfied given the kinship facts shown
on line 1–4.

There are a couple of syntactic checks on aggregations. First, similar
to negation, aggregation also needs to be stratified—a relation cannot
be dependent on itself through an aggregation. Second, the binding
variables must be bounded by at least one positive atom in the body
of the aggregation. Lastly, the body of the rule and the body of an
aggregation form nested scopes. A variable in the inner scope is shadowed
if the variable is redefined by an aggregation in the outer scope.
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1 // Bob is Alice 's father
2 rel father ("Bob", "Alice")
3 // Alice is Bob 's daughter
4 rel daughter ("Alice", "Bob")
5
6 // An integrity constraint for kinship graphs
7 rel integrity_constraint (sat) =
8 sat := forall (a,b: father (a,b) implies
9 (son(b,a) or daughter (b,a)))

Listing 2.15: A rule encoding an integrity constraint about kinship graphs, making
use of the forall and implies operators.

2.4 Programming with Probabilities

Although Scallop is designed primarily for neurosymbolic programming,
its syntax also supports probabilistic programming. This is especially
useful when debugging Scallop code before integrating it with a neural
network. Consider a machine learning programmer who wishes to extract
structured relations from a natural language sentence “Bob takes his
daughter Alice to the beach”. The programmer could imitate a neural
network producing a probability distribution of kinship relations between
Alice (A) and Bob (B). As shown in Listing 2.16, we list out all possible
kinship relations between Alice and Bob. For each of them, we use the
syntax [PROB]::[TUPLE] to tag the kinship tuples with probabilities.
The semicolon “;” separating them specifies that they are mutually
exclusive—Alice cannot be both the mother and father of Alice.

Scallop also supports operators to sample from probability distri-
butions. They share the same surface syntax as aggregations, allowing
sampling with group-by. The following rule shown in Listing 2.17 deter-
ministically picks the most likely kinship relation between a given pair of
people a and b, which are implicit group-by variables in this aggregation.
As the end, only one fact, 0.95::top_1_kinship(FATHER, A, B), will
be derived according to the above probabilities. Other types of sampling
are also supported, including categorical sampling (categorical<K>)
and uniform sampling (uniform<K>), where a static constant K denotes
the number of trials.
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1 // An independent probabilistic fact
2 rel 0.95:: kinship (FATHER , A, B)
3
4 // A mutually exclusive set of probabilistic facts
5 rel kinship = {
6 // A is B's father with 0.95 prob
7 0.95::( FATHER , A, B);
8 // A is B's mother with 0.01 prob
9 0.01::( MOTHER , A, B);

10 ...
11 }

Listing 2.16: Probabilistic facts within the kinship relation written in Scallop in
two different ways. Note that in the second example, facts are separated by semicolons
(;), meaning that the facts are mutually exclusive.

1 rel top_1_kinship (r,a,b) =
2 r := top <1>(rp: kinship (rp ,a,b))
3 // result : { 0.95:: top_1_kinship (FATHER , A, B) }

Listing 2.17: A Scallop rule using the top sampler. Following Listing 2.16, for each
pair of people a and b, we find the top 1 kinship relation between them.

Finally, rules can also be tagged by probabilities which can reflect
their confidence. The rule shown in Listing 2.18 states that a grand-
mother’s daughter is one’s mother with 90% confidence. Probabilistic
rules are syntactic sugar. They are implemented by introducing in the
rule’s body an auxiliary nullary (i.e., boolean) fact that is regarded true
with the tagged probability.

2.5 On-Demand Computations

In normal Scallop, facts are computed in a bottom-up fashion. That
is, for each rule, we start from grounding the body with existing facts,
and derive the fact in the head. Typically, this would derive all possible
outcomes for a relation, which may be costly. Worse, it may even be
impossible to derive fully due to the derived relation being infinite. One
example is the computation of Fibonacci number (also shown previously
in Listing 2.10). Fibonacci number itself is infinite, so given the base
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1 // Grandmother 's daughter is 90% likely one 's mother
2 // Note: she could also be one 's aunt
3 rel 0.9:: mother (a,c) =
4 grandmother (a,b) and daughter (b,c)
5
6 // The above rule is desugared to ...
7 rel 0.9:: prob_of_rule () // auxiliary nullary relation
8 rel mother (a,c) =
9 grandmother (a,b) and daughter (b,c)

10 and prob_of_rule ()

Listing 2.18: A probabilistic rule where the probability is encoded in the head.

cases for 0 and 1, it is expected that the computation for all Fibonacci
numbers will never terminate. Such a Scallop program is shown in
Listing 2.19. However, often times we have a specific query for these
infinite relations. As shown on line 6 in Listing 2.20, we are querying
for the 5th Fibonacci number, and nothing else is expected. For such
cases, we might use on-demand computation to answer those queries,
without computing the full infinite relation. Specifically, the number 5
is the demand for the fib relation.

We achieve on-demand computation in Scallop by doing the following
(Listing 2.20). First, as shown on line 2, we add a bound keyword to the
x variable when defining the fib relation. This is called an adornment,
meaning every time the relation fib is computed, we are treating the
first argument x as the input. For the second variable y that is not
adorned by the bound keyword, it means that the value will be derived
by rules. A variable not adorned by bound is treated as a free variable.
We say that bound-free (or bf in short) is the on-demand pattern for
the fib relation. Without specification, normal relations have an all-free
on-demand pattern, which means they are not on-demand relations. For
rules with on-demand relations as the head atom, their well-formedness
is slightly different than regular rules: variables in the positive body
atoms as well as the variables bounded by the on-demand head atom
are considered bounded by that rule.

On-demand relations can be used to optimize execution of queries.
Consider the edge-path example shown in Listing 2.21. Suppose we



144 Basics of Programming in Scallop

1 type fib(x: i32 , y: i32)
2 rel fib = {(0, 1), (1, 1)}
3 rel fib(x, y1 + y2) =
4 fib(x - 1, y1) and fib(x - 2, y2)
5 // Note: will not terminate ...

Listing 2.19: First implementation of Fibonacci number, which would result in a
non-terminating execution due to the fib being an infinite relation.

1 // adding adornment to define on - demand pattern
2 type fib(bound x: i32 , y: i32)
3 rel fib = {(0, 1), (1, 1)}
4 rel fib(x, y1 + y2) =
5 fib(x - 1, y1) and fib(x - 2, y2)
6 and x > 1 // avoid generating infinite demand
7 query fib (5, y)

Listing 2.20: Another implementation of Fibonacci number, which utilizes on-
demand computation by adding the bound keyword on x when defining the fib
relation. In the rule on lines 4–6, we also include a constraint x > 1 in order to
bound the recursive generation of demand.

1 // Path is declared with on - demand pattern "fb"
2 type Node = usize
3 type edge(x: Node , y: Node), path(x: Node , bound y:

Node)
4
5 // Dense graph with thousands of edges
6 rel edge = { /* (0, 1), lots of tuples ..., (T, S) */ }
7
8 rel path(x, y) = edge(x, y)
9 rel path(x, y) = edge(x, z) and path(z, y)

10 query path(x, S) // query a path with a sink at node S

Listing 2.21: The edge-path program with on-demand path relation.

have a dense graph with thousands of edges, the normal transitive
closure defined for path would enumerate all possible paths in the
graph. However, given that we have a query on line 11 that desires to
find all sources that can reach a particular sink S, there is no need to
enumerate all the paths. The desirable demand pattern for this query
would be fb, meaning that we want to set the second argument of the
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path as a bound variable (line 3). With this adornment, Scallop will only
compute the paths that reaches S, avoiding the expensive exploration
of all possible paths.

2.6 Algebraic Data Types

Algebraic data types (ADTs) are powerful programming constructs that
allows user to define custom data structures and enum variants. They
can be used to define recursive data structures such as lists and trees.
Domain-specific languages (DSLs) can also be represented using ADTs.
For instance, Figure 2.3 and Listing 2.22 shows one simple integer
arithmetic language expressed in Scallop as a custom ADT. We use
the type keyword to start the declaration, and the bar (|) symbol
to separate the ADT variants. There are three variants here, among
which the Add and Sub variants are considered recursive because their
arguments contain the Expr type itself. On the other hand, the Int
variant is a terminal. We show one entity of the custom Expr type
declared as a constant on line 6 of Listing 2.22.

(Expr) e ::= i | e1 + e2 | e1 − e2

Figure 2.3: A simple language for integer arithmetic expressions. An expression
can be either a simple integer i, an addition of two expressions, or a subtraction of
two expressions.

1 type Expr = Int(i32) // a simple integer
2 | Add(Expr , Expr) // binary addition
3 | Sub(Expr , Expr) // binary subtraction
4
5 // an expression representing 1 + (3 - 2)
6 const MY_EXPR : Expr = Add(Int (1) , Sub(Int (3) , Int (2)))
7
8 // a unary relation storing expressions
9 type target_expr (e: Expr)

10 rel target_expr = { MY_EXPR }

Listing 2.22: A custom algebraic data type Expr (lines 1–3) that represents the
small language shown in Figure 2.3. Line 6 shows one expression 1+(3−2) expressed
using the Expr type.
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Values of custom ADTs can be used just like any other values in
Scallop. Line 9 of Listing 2.22 declares one unary relation storing such
expressions, whereas line 10 shows a fact of that relation containing
the constant MY_EXPR. We next showcase how entities can be read and
created dynamically within Scallop rules.

Entities can be destructed by pattern matching expressions. For
instance, Listing 2.23 shows three rules, each handling a certain variant
of the Expr ADT. The first “rule” reads “evaluating the expression
Int(i) yields an integer i”. Although it looks like a fact, there is an
unbounded variable i so it will be desugared and treated as a rule.
The second and third rule matches on the Add and Sub variants. They
recursively evaluate the sub-expressions e1 and e2, and then adds or
subtracts the respective results to form the final result.

1 // eval relation evaluates the expr , yields int result
2 type eval(bound expr: Expr , result : i32)
3
4 // three rules handling the variants of Expr
5 rel eval(Int(i), i)
6 rel eval(Add(e1 ,e2), i1+i2) =
7 eval(e1 , i1) and eval(e2 , i2)
8 rel eval(Sub(e1 ,e2), i1 -i2) =
9 eval(e1 , i1) and eval(e2 , i2)

10
11 // query the result of MY_EXPR
12 query eval(MY_EXPR , y)

Listing 2.23: A Scallop program that evaluates Expr.

The relations handling ADT entities can also be adorned by bound
keywords to indicate on-demand computation patterns. For instance, on
line 2 of Listing 2.23, we let eval take in expressions and yield integer
results. If the pattern is not specified, Scallop will evaluate every single
declared expression. However, now that we have a demand specified
on line 12 (MY_EXPR), Scallop will only evaluate necessary expressions
in order to compute the result for MY_EXPR, yielding the resulting fact
eval(MY_EXPR, 2).
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2.7 Foreign Interface

Scallop supports a foreign interface which allows external definition of
functions, predicates, and attributes. These constructs allow Scallop
to be effective in diverse applications, including a tight integration
of foundation models, which we describe in detail in Section 5. In
this section we describe such constructs and a selection of standard
library containing interfaced items. We note that the code snippets
in this section may show the use of extern keyword, suggesting the
declaration of externally defined items. However, during normal use of
Scallop, such declarations are not necessary and most foreign constructs
are imported automatically.

2.7.1 Foreign Functions

In Scallop, foreign functions are pure functions that accept basic values
and returns a single basic value upon success. We have showcased simple
arithmetic operations and foreign function calls in prior examples (e.g.
Listing 2.8), and we will take a closer look in this section. In the most
simplistic form, foreign functions are defined to be $FUNC(ARG_TYPE,
...) -> RET_TYPE. The function starts with a dollar sign $, and may
take in multiple arguments with declared argument types (ARG_TYPE).
The function, upon success, must return one value of the return type.
However, Scallop’s foreign function interface allows advance features
such as (a) generic functions with type parameters, (b) functions with
optional argument, and (c) functions with variable argument (vararg).
Some examples using these features are shown in Listing 2.24. We now
elaborate on each of these features.

Generic Functions When defining the type of a function, we may use
an additional angle brackets <...> after the function name, to specify
the generic type parameters. Each type parameter may be followed by a
type family to give additional constraint on the type. For instance, the
$abs function shown in Listing 2.24 is a generic function with one type
parameter, T, that needs to be a Number. Signed or unsigned integers as
well as floating point numbers are types under the family Number. The
absolute value function is properly defined on any of such data types.
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1 // A simple function that retrieves the day component
2 // given a DateTime . A "day" is a 32- bit unsigned
3 // integer (u32) representing the day within a month ,
4 // starting from 1.
5 extern type $day(d: DateTime ) -> u32
6
7 // Absolute value function that is generic w.r.t. a
8 // number type T. It takes in a value of T and returns
9 // a value of type T.

10 extern type $abs <T: Number >(x: T) -> T
11
12 // Taking the substring of a given string with an
13 // integer range. Note the end index `e` is optional ;
14 // if not provided , we retrieve the part of the string
15 // after the begin index `b `. Otherwise , we take the
16 // substring from b to e.
17 extern type $substring (s: String , b: usize , e: usize ?)
18 -> String
19
20 // Take in an arbitrary amount of strings and
21 // concatenate them into the result string . Note that
22 // the strs argument is a vararg , denoted by the "..."
23 extern type $string_concat (strs: String ...) -> String
24
25 // Format a string using other values .
26 extern type $format (form: String , args: Any ...)
27 -> String

Listing 2.24: Type declarations of foreign functions from Scallop’s standard library.

There are a fixed set of type families, which are Any, Number,
Integer, and Float. As a syntax sugar, if the type family is not speci-
fied on a type parameter, we default its family to Any, allowing values
of any type to be passed into the function.

When using a generic function, it is not necessary to explicitly
instantiate the function with a concrete type, as the type inference
module of Scallop will find the most suitable type automatically. For
instance, without special configuration, the expression $abs(-3) in
Scallop will return the number 3 of type i32, as the literal number -3
has the type i32 by default.
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Optional Argument When specifying the type of an argument to the
function, we may add a question mark (?) at the end to denote that the
argument is optional. Optional arguments must occur after non-optional
arguments. For instance, the $substring function shown in Listing 2.24
is a function with argument e being optional. This means that we
may call the function in two different ways: $substring("hello", 3)
returns "lo" while $substring("hello", 3, 4) returns "l".

Variable Argument There are functions that may accept an arbitrary
amount of arguments. We may specify the property, vararg, by adding
the ellipses (...) after the type of that argument. Note that the variable
argument, similar to optional argument, must appear after non-vararg
arguments. A foreign function may have at most one variable argument.
The $string_concat function shown in Listing 2.24 is an example
that can take in an arbitrary amount of strings and performs the
concatenation. For example, $string_concat("a", "b") returns "ab"
and $string_concat("a", "b", "c") returns "abc".

Note that when specifying variable arguments, the argument that
may have the arbitrary amount must be of the same type or type family.
If we want arbitrary arguments, we may use the type family Any. For
instance, the $format function accepts one format string and an arbi-
trary amount of arbitrary values. When invoked with $format("1 + 1
= {}", 1 + 1), the second argument is an integer (i32), and the re-
turned value will be "1 + 1 = 2". But when invoked with $format("{}
> 0? {}", 1, 1 > 0), the second argument is integer while the third
argument is a boolean, and the returned value will be "1 > 0? true".

Error Handling Foreign functions may fail. When they fail, there is
no value being returned and the computation for this given input will
be discarded. For instance, implicit foreign function such as division
might fail due to divide-by-zero, and explicit foreign function such as
$substring might fail if the given indices are out-of-bounds of the given
string. By default, no error message will be thrown and errors are silently
suppressed. This is beneficial because, in a relational and declarative
language where inputs can be probabilistic, a significant amount of
redundant computation might occur, and external functions might be
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invoked on invalid inputs. Nevertheless, Scallop provides compiler and
runtime knobs to allow the report of errors.

2.7.2 Foreign Predicates

Foreign predicate is a generalized interface of foreign function, which can
now produce multiple outputs associated with additional information
such as probabilities. Predicates are mostly declared just like other
relations in Scallop, where inputs should be associated with bound
keywords while outputs may be associated with free keywords. Here,
we add the extern keyword to denote that the PREDICATE should be
defined externally.

1 extern type PREDICATE (bound IN: TYPE , ..., OUT: TYPE)

Conceptually, foreign predicate “relates” the inputs and the outputs.
This means that given a specific input to the predicate, multiple facts
involving the input and outputs may be produced by the predicate.

In Listing 2.25 we showcase one foreign predicate string_chars,
that could help in obtaining the nucleotides ({A, C, G, U}) in an RNA
sequence string. Taking the string s as an input, string_chars produces
(s, i, n) triplets where i is the index of a character in the string, and
n is the character itself. It is clear that string_chars returns multiple
facts as the output, whereas foreign functions introduced in the previous
section can only return one output.

Foreign Predicates that Produce Probabilities Foreign predicates
produce facts which can be associated with additional tags. The most
common use case of this feature is the encoding of probabilistic functions.
For instance, in the standard library, Scallop provides a foreign predicate
named soft_eq, that compares equality between two numbers. However,
instead of returning exactly discrete false or true, the predicate computes
the probability of the two numbers being equal based on their distance.
Formally, it is defined as follows:

Pr(x = y) = sech2
( |y − x|

2 · β

)
(2.1)
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1 // Given a string , produce set of (index , char) pairs
2 extern type string_chars (bound s:String ,
3 i:usize , c:char)
4
5 // Say that we have an RNA sequence
6 rel rna = {" GGCCCUUUUCAGGGCC "}
7
8 // We want to obtain the nucleotide at each position
9 // i, using the foreign predicate string_chars

10 rel nucleotide (i, n) =
11 rna(s) and string_chars (s, i, n)
12 // result :
13 // neucleotide (0, 'G '),
14 // neucleotide (1, 'G '),
15 // neucleotide (2, 'C '), ...

Listing 2.25: An example foreign predicate string_chars.

1 // Given two floating point numbers , compute the
2 // probability that the two numbers are equal.
3 extern type soft_eq (bound x: f32 , bound y: f32)
4
5 // Compute the output probability
6 rel output () = soft_eq (0.9 , 1.0) // 0.998:: output ()

Listing 2.26: The usage of an example foreign predicate soft_eq which may return
probabilities associated with the output.

Essentially, we have a parameter β dictating the threshold which the two
numbers could be different. When x = y, we have the Pr(x = y) = 1.
When x = 0.9 and y = 1.0 and the parameter β = 1.0, we have
Pr(x = y) ≈ 0.998, meaning that the two numbers are very close to
each other. In Scallop, such a program may be written as Listing 2.26.

Other use of foreign predicates producing probabilities include the
similarity between vectors or high-dimensional tensors. We are going to
show more examples of foreign predicates returning facts augmented
with probabilities in Section 5.
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2.7.3 Foreign Attributes

In Scallop, attribute is a higher-order construct that can be used to
annotate any Scallop program item, including declaration of functions,
predicates, facts, and rules. Attributes are constructs that start with
an @ sign, and can accept arbitrary arguments, both positional and
keyworded. Conceptually, one may think of attributes as taking in the
annotated item, and returning another item.

The following example in Listing 2.28 shows the use of a @file
attribute to annotate a relation named edge. Specifically, it instructs
Scallop to load an external CSV (comma-separated values) file, shown
in Listing 2.27 into the edge relation. Conceptually, the @file attribute
processes the otherwise empty relation edge and returns a relation edge
filled with content loaded from the file.

1 // [edge.csv]
2 from ,to
3 0,1
4 1,2

Listing 2.27: A CSV file
storing edges.

1 // [ edge_path .scl]
2 @file("edge.csv", header =true)
3 type edge(from: u32 , to: u32)
4 query edge // {(0, 1), (1, 2)}

Listing 2.28: A Scallop program that can load
the edges in the given CSV file in Listing 2.27.

In the standard library of Scallop, there are many existing prede-
fined attributes. For example, @storage can be used to annotate a
relation to specify the internal storage used for the relation, which can
help programmers optimize the performance of the Scallop program.
As another example, @cmd_arg retrieves command-line arguments (if
available) into the annotated relation. However, the power of having
foreign attributes is only showcased when the set of attributes can be
extended by external plugins and libraries. External databases, models,
and applications can all become foreign attributes that annotate Scallop
relations. We delay the discussion to Section 5.



3
Core Reasoning Framework

The preceding section presented Scallop’s surface language to express
discrete reasoning. However, the language must also support differ-
entiable reasoning to enable end-to-end training. In this section, we
formally define the semantics of the language by means of a provenance
framework. We show how Scallop uniformly supports different reasoning
modes—discrete, probabilistic, and differentiable—simply by defining
different provenances.

We start by presenting the basics of our provenance framework
(Section 3.1). We then present a low-level representation SclRam, its
operational semantics, and its interface to the rest of a Scallop applica-
tion (Sections 3.2-3.3). We next present how our provenance framework
enables probabilistic and differentiable reasoning (Sections 3.5-3.7).
Lastly, we discuss practical extensions in Section 3.8.

3.1 Provenance Framework

A provenance framework propagates additional information (e.g. prob-
ability, proofs) alongside relational tuples in a Scallop program’s exe-
cution. The framework is based on the theory of provenance semirings
(Green et al., 2007). Figure 3.1 defines Scallop’s algebraic interface for
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(Tag) t ∈ T

(False) 0 ∈ T

(True) 1 ∈ T

(Disjunction) ⊕ : T × T → T

(Conjunction) ⊗ : T × T → T

(Negation) ⊖ : T → T

(Saturation) ⃝= : T × T → Bool
Figure 3.1: Core algebraic interface for provenance T .

provenance. We call the additional information a tag t from a tag space
T . There are two distinguished tags, 0 and 1, representing uncondi-
tionally false and true tags. Tags are propagated through operations
of binary disjunction ⊕, binary conjunction ⊗, and unary negation ⊖
resembling logical or, and, and not. Lastly, a saturation check ⃝= serves
as a customizable stopping mechanism for fixed-point iteration. The
above components together form a 7-tuple (T,0,1,⊕,⊗,⊖,⃝=) which we
call a provenance T . Scallop provides a built-in library of provenances,
and users can add custom provenances by implementing this interface.

Example 3.1. max-min-prob (mmp) ≜ ([0, 1], 0, 1, max, min, λx.(1−x),
==), is a built-in probabilistic provenance, where tags are numbers be-
tween 0 and 1 that are propagated with operations like max and min.
The tags do not represent true probabilities but are merely an approxi-
mation. We discuss richer provenances for more accurate probability
calculations later in this section.

A provenance must satisfy a few properties. First, (T,0,1,⊕,⊗)
should form a commutative semiring. That is, 0 is the additive identity
and annihilates under multiplication, 1 is the multiplicative identity,
⊕ and ⊗ are associative and commutative, and ⊗ distributes over
⊕. To guarantee the existence of fixed points (which are discussed in
Section 3.3), it must also be absorptive, i.e., t1⊕ (t1⊗ t2) = t1 (Dannert
et al., 2021). Moreover, we need ⊖ 0 = 1, ⊖ 1 = 0, 0⃝̸=1, 0⃝=0, and 1⃝=1.
A provenance which violates an individual property (e.g. absorptive)
is still useful to applications that do not use the affected features (e.g.
recursion) or if the user simply wishes to bypass the restrictions.
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3.2 SclRam Intermediate Language

Scallop programs are compiled to a low-level representation called
SclRam. Figure 3.2 shows the abstract syntax of a core fragment of
SclRam. Expressions resemble queries in an extended relational algebra.
They operate over relational predicates (p) using unary operations for
aggregation (γg with aggregator g), projection (πα with mapping α),
and selection (σβ with condition β), and binary operations union (∪),
product (×), join (▷◁), difference (−), and anti-join (▷). We note that
there are other binary operations such as intersection (∩) which could
be expressed by combining the above core operations.

(Predicate) p

(Aggregator) g ::= count | sum | max | exists | . . .
(Expression) e ::= p | γg(e) | πα(e) | σβ(e)

| e1 ∪ e2 | e1 × e2 | e1 ▷◁ e2
| e1 − e2 | e1 ▷ e2

(Rule) r ::= p← e

(Stratum) s ::= {r1, . . . , rn}
(Program) s ::= s1; . . . ; sn

Figure 3.2: Abstract syntax of core fragment of SclRam.

A rule r in SclRam is denoted p ← e, where predicate p is the
rule head and expression e is the rule body. An unordered set of rules
combined form a stratum s, and a sequence of strata s1; . . . ; sn consti-
tutes an SclRam program. Rules in the same stratum have distinct
head predicates. Denoting the set of head predicates in stratum s by
Ps, we also require Psi ∩ Psj = ∅ for all i ̸= j in a program. Stratified
negation and aggregation from the surface language are enforced as
syntax restrictions in SclRam: within a rule in stratum si, if a rela-
tional predicate p is used under aggregation (γ) or right-hand-side of
difference (−), that predicate p cannot appear in Psj if j ≥ i.

We next define the semantic domains in Figure 3.3 which are used
subsequently to define the semantics of SclRam. A tuple u is either a
constant or a sequence of tuples. A fact p(u) ∈ F is a tuple u named
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(Constant) C ∋ c ::= int | bool | str | . . .
(Tuple) U ∋ u ::= c | (u1, . . . , un)

(Tagged-Tuple) UT ∋ ut ::= t :: u
(Fact) F ∋ f ::= p(u)

(Tagged-Fact) FT ∋ ft ::= t :: p(u)

(Set of Tuples) U ∈ U ≜ P(U)
(Set of Tagged-Tuples) UT ∈ UT ≜ P(UT )

(Set of Facts) F ∈ F ≜ P(F)
(Database) FT ∈ FT ≜ P(FT )

Figure 3.3: Semantic domains for SclRam.

under a relational predicate p. Tuples and facts can be tagged, forming
tagged tuples (t :: u) and tagged facts (t :: p(u)). Given a set of tagged
tuples UT , we say UT ⊨ u iff there exists a t such that t :: u ∈ UT . A
set of tagged facts form a database FT . We use bracket notation FT [p]
to denote the set of tagged facts in FT under predicate p.

3.3 Operational Semantics of SclRam

We now present the operational semantics for our core fragment of
SclRam in Figure 3.4. A SclRam program s takes as input an exten-
sional database (EDB) FT , and returns an intentional database (IDB)
F ′
T = JsK(FT ). The semantics is conditioned on the underlying prove-

nance T . We call this tagged semantics, as opposed to the untagged
semantics found in traditional Datalog.

Basic Relational Algebra. Evaluating an expression in SclRam yields
a set of tagged tuples according to the rules defined at the top of
Figure 3.4. A predicate p evaluates to all facts under that predicate
in the database. Selection filters tuples that satisfy condition β, and
projection transforms tuples according to mapping α. The mapping
function α is partial: it may fail since it can apply foreign functions to
values. A tuple in a union e1 ∪ e2 can come from either e1 or e2. In a
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Expression α : U⇀ U, β : U→ Bool, g : U → U , JeK : FT → UT

t :: p(u) ∈ FT

t :: u ∈ JpK(FT )
(Predicate)

t :: u ∈ JeK(FT ) β(u) = true
t :: u ∈ Jσβ(e)K(FT )

(Select)

t :: u ∈ JeK(FT ) u′ = α(u)
t :: u′ ∈ Jπα(e)K(FT )

(Project)
t :: u ∈ Je1K(FT ) ∪ Je2K(FT )

t :: u ∈ Je1 ∪ e2K(FT )
(Union)

t1 :: u1 ∈ Je1K(FT ) t2 :: u2 ∈ Je2K(FT )
(t1 ⊗ t2) :: (u1, u2) ∈ Je1 × e2K(FT )

(Product)

t :: u ∈ Je1K(FT ) Je2K(FT ) ⊭ u
t :: u ∈ Je1 − e2K(FT )

(Diff-1)

t1 :: u ∈ Je1K(FT ) t2 :: u ∈ Je2K(FT )
(t1 ⊗ (⊖ t2)) :: u ∈ Je1 − e2K(FT )

(Diff-2)

XT ⊆ JeK(FT ) {ti :: ui}n
i=1 = XT

{tj :: uj}m
j=1 = JeK(FT )−XT u ∈ g({ui}n

i=1)
(
⊗n

i=1 ti)⊗ (
⊗m

j=1(⊖ tj)) :: u ∈ Jγg(e)K(FT )
(Aggregate)

Rule ⟨.⟩ : UT → UT , JrK : FT → FT

(Normalize) ⟨UT ⟩ ={(
⊕n

i=1 ti) :: u | t1 :: u, . . . , tn :: u
are all tagged-tuples in UT with the same tuple u}

told :: u ∈ JpK(FT ) ⟨JeK(FT )⟩ ⊭ u
told :: p(u) ∈ Jp← eK(FT )

(Rule-Keep)

tnew :: u ∈ ⟨JeK(FT )⟩ JpK(FT ) ⊭ u
tnew :: p(u) ∈ Jp← eK(FT )

(Rule-New)

told :: u ∈ JpK(FT ) tnew :: u ∈ ⟨JeK(FT )⟩
(told ⊕ tnew) :: p(u) ∈ Jp← eK(FT )

(Rule-Merge)

Program lfp◦ : (FT → FT )→ (FT → FT ), JsK, JsK : FT → FT

(Saturation) F old
T ⊜ F new

T iff ∀tnew :: p(u) ∈ F new
T , ∃told :: p(u) ∈ F old

T

such that told ⃝= tnew

(Fixpoint) lfp◦(h) = h ◦ · · · ◦ h = hn if there exists a minimum n > 0,
such that hn(FT ) ⊜ hn+1(FT )

(Stratum) JsK = lfp◦(λFT .(FT −
⋃

p∈Ps
FT [p]) ∪ (

⋃
r∈s

JrK(FT )))

(Program) JsK = JsnK ◦ · · · ◦ Js1K, where s = s1; . . . ; sn.

Figure 3.4: Operational semantics of core fragment of SclRam.
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(Cartesian) product e1 × e2, each pair of incoming tuples is combined,
and we use the provenance multiplication ⊗ to compute their tags.

Difference and Negation. To evaluate a difference expression e1 − e2,
there are two cases depending on whether a tuple u evaluated from
e1 appears in the result of e2. If it does not, we simply propagate the
tuple and its tag to the result (Diff-1); otherwise, we get t1 :: u from
e1 and t2 :: u from e2. Instead of erasing the tuple u from the result as
in untagged semantics, we propagate a tag t1 ⊗ (⊖ t2) with u (Diff-2).
In this manner, information is not lost during negation. Figure 3.5e and
Figure 3.5f compare the evaluations of a difference expression under
different semantics. While the tuple (2,B) is removed from the outcome
under untagged semantics, it is preserved under the tagged semantics.

Aggregation. Aggregators in SclRam are discrete functions g operat-
ing on sets of (untagged) tuples U ∈ U . They return a set of aggregated
tuples to account for aggregators like argmax which can produce multiple
outcomes. For example, we have count(U) = {|U |}. However, in the
probabilistic domain, discrete symbols do not suffice. Given n tagged
tuples to aggregate over, each tagged tuple can be turned on or off,
resulting in 2n distinct worlds. Each world is a partition of the input set
UT (|UT | = n). Denoting the positive part as XT and the negative part
as XT = UT −XT , the tag associated with this world is a conjunction
of tags in XT and negated tags in XT . Aggregating on this world then
involves applying aggregator g on tuples in the positive part XT . This
is inherently exponential if we enumerate all worlds. However, we can
optimize over each aggregator and each provenance to achieve better
performance. For instance, counting over max-min-prob tagged tuples
can be implemented by an O(n log(n)) algorithm, much faster than
exponential. Figure 3.6 demonstrates a running example and an eval-
uation of a counting expression under max-min-prob provenance. The
resulting count can be 0-9, each derivable by multiple worlds.

Rules and Fixed-Point Iteration. Evaluating a rule p← e on database
FT concerns evaluating the expression e and merging the result with the



3.3. Operational Semantics of SclRam 159

A

1

2

3

B C

(a) Maze illustration

0.9 0.9 0.9

0.9 0.9 0.9

0.9 0.9 0.91

2

3

A B C

(b) grid_cell

0.1 0.1 0.1

0.1 0.8 0.9

0.1 0.1 0.11

2

3

A B C

(c) enemy

Scallop: rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, y)

↓
SclRam Code: safe_cell← grid_cell− enemy

(d) A Scallop program and the compiled SclRam program associated with it

Jgrid_cellK(F ) JenemyK(F )

Jgrid_cell− enemyK(F )

(2,A)
(2,B) (2,B)

(2,A)

(e) Untagged semantics

Jgrid_cellK(FT ) JenemyK(FT )

Jgrid_cell− enemyK(FT )

t1 :: (2,A)
t2 :: (2,B) t3 :: (2,B)

t1 :: (2,A)
t2 ⊗ (⊖ t3) :: (2,B)

(f) SclRam tagged semantics

Jgrid_cellK(Fmmp) JenemyK(Fmmp)

Jgrid_cell− enemyK(Fmmp)

0.9 :: (2,A)
0.9 :: (2,B)

0.1 :: (2,A)
0.8 :: (2,B)

min(0.9, 1− 0.1) = 0.9 :: (2,A)
min(0.9, 1− 0.8) = 0.2 :: (2,B)

(g) SclRam with max-min-prob

Figure 3.5: An example maze configuration is shown in (a), where each cell is
represented by a tuple like (1,A). Suppose under the relations grid_cell and
enemy, the cells are annotated by probabilities (shown in (b) and (c)). In (d), we
demonstrate a Scallop rule computing the safe_cells, which are cells that do not
contain an enemy. The rule makes use of negation, and the compiled SclRam code
involves a difference operation on grid_cell and enemy relations. Figures (e), (f),
and (g) illustrate evaluation of the SclRam code under different semantics, where
(g) instantiates the tagged semantics with max-min-prob provenance.
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Scallop: rel num_enemies(n) = n := count(x, y: enemy(x, y))

↓

SclRam Code: num_enemies← πλn.(n)(γcount(enemy))

(a) A Scallop program and the compiled SclRam program associated with it

⟨Jγcount(enemy)K(FT )⟩ ⟨Jγcount(enemy)K(Fmmp)⟩
□□□
□□□
□□□

:: 0 0.1 :: 0
■□□
□□□
□□□

⊕ □■□
□□□
□□□

⊕ · · ·⊕ □□□
□□□
□■□

⊕ □□□
□□□
□□■

:: 1 0.1 :: 1
■■□
□□□
□□□

⊕ ■□■
□□□
□□□

⊕ · · ·⊕ □□□
□■■
□□□

⊕ · · ·⊕ □□□
□□□
■□■

⊕ □□□
□□□
□■■

:: 2 0.8 :: 2

. . . . . .
■■■
■■■
■■■

:: 9 0.1 :: 9

(b) Evaluation of the aggregation expression

Figure 3.6: An example counting enemies in a PacMan maze shown in Figure 3.5a.
Shown in (a) are the Scallop rule and compiled SclRam rule with aggregation.
For example, we have t2B :: enemy(2,B) where t2B = 0.8. In (b), we show two
normalized (⟨.⟩ defined in Figure 3.4) evaluation results under abstract tagged
semantics and with max-min-prob provenance. Each symbol such as ■□□

□□□
□□□ represents

a world corresponding to our arena (■: enemy; □: no enemy). A world is a conjunction
of 9 tags, e.g., ■□□

□□□
□□□ = t3A⊗(⊖t3A)⊗· · ·⊗(⊖t1C). We mark the correct world □□□

□■■
□□□ which

yields the answer 2.

existing facts under predicate p in FT . The result of evaluating e may
contain duplicate tuples tagged by distinct tags, owing to expressions
such as union, projection, or aggregation. Thus, we perform normaliza-
tion by joining (⊕) the distinct tags corresponding to the same tuple.
From here, there are three cases to merge the newly derived tuples
(⟨JeK(FT )⟩) with the previously derived tuples (JpK(FT )). If a fact is
present only in the old or the new, we simply propagate the fact to the
output. When a tuple u appears in both the old and the new, we prop-
agate the disjunction of the old and new tags (told ⊕ tnew). Combining
all cases, we obtain a set of newly tagged facts under predicate p.

Recursion in SclRam is performed similarly to least fixed point
iteration in Datalog (Abiteboul et al., 1995). The iteration happens
on a per-stratum basis to enforce stratified negation and aggregation.
Evaluating a single step of stratum s means evaluating all the rules in s
and returning the updated database. Note that we define a specialized
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rel path(x,y,u,v) = edge(x,y,u,v) and not enemy(u,v)
rel path(x,y,u,v) = path(x,y,z,w) and edge(z,w,u,v)

and not enemy(u,v)

↓

temp← πλ((z,w),(x,y),(u,v)).((u,v),(x,y))(πλ(x,y,z,w).((z,w),(x,y))(path) ▷◁ edge)
path← πλ((u,v),(x,y)).(x,y,u,v)(πλ(x,y,u,v).((u,v),(x,y))(edge) ▷ enemy)
path← πλ((u,v),(x,y)).(x,y,u,v)(temp ▷ enemy)

(a) The top box shows a Scallop program computing whether there is a path (x, y) → (u, v)
without enemy, using transitive closure. The two Scallop rules are compiled to 3 SclRam rules
(shown in the bottom box) where the first rule computes an auxilliary relation temp and the last
two rules correspond to the rules in the Scallop program.

Iteration i 1 2 3 4 5 6 7
t
(i)
1C-3C in F

(i)
T – = ⊕ ⊕ · · · ⊕ = ⊕ ⊕ · · · ⊕ =

t
(i)
1C-3C in F

(i)
mmp – 0.1 0.1 0.2 0.2 0.9 0.9

t
(i)
1C-3C satu.? – F T F T F T
F

(i)
mmp satu.? F F F F F F T

(b) An illustration of the tags that are evolving over iterations. In the figure, = means unchanged
tag, satu. stands for saturated, while T and F represent true and false, respectively.

Figure 3.7: A demonstration of the fixed-point iteration to check whether actor at
1C can reach 3C without hitting an enemy (within the maze configuration shown in
Figure 3.5a). The Scallop rule to derive this is defined on the top, and we assume
bidirectional edges are populated and tagged by 1. Let t1C-3C be the tag associated
with path(1,C,3,C). We use a symbol like to represent a conjunction of negated
tags of enemy along the illustrated path, e.g. = (⊖t2C) ⊗ (⊖t3C). 2nd iter is the
first time t1C-3C is derived, but the path is blocked by an enemy. On 6th iter, the
best path is derived in the tag. After that, under the max-min-prob provenance,
both the tag t1C-3C and the database Fmmp are saturated, causing the iteration to
stop. Compared to untagged semantics in Datalog which will stop after 4 iterations,
SclRam with mmp saturates slower but allowing to explore better reasoning chains.

least fixed point operator lfp◦, which stops the iteration once the whole
database is saturated. Figure 3.7 illustrates an evaluation involving
recursion and database saturation. The whole database saturates on
the 7th iteration, and finds the tag associated with the optimal path in
the maze. Termination is not universally guaranteed in SclRam due to
the presence of features such as value creation. But its existence can be
proven on a per-provenance basis. For example, it is easy to show that
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if a program terminates under untagged semantics, then it terminates
under tagged semantics with max-min-prob provenance.

3.4 External Interface and Execution Pipeline

So far, we have only illustrated the max-min-prob provenance, in which
the tags are approximated probabilities. There are other probabilistic
provenances with more complex tags such as proof trees or boolean
formulae. We therefore introduce for each provenance T an input tag
space I, an output tag space O, a tagging function τ : I → T , and a
recover function ρ : T → O. For instance, all probabilistic provenances
share the same input and output tag spaces I = O = [0, 1] for a unified
interface, while the internal tag spaces T could be different. We call the
4-tuple (I,O, τ, ρ) the external interface for a provenance T . The whole
execution pipeline is then illustrated in Figure 3.8.

Foption<I> FT F ′
T FOτ SclRam program, s ρ

Figure 3.8: Execution pipeline with external interface.

In the context of a Scallop application, an EDB is provided in the
form Foption<I>. During the tagging phase, τ is applied to each input
tag to obtain FT , following which the SclRam program operates on
FT . For convenience, not all input facts need to be tagged—untagged
input facts are assigned the tag 1 in FT . In the recovery phase, ρ is
applied to obtain FO, the IDB that the whole pipeline returns. Scallop
allows the user to specify a set of output relations, and ρ is only applied
to tags under such relations to avoid redundant computations.

Example 3.2. The external interface of the max-min-prob provenance
from Example 3.1 is ([0, 1], [0, 1], id, id), where the input and output
spaces are the real numbers between 0 and 1, and the tagging and
recover functions are the identity function id := λx.x.

3.5 Exact Probabilistic Reasoning with Provenance

We say that a provenance T is probabilistic if its input space I and output
space O are real values in the range [0, 1]. As such, the max-min-prob
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provenance shown in Example 3.1 is a probabilistic provenance. However,
while useful in practice, max-min-prob only computes an approximation
of the real probabilities. In this section, we start by introducing a more
robust provenance that derives exact probabilities.

(Literal) ν ::= vi | ¬vi
(Conjunctive Clause) η ::= ν1 ∧ · · · ∧ νl

(DNF Formula) Φ ∋ ϕ ::= η1 ∨ · · · ∨ ηk

Figure 3.9: Definitions related to boolean formulas in disjunctive normal form.

We introduce the provenance proofs-prob which keeps track of
boolean formulas in disjunctive normal form (DNF). At a high level,
the boolean formula encodes the full lineage of how a fact in the IDB
is derived from existing facts in the EDB. The definitions for DNF
formulas are shown in Figure 3.9. Suppose there are n facts in the EDB
with independent and identically distributed (i.i.d.) probabilities; we
create n boolean variables each labeled v1, . . . , vn. Then, a literal in the
boolean formula is either a positive or a negated (¬) boolean variable.
A set of distinct literals connected by and (∧) form a conjunctive clause,
while a set of clauses connected by or (∨) form a disjunctive normal
form formula ϕ. We note that there are two special DNF formulas,
namely true (⊤) and false (⊥). ⊤ is a singleton DNF formula with one
empty conjunctive clause, whereas ⊥ is an empty DNF formula. As
such, proofs-prob is formally defined as follows:

Definition 3.1. The base proofs-prob (pp) provenance is defined as
the 7-tuple (Φ,⊥,⊤,∨,∧,¬,=), where ∨, ∧, and ¬ are operations on
boolean formulae that perform the corresponding operation before
normalizing the formula back into DNF. The external interface for
proofs-prob provenance is defined as ([0, 1], [0, 1], τpp, ρpp) where:

τpp(pi) = vi (3.1)
ρpp(ϕ) = WMC(ϕ,Γ) (3.2)
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where WMC is the function for Weighted Model Counting, and Γ(vi) = pi
is the mapping from boolean variables (vi) to their corresponding base
probabilities (pi).

Following Figure 3.5, we show one example of proofs-prob’s deriva-
tion process in Figure 3.10. Here, in addition to the tag propagation
process shown in the middle section, we also include the tagging phase at
the top and the recovery phase at the bottom. The tagging function τpp

transforms the input probabilities into internal tags. After the derivation
of boolean formulas, we apply recovery function ρpp to compute the
probabilities of the resulting facts. At the end, we note that the result
computed from the weighted model counting (WMC) process is the
probability of the corresponding tagged fact.

Jgrid_cellK(Fpp) JenemyK(Fpp)

Jgrid_cell− enemyK(Fpp)

v1 :: (2,A)
v2 :: (2,B)

v3 :: (2,A)
v4 :: (2,B)

v1 ∧ ¬v3 :: (2,A)
v2 ∧ ¬v4 :: (2,B)

Jgrid_cellK(Foption<I>)

0.9 :: (2,A)
0.9 :: (2,B)

τpp

JenemyK(Foption<I>)

0.1 :: (2,A)
0.8 :: (2,B)

τpp

Jsafe_cellK(FO)

WMC(v1 ∧ ¬v3,Γ) = 0.81 :: (2,A)
WMC(v2 ∧ ¬v4,Γ) = 0.09 :: (2,B)

ρpp

Figure 3.10: The SclRam evaluation result with proofs-prob on the rule shown
in Figure 3.5. As shown in the first row, we assume that facts in grid_cell and
enemy are provided as base facts with given probabilities. Therefore, each of the 4
shown facts on the second row is assigned a unique boolean variable v1, . . . , v4. The
third row has the two IDB facts tagged by boolean formulas such as v1 ∧ ¬v3.
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WMC essentially computes the weight of the boolean formula given
the weights of the boolean variables. Here, we directly treat the prob-
abilities associated with each input fact as the weight of the assigned
boolean variables. Note that WMC is #P-complete, which presents a
considerable tradeoff between computing exact probabilities and main-
taining a feasible runtime. Indeed, compared to max-min-prob whose
operations are all O(1), it is significantly more expensive to compute
the exact probabilities. In later sections, we describe optimizations
that facilitate efficient learning while maintaining various degrees of
approximation.

3.6 Top-K Proofs Provenance for Scalable Reasoning

The probabilistic nature of our problem setting opens up room for
approximation. A key observation is that, when the inference system is
used in a learning setting, the probability of a ground truth fact should
significantly outweigh the other facts, forming a skewed distribution.
We can exploit this property by only including the “most likely” proofs.

First, we introduce a different way of formalizing the proofs and top-
k proofs. We treat each DNF boolean formula ϕ as a set of proofs, where
each proof is a set of literals. As such, ⊥ = ∅ while ⊤ = {∅}, a singleton
set with ∅ being the only element. We showcase the process of proof
construction using an example in Figure 3.11. Formally, the disjunction
(∨) operation is defined as the set union (∪), while the conjunction (∧)
operation is defined as Cartesian product over proof-wise union:

ϕ1 ∨ ϕ2 = ϕ1 ∪ ϕ2 (3.3)
ϕ1 ∧ ϕ2 = {η1 ∪ η2 | η1 ∈ ϕ1, η2 ∈ ϕ2} (3.4)

In order to perform the approximation, we define the modified
disjunction and conjunction operations, namely ⊕(k) and ⊗(k), where k
is a tunable parameter controlling the level of approximation.

ϕ1 ∨(k) ϕ2 = topk(ϕ1 ∪ ϕ2) (3.5)
ϕ1 ∧(k) ϕ2 = topk({η1 ∪ η2 | η1 ∈ ϕ1, η2 ∈ ϕ2}) (3.6)
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1 rel label = {0.9::( o12 , "cat"), 0.01::( o12 , " flower ")}
2 rel is_a = {
3 ("cat", " mammal "),
4 (" mammal ", " animal "),
5 (" flower ", "plant"),
6 }
7
8 // R1: recursively compute labels of a given object
9 rel label(obj , np) = label(obj , n) and is_a(n, np)

10
11 // R2: query objects that are an animal or a plant
12 rel target (obj) =
13 label(obj ," animal ") or label(obj ,"plant")

(a) A rule used in common sense reasoning for deriving the label of an object given an ontology
graph represented by the relation (is_a).

label(o12, cat)
{{v1}}

is_a(cat, mammal)
{{v2}}

label(o12, mammal)
{{v1, v2}}

[AND]
is_a(mammal, animal)

{{v3}}

label(o12, animal)
{{v1, v2, v3}}

[AND]

(b) Proof construction with conjunction applying R1.

label(o12, animal)
{{v1, v2, v3}}

label(o12, plant)
{{v4, v5}}

target(o12)
{{v1, v2, v3}, {v4, v5}}

[OR]

(c) Proof construction with disjunction applying R2.

Figure 3.11: Derivation of set-of-proofs under different operations.

The goal is to pick out the “top-k” proofs within the result, where proofs
are ranked by their respective probability. Specifically, the probability
of each proof, Pr(η) is computed as follows:

Pr(η) =
{

0 if the proof η contains conflict;∏
ν∈η Pr(ν) otherwise (3.7)

Pr(ν) =
{

Pr(vi) if ν = vi (a positive literal)
1− Pr(vi) if ν = ¬vi (a negative literal) (3.8)
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Intuitively, whenever ∨ or ∧ is performed, we rank proofs by their
likelihood and preserve only the top-k proofs. This allows us to discard
the vast majority of proofs and thus make inference tractable. When
merging two proofs during ∧(k), a single proof might contain the con-
junction of conflicting literals, e.g. vi and ¬vi, in which case we remove
the whole proof. An example run-through of top-3 conjunction (⊗(3))
is depicted in Figure 3.12, where we perform a normal ⊗ operation
followed by a top-3 filtering.

1.00::is_a(cat, animal) 
0.83::label(o2, giraffe)

1.00::is_a(tiger, animal) 
0.08::label(o2, tiger)

1.00::is_a(wolf, animal) 
0.02::label(o2, wolf)

0.92::left(o2, o1) 
0.84::attr(o2, tall)

0.85::left(o2, o3)
0.84::attr(o2, tall)

0.82::left(o2, o4) 
0.84::attr(o2, tall)Top-3 

Conj.

1.00::is_a(giraffe, animal)
0.83::label(o2, giraffe)

0.92::left(o2, o1)
0.84::attr(o2, tall)

rel subgoal(obj) = left(obj,other) and attr(other,"tall")

rel target(obj) = label(obj, "animal") and left(obj, p) and attr(obj, "tall")

1.00::is_a(giraffe, animal)
0.83::label(o2, giraffe)

0.85::left(o2, o3)
0.84::attr(o2, tall)

1.00::is_a(giraffe, animal)
0.83::label(o2, giraffe)

0.82::left(o2, o4)
0.84::attr(o2, tall)

1.00::is_a(tiger, animal)
0.08::label(o2, tiger)

0.92::left(o2, o1)
0.84::attr(o2, tall)

rel label(obj,"animal") = label(obj,other) and is_a(other,"animal")

1.00::is_a(wolf, animal)
0.02::label(o2, wolf) 

0.82::left(o2, o4)
0.84::attr(o2, tall)

... 4 other proofs ...

subgoal(o2)label(o2, "animal")

target(o2)

0.83 0.08 0.02 0.77 0.71 0.69

0.64 0.59 0.57 0.06 0.01

φ1

(3)φ = φ1 ∧   φ2

φ2

Figure 3.12: Illustration of top-k conjunction using k = 3. Each ellipse repre-
sents a proof of the fact shown in the box. Given the top 3 proofs for each of
“label(o2, "animal")” and “subgoal(o2)”, we wish to derive the top 3 proofs for their
conjunction, “target(o2)”. The join yields 9 possible proofs. After computing the
likelihood for each of the 9 proofs, we keep the top 3 most likely ones (green ellipses)
and discard the rest (white ellipses).

To take negation ¬(k) on DNF φ, we first negate all the literals to
obtain a conjunctive normal form (CNF) equivalent to ¬φ. Then we
perform cnf2dnf operation (conflict check included) to convert it back
to a DNF. The top-k operation is performed at the end, as follows:

¬(k) φ = topk(cnf2dnf({{¬ν | ν ∈ η} | η ∈ φ})) (3.9)

As such, all tags under the top-k proofs provenance have an upper
bound of k on the number of proofs, making the WMC procedure
tractable. We still have each conjunction operation taking O(n2) and
negation taking O(2n), assuming that n is the number of facts and
k ≪ n. This allows the top-k proofs provenance to be much more
scalable than the proofs-prob provenance.

We also note that our top-k inference algorithm is reminiscent of
beam search. Both methods are iterative and explore only the top-k



168 Core Reasoning Framework

elements at each step. However, there are two major differences that
distinguish us from beam search. First, while beam search is only
a heuristic, our algorithm is backed by Datalog semantics and the
provenance semirings framework for its correctness. We also present
formal guarantees on its approximation error bound. Secondly, our
algorithm operates over the beam of proofs ϕ for each derived fact,
while beam search is usually performed to search for an output.

3.7 Differentiable Reasoning

We now elucidate how provenance also supports differentiable reasoning.
Suppose we have n input facts that are associated with probabilities.
Let all the probabilities in the EDB form a vector r⃗ ∈ Rn, and the
probabilities in the resulting IDB form a vector y⃗ ∈ Rm. Differentiation
concerns deriving output probabilities y⃗ as well as the derivative ∇y⃗ =
∂y⃗
∂r⃗ ∈ Rm×n. Viewing this from a learning perspective, y⃗ can be used
for computing loss in subsequent steps, while ∇y⃗ can be used for back-
propagating gradients during optimization.

In Scallop, one can obtain these elements using a differentiable
provenance. Differentiable provenances implement the external interface
by setting the input tag space I = [0, 1] and the output tag space O to
be the space of dual-numbers D (Figure 3.13). Each input tag ri ∈ [0, 1]
is a probability, and each output tag ŷj = (yj ,∇yj) encapsulates the
output probability yj and its derivative w.r.t. inputs, ∇yj . From here,
we can obtain our expected output y⃗ and ∇y⃗ by stacking together yj ’s
and ∇yj ’s respectively.

Scallop provides 8 configurable built-in differentiable provenances
with different empirical advantages in terms of runtime efficiency, rea-
soning granularity, and performance. In the following subsections, we
elaborate upon 3 simple but versatile differentiable provenances, whose
definitions are shown in Figure 3.14. We use ri to denote the i-th element
of r⃗, where i is called a variable (ID). Vector e⃗i ∈ Rn is the standard
basis vector where all entries are 0 except the i-th entry.
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âi = (ai,∇ai) ∈ D
0̂ = (0, 0⃗)
1̂ = (1, 0⃗)

â1 + â2 = (a1 + a2,∇a1 +∇a2)
â1 · â2 = (a1 · a2, a2 · ∇a1 + a1 · ∇a2)
−â1 = (−a1,−∇a1)

min(â1, â2) = âi, where i = argmini(ai)
max(â1, â2) = âi, where i = argmaxi(ai)

clamp(â1) = (clamp1
0(a1),∇a1)

Figure 3.13: Operations on dual-number D ≜ [0, 1]× Rn, where n is the number of
input probabilities. The function clamp1

0 clamps its input into the range [0, 1].

Prov T 0 1 t1 ⊕ t2 t1 ⊗ t2 ⊖ t t1 ⃝= t2 τ(ri) ρ(t)
dmmp D 0̂ 1̂ max(t1, t2) min(t1, t2) 1̂− t tfst

1 == tfst
2 (ri, e⃗i) t

damp D 0̂ 1̂ clamp(t1 + t2) t1 · t2 1̂− t true (ri, e⃗i) t

dtkp Φ ⊥ ⊤ t1 ∨(k) t2 t1 ∧(k) t2 ¬(k) t t1 == t2 vi WMC(t,Γ)

Figure 3.14: Definitions of three differentiable provenances.

3.7.1 diff-max-min-prob (dmmp)

This provenance is the differentiable version of mmp. When obtaining ri
from an input tag, we transform it into a dual-number by attaching e⃗i
as its derivative. Note that throughout the execution, the derivative will
always have at most one entry being non-zero and, specifically, 1 or −1.
The saturation check is based on equality of the probability part only,
so that the derivative does not affect termination. All of its operations
can be implemented by algorithms with time complexity O(1), making
it extremely runtime-efficient.

3.7.2 diff-add-mult-prob (damp)

This provenance has the same internal tag space, tagging function, and
recover function as dmmp. As suggested by its name, its disjunction
and conjunction operations are just + and · for dual-numbers. When
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performing disjunction, we clamp the real part of the dual-number
obtained from performing +, while keeping the derivative the same. The
saturation function for damp is designed to always returns true to avoid
non-termination. But this decision makes it less suitable for complex
recursive programs. The time complexity of operations in damp is O(n),
which is slower than dmmp but is still very efficient in practice.

3.7.3 diff-top-k-proofs (dtkp)

This provenance extends the top-k proofs semiring originally proposed
in Huang et al. (2021) to additionally support negation and aggregation.
As introduced in Section 3.6 and also shown in Figure 3.14, the tags of
dtkp are boolean formulas φ ∈ Φ in disjunctive normal form (DNF).
The difference between dtkp and the original top-k proofs provenance
lies only in the external interface: differentiable provenances take dual-
numbers as input tags and need to output dual-numbers as output tags.
Specifically, the tagging and recover functions for dtkp are defined as:

τdtkp(Pr(vi)) = vi (3.10)
ρdtkp(φ) = WMC(φ,Γ) (3.11)

Γ(i) = (Pr(vi), e⃗i) (3.12)

where WMC is now a differentiable weighted-model counting procedure
adopted from Manhaeve et al., 2021. Other than the boolean formula φ,
WMC also takes in the weights of each probabilistic variable i. Instead of
simple probabilities, the weights are now dual numbers like (Pr(vi), e⃗i).
During differentiable WMC, the dual-number addition and multiply
rules (Figure 3.13) are applied. Implementation-wise, Scallop adopts
Sentential Decision Diagrams (SDD) (Darwiche, 2011) for the WMC
procedure.

3.8 Practical Extensions

In this section, we discuss the practical extensions that make Scallop’s
computation scalable, tractable, and widely-applicable.
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3.8.1 Early Removal of Facts

A fact with a tag of 0 is often useless during computation, so it does
not make sense to keep the facts that are tagged by 0. In Scallop’s
provenance framework, we allow each provenance to specify whether
we want to remove such facts early. We introduce a new function to the
provenance interface, discard : T → Bool. If discard returns true (⊤)
when called on the tag of a fact, then the fact will be removed from
subsequent computation. The default implementation of this function
is discard(t) = t ⃝= 0.

3.8.2 Mutual Exclusivity of Facts

Recall that Scallop allows the user to specify a mutually exclusive set of
probabilistic facts (Listing 2.16). Mutual exclusivity of facts is optionally
handled by each provenance. This is because the computational cost
from fully handling mutual exclusivity may not be desirable. Specifi-
cally, handling mutual exclusivity would require the logical derivation
process to be encoded explicitly to make sure that the satisfiability
does not solely depend on two mutually exclusive facts. While this
could be achieved in many ways, the proofs data structure used in
provenances like proofs-prob and top-k proofs can be naturally ex-
tended to handle mutual exclusion. On the contrary, simpler provenances
like max-min-prob and add-mult-prob are unable to handle mutual
exclusivity due to their tags being too simple.

We take proofs-prob as an example to show how it can be ex-
tended to handle mutual exclusivity. In Scallop, proofs-prob (along
with others like top-k proofs) are already extended with this function-
ality. But for presentation purpose, we consider a new provenance,
named proofs-prob-me, where me stands for mutual exclusion. In
proofs-prob-me, instead of accepting a simple probability as the input
tag, it now accepts a tuple of probabilities along with an optional mutual
exclusion set ID (N). That is, Iproofs-prob-me = [0, 1]× option<N>.

Consider the example shown in Listing 3.1. The two sets of mutually
exclusive facts are transformed into two distinct mutual exclusion IDs,
which we label 0 and 1. The fact color(OBJ_A, "red") is technically
tagged by (0.9, 0). The first element 0.9 is treated as a normal prob-
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1 rel color = {0.9::( OBJ_A , "red");
2 0.1::( OBJ_A , "green")}
3 rel color = {0.2::( OBJ_B , "red");
4 0.8::( OBJ_B , "green")}
5
6 rel should_not_exist (obj) =
7 color(obj , "red") and color(obj , "green")

Listing 3.1: Two sets of mutually exclusive facts under the same relation. We
assume that an object cannot be “red” and “green” at the same time. Evaluating
the rule on lines 6–7 should result in an empty relation, if the mutual exclusions are
properly handled.

ability, while the mapping from this fact ID to the mutual exclusion
ID is stored for future reference. When executing the rule (lines 6–7),
we derive a temporary proof containing facts color(OBJ_A, "red")
and color(OBJ_A, "green"). However, when looking up the mutual
exclusion information, we find that the two facts cannot co-exist in the
same proof. proofs-prob provenance will reject such a proof, rendering
the result tag to be 0. Thus, combined with the early removal feature,
the should_not_exist relation is computed to be empty, as desired.

3.8.3 Specializing for Provenances

The design of Scallop’s provenance framework allows the reasoning algo-
rithms to be specialized for each provenance. For instance, as shown in
Figure 3.4, aggregation operations in principle require the enumeration
of subsets, which is inherently an O(2n) operation, assuming that n
is the number of facts for aggregation. However, not all aggregations
need this complex reasoning. For instance, the count aggregator, when
performed over a set of max-min-prob tagged-tuples, can be optimized
to an O(n log(n)) operation. We present our optimized counting al-
gorithm in Algorithm 1. Note that we only showed the algorithm for
mmp for simplicity, but it easily extends to dmmp. Scallop implements
many other optimizations with varying degrees of approximations so
that operations that are in principle expensive become tractable when
applied to real-life scenarios.
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Algorithm 1: Counting over max-min-prob tagged tuples
Data: Ummp = {t1 :: u1, t2 :: u2, . . . , tn :: un}: Ummp, set of

tagged-tuples to count
Result: U ′

mmp: Ummp

/* sort all positive tuples according to their tags from small
to large. O(nlog(n)) */

1 tpos = sorted([ti | i = 1 . . . n]);
2 tneg = [1− tpos

n−i+1 | i = 1 . . . n];
/* Iterate through all possible partitions between positive and

negative tags. O(n) */
3 U ′

mmp = {tneg
n :: 0, tpos

1 :: n} ;
4 for i = 1 . . . (n− 1) do
5 Add min(tpos

i+1, t
neg
i ) :: (n− i) to U ′

mmp;
6 return U ′

mmp

3.8.4 Sampling Operations

Scallop supports sampling operators such as top, categorical, and
uniform. Their implementation requires a signal that ranks the tagged
facts. We therefore introduce a new function weight : T → R to our
provenance. As the name suggests, the weight function takes in a
tag and returns its weight. For probabilistic provenances, the default
implementation is just the recover function, as it returns a probability
p ∈ [0, 1] that is also a suitable weight value. Weights can then be used
for ranking facts or sampling with weights.

3.8.5 Provenance Selection

Given the rich library of Scallop provenances and operations, a natural
question that arises is how to select a differentiable provenance for a
given Scallop application. Based on our empirical evaluation, dtkp is
often the best performing one, and setting k = 3 is usually a good choice
for both runtime efficiency and learning performance. This suggests that
a user should start with dtkp before searching other provenances. In
general, provenance selection in Scallop is analogous to hyperparameter
tuning in machine learning.



4
Scallop in Practice: End-to-End Examples

In this section, we present end-to-end examples showcasing how to use
Scallop to do Neurosymbolic learning on relatively simple tasks. For
each case study we present the comprehensive problem setup, Scallop
code, and the end result.

4.1 Summing Two MNIST Digits

The MNIST-Sum2 task from Manhaeve et al. (2021) concerns classifying
sums from pairs of handwritten digits, e.g., + = 10. A model
receives only the two MNIST digits as the input, and need to learn to
recognize the two digits with only the supervision of the sum.

As depicted in Figure 4.1, we specify this task using a neural and a
symbolic component, following the style of DeepProbLog (Manhaeve
et al., 2021). The neural component is a perception model that takes in
an image of a handwritten digit (Lecun et al., 1998) and classifies it into
discrete values {0, . . . , 9}. The symbolic component, on the other hand,
is a logic program in Datalog for computing the resulting sum. The
interface between the neural and symbolic components is a probabilistic
database which associates each candidate output of the perception
model with a probability. For instance, the fact 0.85 :: d( , 3) denotes

174
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Figure 4.1: Illustration of our approach on the task + = 10 using different
values of parameter k.

that image is recognized to be the digit 3 with probability 0.85. The
database thus consists of 20 facts—one for each of the 10 possible digits
corresponding to each of the two images.

Evaluating the logic program on the probabilistic database yields
a weighted boolean formula for each possible result of the sum of two
digits, i.e., values in the range {0, . . . , 18}. Each clause of such a formula
represents a different proof of the corresponding result. For instance, the
bottom left of Figure 4.1 shows the formula representing all 9 proofs of
the ground truth result 10. Each such formula is input to an off-the-shelf
weighted model counting (WMC) solver to yield the probability of the
corresponding result, e.g., 0.7261 :: sum(10).

The scalability of exact differentiable probabilistic reasoning is lim-
ited in practice by WMC solving whose complexity is at least #P-hard.
As suggested by the discussion of top-k proofs provenance in Section
3.6, computing only the top-k most likely proofs bounds the size of each
formula to k clauses, thereby allowing to trade diminishing amounts
of accuracy for large gains in scalability. Moreover, stochastic training
of the deep perception models itself can tolerate noise in data. In this
case, just using k = 1 yields a performance of 97.46%, which turns out
to be empirically the best across k ∈ {1, 3, 5, 10}.
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The actual implementation is depicted in Listing 4.1. The mnist_net
(line 5) is the neural network that classifies individual MNIST image into
a distribution of 10 classes, while sum_2 (lines 7–15) is the Scallop rea-
soning module for probabilistic reasoning of summing two digits. Instead
of writing a separate Scallop file that contains the reasoning program,
we passed the program as a string to construct the scallopy.Module.
We note that for cleaner presentation, the program presented here is
slightly different than the one in Figure 4.1. Lines 12–14 tells how to
turn input distributions into relational symbols (and vice versa for the
output). Line 15 configures the provenance to use for the reasoning,
which is the dtkp provenance with k = 1.

1 class MNISTSum2Net (nn. Module ):
2 def __init__ (self):
3 super( MNISTSum2Net , self). __init__ ()
4 # Classic MNIST Digit Recognition module
5 self. mnist_net = MNISTNet ()
6 # Scallop reasoning module
7 self.sum_2 = scallopy . Module (
8 program ="""
9 type digit_1 (i32), digit_2 (i32)

10 rel sum(a + b) = digit_1 (a) and digit_2 (b)
11 """,
12 input_mappings ={" digit_1 ": range (10) ,
13 " digit_2 ": range (10)},
14 output_mappings ={"sum_2": range (19)},
15 provenance ="diff -top -k- proofs ", k=1)
16
17 def forward (self , x: Tuple[Tensor , Tensor ]):
18 # Input images ; shape: (batch_size , 27, 27, 1)
19 (a_imgs , b_imgs ) = x
20 # Classify first digit; shape: (batch_size , 10)
21 a_distrs = self. mnist_net ( a_imgs )
22 # Classify second digit; shape: (batch_size , 10)
23 b_distrs = self. mnist_net ( b_imgs )
24 # Run Scallop ; result shape: (batch_size , 19)
25 return self. sum_2( digit_1 =a_distrs ,
26 digit_2 = b_distrs )

Listing 4.1: The Scallop code for the MNIST-Sum2 learning task.
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During inference, as shown in the forward function (lines 17–26), we
pass the two (batches of) images to mnist_net individually to produce
distributions of the two (batches of) images. Lastly, we pass the two
batches of distributions to the sum_2 reasoning module in order to obtain
a batched output tensor of shape 19, where each element correspond
to one of the 19 outcomes ([0, 18]). As such, our training pipeline is
complete. All the algorithmic and differentiation details of Scallop is
hidden from the user, providing a clean programming interface.

4.2 Evaluating Handwritten Formulas

In this case study we take the MNIST-Sum2 one step further by allowing
multiple symbols including handwritten digits and also simple arithmetic
operators like +, −, ×, and ÷. This is the task of handwritten formula
evaluation (HWF) (Li et al., 2020). The input to the task is a sequence
of images of handwritten symbols, forming a handwritten formula. One
such example is given in Figure 4.2. The output is the rational number
result of evaluating the formula. The dataset provided for this task
contains variable-sized formulas with 1 to 7 symbols, where the operands
are all single-digit numbers. For simplicity, we assume that the input
formulas always are parsed and free of divide-by-zero errors.

Figure 4.2: One handwritten formula 1 + 3÷ 5 which should evaluate to 1.6.

A natural solution to this task is to decompose the problem into sep-
arate perception and reasoning components. The perception component
is a standard convolutional neural network (CNN) that classifies each
symbol into discrete classes (digits 0-9 and +, −, ×, ÷). The reasoning
component then takes in the classified probabilistic symbols, parses
and evaluates the formula, and returns a probability distribution of
the result. Notably, the neural model does not receive supervision on
the label of each individual symbol in the formula. Instead, we only
have supervision on the final evaluation result. Scallop’s differentiable
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reasoning engine enables to train the resulting program in an end-to-
end fashion, that is, to learn the parameters of the neural model using
only supervision on observable input-output data—called algorithmic
supervision (Petersen, 2022).

The reasoning component is written in Scallop as shown in List-
ing 4.2. The program uses Datalog-like syntax. It specifies two input
relations, symbol and length (lines 2-5). The former relates each sym-
bol image’s index with its recognized symbol (digits and operators
represented as strings), and the latter encodes the length of the formula.
The rest of the program defines relations factor (lines 12–14), term
(lines 17–22), and expr (lines 25–30), going up the standard context-free
grammar of simple arithmetic expressions. The first argument of each
of these relations is a floating point number, with type f32, denoting
the evaluated results of the corresponding expressions. Lastly, we fetch
the expression which covers the whole formula (line 33), and store the
evaluated result in the result unary relation.

Next, we may integrate this program into an end-to-end learning
pipeline. Listing 4.3 shows the PyTorch module for the HWF task.
During initialization, we setup the CNN to process each symbol image
(line 7). Then we create a Scallop module to load the program from
file hwf.scl (lines 9–17). We also configure the provenance semiring to
be used as diff-top-k-proofs with k set to 3. During the training or
inference phase, we simply pass the symbol images to the CNN (lines
21–22) and the result distributions to our Scallop module (lines 23–24).
Since both the CNN and the Scallop module are differentiable, we obtain
an end-to-end learning pipeline. While being conceptually similar, there
are a few core complexities of HWF when compared to MNIST-Sum2.
We now explain each of them and how the Python interface helps to
ease the handling of such complexities.

Varying number of inputs. First, instead of taking in a constant
number of 2 digits, HWF’s reasoning module needs to accept formulas of
varying lengths. In PyTorch, this information is encoded in 2 dimensional
tensors, where the first dimension encodes the index of each symbol, and
the second dimension encodes the distribution over our alphabet. For the
formulas not of the maximum lengths, the tensor contains padded 0’s.
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1 // [hwf.scl]
2 // Input: probabilistic symbols
3 type symbol (index: usize , symbol : String )
4 // Input: length of the formula
5 type length (n: usize)
6
7 // Helper relation
8 rel digit = {"0","1","2","3","4","5","6","7","8","9"}
9

10 // Parsing and evaluating the sequence of symbols
11 // A single number
12 type factor (value: f32 , begin: usize , end: usize)
13 rel factor (x as f32 , b, b + 1) =
14 symbol (b, x) and digit(x)
15
16 // A mult/div expression
17 type term(value: f32 , begin: usize , end: usize)
18 rel term(x, b, r) = factor (x, b, r)
19 rel term(x * y, b, e) = term(x, b, m) and
20 symbol (m, "*") and factor (y, m + 1, e)
21 rel term(x / y, b, e) = term(x, b, m) and
22 symbol (m, "/") and factor (y, m + 1, e)
23
24 // An add/minus expression which has higher precedence
25 type expr(value: f32 , begin: usize , end: usize)
26 rel expr(x, b, r) = term(x, b, r)
27 rel expr(x + y, b, e) = expr(x, b, m) and
28 symbol (m, "+") and term(y, m + 1, e)
29 rel expr(x - y, b, e) = expr(x, b, m) and
30 symbol (m, "-") and term(y, m + 1, e)
31
32 // Obtain the result
33 rel result (y) = expr(y, 0, l) and length (l)

Listing 4.2: Formula evaluator for the HWF task in Scallop.

To process this tensor, we setup the input_mapping (lines 12–15) for
the symbol relation to be a 2-dimensional mapping. The first dimension
(dim 0) is mapped to range(MAX_LEN), which is 0, . . . , 6 given that the
maximum length of formula in the dataset is 7. The second dimension
maps each element to one symbol inside our ALPHABET. For length, we
specify that it is non-probabilistic (line 17).
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1 class HWFNet (nn. Module ):
2 def __init__ (self):
3 MAX_LEN = 7
4 ALPHABET = ["0", ..., "9", "+", "-", "*", "/"]
5 ...
6 # Symbol recognition module
7 self. symbol_cnn = SymbolNet ()
8 # Scallop module for formula evaluation
9 self. eval_formula = scallopy . Module (

10 file="hwf.scl",
11 provenance ="diff -top -k- proofs ", k=3,
12 input_mappings ={" symbol ":
13 scallopy . InputMapping (
14 {0: range( MAX_LEN ), 1: ALPHABET },
15 retain_k =3, sample_dim =1)},
16 output =" result ",
17 non_probabilistic =[" length "])
18
19 def forward (self , img_seq , img_seq_len ):
20 length = [[(l.item () ,)] for l in img_seq_len ]
21 symbol = self. symbol_cnn ( img_seq . flatten (0, 1))
22 .view(len( length ), -1)
23 ( out_symbols , out_distr ) = self. eval_formula (
24 symbol =symbol , length = length )
25 return ( out_symbols , out_distr )

Listing 4.3: PyTorch module for the HWF task with Scallop.

The need for symbol sampling. The input space for the HWF task
is huge, since there could be 7 symbols with each being one of 14
classes, giving us roughly 147 possible derivation trees. If nothing else
is done, Scallop would explore all of the derivation trees, which will
be prohibitively slow. Therefore, instead of passing every single fact
to Scallop, we perform sampling based on the predicted probabilities.
During the configuration of symbol’s input mapping, the two arguments
retain_k=3 and sample_dim=1 specify that on the symbol tensor, we
only pick the top 3 classes for each symbol (on dimension 1). With these
arguments, we are able to make the inference process more scalable. We
note that for HWF, sampling only 3 reaches a good balance between
training time and learning accuracy. But in general, the lower the sample
rate, the longer it will take to train the model end-to-end.
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Unbounded set of outputs. Instead of a fixed set of possible outputs
({0, . . . , 18}) in MNIST-Sum2, HWF has a much larger set of potential
outputs, due to the fact that formulas contain the division operator
(÷). It is not realistic to enumerate all of them, which is why we do
not explicitly specify an output mapping. The outcome of this is that
the eval_formula cannot return a straightforward vectorized tensor as
the output. As shown on line 23, we obtain two results, out_symbols
and out_distr. Specifically, out_symbols will be a list of fraction
numbers that are actually derived with the sampled inputs. Meanwhile,
out_distr will contain the computed distribution over the results in
out_symbols. We present in Listing 4.4 the loss function that is used
to process the resulting output.

1 # calling hwf_net yields the set of outputs as well as
2 # the predicted distributions over the set of outputs
3 (outputs , y_pred ) = hwf_net ( formula_imgs )
4
5 # construct a ground truth tensor y based on the
6 # labels and the set of produced outputs
7 y = torch. tensor ([
8 [1.0 if abs(l-m) < 0.001 else 0.0 for m in outputs ]
9 for l in labels ])

10
11 # compute the binary cross entropy loss
12 loss = binary_cross_entropy (y_pred , y)

Listing 4.4: The loss function used for HWF. Before applying the binary cross-
entropy loss, we also use the derived outputs to construct one-hot vectors as the
ground-truth. Notice that since HWF deals with fraction numbers, we cannot use
exact comparison of derived number with the ground truth label. Instead, we apply
abs(l - m) < 0.001 to allow for floating point errors during derivation.

4.3 Playing the PacMan-Maze Game

We further illustrate Scallop using an reinforcement learning (RL) based
planning application which we call PacMan-Maze. The application,
depicted in Figure 4.3a, concerns an intelligent agent realizing a sequence
of actions in a simplified version of the PacMan maze game. The maze is
an implicit 5× 5 grid of cells. Each cell is either empty or has an entity,
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Step 0 Step 4 Step 7
(a) Three states of one gameplay session.
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(b) Architecture of application with Scallop.

Figure 4.3: Illustration of a planning application PacMan-Maze in Scallop.

which can be either the actor (PacMan), the goal (flag), or an enemy
(ghost). At each step, the agent moves the actor in one of four directions:
up, down, right, or left. The game ends when the actor reaches the goal
or hits an enemy. The maze is provided to the agent as a raw image
that is updated at each step, requiring the agent to process sensory
inputs, extract relevant features, and logically plan the path to take.
Additionally, each session of the game has randomized initial positions
of the actor, the goal, and the enemies.

Concretely, the game is modeled as a sequence of interactions be-
tween the agent and an environment, as depicted in Figure 4.3b. The
game state si ∈ S at step i is a 200×200 colored image (S = R200×200×3).
The agent proposes an action ai ∈ A = {up, down, right, left} to the
environment, which generates a new image si+1 as the next state. The
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environment also returns a reward ri to the agent: 1 upon reaching the
goal, and 0 otherwise. This procedure repeats until the game ends or
reaches a predefined limit on the number of steps.

A popular RL method to realize our application is Q-Learning
(Watkins, 1989). Its goal is to learn a function Q : S × A → R that
returns the expected reward of taking action ai in state si.1 Since the
game states are images, we employ Deep Q-Learning (Mnih et al., 2015),
which approximates the Q function using a convolutional neural network
(CNN) model with learned parameter θ. An end-to-end deep learning
based approach for our application involves training the model to predict
the Q-value of each action for a given game state. This approach takes
50K training episodes to achieve a 84.9% test success rate, where a
single episode is one gameplay session from start to end.

In contrast, a neurosymbolic solution using Scallop only needs 50
training episodes to attain a 99.4% test success rate. Scallop enables to
realize these benefits of the neurosymbolic paradigm by decomposing the
agent’s task into separate neural and symbolic components, as shown
in Listing 4.3b. These components perform sub-tasks that are ideally
suited for their respective paradigms: the neural component perceives
pixels of individual cells of the image at each step to identify the entities
in them, while the symbolic component reasons about enemy-free paths
from the actor to the goal to determine the optimal next action. Figure
?? shows an outline of this architecture’s implementation using the
popular PyTorch framework.

Concretely, the neural component is still a CNN, but it now takes
the pixels of a single cell in the input image at a time, and classifies
the entity in it. A snippet of the overall Scallop application in Python
is shown in Listing ??. The implementation of the neural component
(EntityExtractor) is standard and elided for brevity. It is invoked on
lines 14-15 with input game_state_image, a tensor in R200×200×3, and
returns three R5×5 tensors of entities. For example, actor is an R5×5

tensor and actorij is the probability of the actor being in cell (i, j). A
representation of the entities is then passed to the symbolic component

1We elide the Q-Learning algorithm as it is not needed to illustrate the neu-
rosymbolic programming aspects of our example.
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1 class PacManAgent (torch.nn. Module ):
2 def __init__ (self , grid_dim , cell_size ):
3 # initializations ...
4 self. extract_entities =
5 EntityExtractor (grid_dim , cell_size )
6 self. path_planner = ScallopModule (
7 file=" path_planner .scl",
8 provenance ="diff -top -k- proofs ", k=1,
9 input_mappings ={"actor": cells ,

10 "goal": cells , "enemy": cells},
11 output_mappings ={" next_action ": actions })
12
13 def forward (self , game_state_image ):
14 actor , goal , enemy =
15 self. extract_entities ( game_state_image )
16 next_action = self. path_planner (
17 actor=actor , goal=goal , enemy=enemy)
18 return next_action

Listing 4.5: Snippet of implementation in Python.

on lines 16-17, which derives the Q-value of each action. The symbolic
component, which is configured on lines 6-11, comprises the Scallop
program shown in Listing 4.6. We next review three key design decisions
of Scallop with respect to this program.

Relational Model. In Scallop, the primary data structure for repre-
senting symbols is a relation. In our example, the game state can be
symbolically described by the kinds of entities that occur in the discrete
cells of a 5×5 grid. We can therefore represent the input to the symbolic
component using binary relations for the three kinds of entities: actor,
goal, and enemy. For instance, the fact actor(2,3) indicates that the
actor is in cell (2,3). Likewise, since there are four possible actions, the
output of the symbolic component is represented by a unary relation
next_action.

Symbols extracted from unstructured inputs by neural networks
have associated probabilities, such as the R5×5 tensor actor produced
by the neural component in our example (lines 14–15 of Listing 4.5).
Scallop therefore allows to associate tuples with probabilities, e.g. 0.96 ::
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1 // [ path_planner .scl]
2 // The set of possible actions to take at each state
3 type Action = UP | DOWN | RIGHT | LEFT
4
5 // The input relations from neural networks
6 type grid_cell (x: i32 , y: i32), actor(x: i32 , y: i32),
7 goal(x: i32 , y: i32), enemy(x: i32 , y: i32)
8
9 // Reasoning rules

10 rel safe_cell (x, y) =
11 grid_cell (x, y) and not enemy(x, y)
12 rel edge(x, y, x, yp , UP) = safe_cell (x, y) and
13 safe_cell (x, yp) and
14 yp == y + 1
15 // Rules for DOWN , RIGHT , and LEFT edges omitted
16
17 rel next_pos (p, q, a) =
18 actor(x, y) and edge(x, y, p, q, a)
19 rel path(x, y, x, y) = next_pos (x, y, _)
20 rel path(x1 , y1 , x3 , y3) = path(x1 , y1 , x2 , y2) and
21 edge(x2 , y2 , x3 , y3 , _)
22 rel next_action (a) = next_pos (p, q, a) and
23 path(p, q, r, s) and
24 goal(r, s)

Listing 4.6: The logic program of the PacMan-Maze application in Scallop.

actor(2,3), to indicate that the actor is in cell (2,3) with probability
0.96. More generally, Scallop enables the conversion of tensors in the
neural component to and from relations in the symbolic component
via input-output mappings (lines 9–11 in Listing 4.5), allowing the two
components to exchange information seamlessly.

Declarative Language. Another key consideration in a neurosymbolic
language concerns what constructs to provide for symbolic reasoning.
Scallop uses a declarative language based on Datalog, which we illustrate
here using the program in Listing 4.6. The program realizes the symbolic
component of our example using a set of logic rules. Instead of having
to explicitly encode a searching algorithm for path-finding, the logic
can be declaratively specified in Scallop, simplifying the programming
experience from an end user’s point-of-view.
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Recall that we wish to determine an action a (up, down, right, or
left) to a cell (p, q) that is adjacent to the actor’s cell (x, y) such that
there is an enemy-free path from (p, q) to the goal’s cell (r, s). The nine
depicted rules succinctly compute this sophisticated reasoning pattern
by building successively complex relations, with the final rule (lines
22–24) computing all such actions.2

The arguably most complex concept is the path relation which is
recursively defined on lines 19–21. Recursion allows to define the pat-
tern succinctly, enables the trained application to generalize to grids
arbitrarily larger than 5 × 5 unlike the purely neural version, and
makes the pattern more amenable to synthesis from input-output exam-
ples. Besides recursion, Scallop also supports negation and aggregation;
together, these features render the language adequate for specifying
common high-level reasoning patterns in practice.

Differentiable Reasoning. With the neural and symbolic components
defined, the last major consideration concerns how to train the neural
component using only end-to-end supervision. In our example, supervi-
sion is provided in the form of a reward of 1 or 0 per gameplay session,
depending upon whether or not the sequence of actions by the agent
successfully led the actor to the goal without hitting any enemy. This
form of supervision, called algorithmic or weak supervision, alleviates
the need to label intermediate relations at the interface of the neural
and symbolic components, such as the actor, goal, and enemy relations.
However, this also makes it challenging to learn the gradients for the
tensors of these relations, which in turn are needed to train the neural
component using gradient-descent techniques.

The key insight in Scallop is to exploit the structure of the logic
program to guide the gradient calculations, as achieved by the differen-
tiable provenances implemented within our provenance framework. In
our example, line 8 in Listing 4.5 specifies diff-top-k-proofs with k=1
as the heuristic to use, which is the default in Scallop that works best
for many applications.

2We elide showing an auxiliary relation of all grid cells tagged with probability
0.99 which serves as the penalty for taking a step. Thus, longer paths are penalized
more, driving the symbolic program to prioritize moving closer to the goal.
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Programming with Foundation Models

5.1 Foundation Models and Relations

Foundation models are deep neural models that are trained on a very
large corpus of data and can be adapted to a wide range of downstream
tasks (Bommasani et al., 2021). Exemplars of foundation models include
language models (LMs) like GPT (Bubeck et al., 2023), vision models like
Segment Anything (Kirillov et al., 2023), and multi-modal models like
CLIP (Radford et al., 2021). While foundation models are a fundamental
building block, they are inadequate for programming AI applications end-
to-end. For example, LMs hallucinate and produce nonfactual claims
or incorrect reasoning chains (McKenna et al., 2023). Furthermore,
they lack the ability to reliably incorporate structured data, which is
the dominant form of data in modern databases. Finally, composing
different data modalities in custom or complex patterns remains an
open problem, despite the advent of multi-modal foundation models
such as ViLT (Radford et al., 2021) for visual question answering.

Various mechanisms have been proposed to augment foundation
models to overcome these limitations. For example, PAL (Gao et al.,
2023), WebGPT (Nakano et al., 2021), and Toolformer (Schick et al.,
2023) connect LMs with search engines and external tools, expanding

187
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1 @gpt("The height of {{x}} is {{y}} in meters ")
2 type height (bound x: String , y: i32)
3 // Retrieving height of mountains
4 rel mount_height (m, h) = mountain (m) and height (m, h)

(a) Program P1: Extracting knowledge using GPT.

1 @clip (["cat", "dog"])
2 type classify (bound img: Tensor , label: String )
3 // Classify each image as cat or dog
4 rel cat_or_dog (i, l) = image(i, m) and classify (m, l)

(b) Program P2: Classifying images using CLIP.

id img

1

2

id label

1 cat

1 dog

2 cat

2 dog

Everest

Fuji

8848

3776

mountain mount_height

P2

image cat_or_dog

name height

Everest

Fuji

name

K2 8611K2

Mt.Blanc 4808Mt.Blanc

P1

prob

0.02

0.98

0.99

0.01

(c) Example input-output relations of the programs.

Figure 5.1: Two example programs in Scallop using foundation models.

their information retrieval and structural reasoning capabilities. LMQL
(Beurer-Kellner et al., 2022) generalizes pure text prompting in LMs to
incorporate scripting. In the domain of computer vision, neurosymbolic
visual reasoning frameworks such as VisProg (Gupta and Kembhavi,
2022) compose diverse vision models with LMs and image processing
subroutines. Despite these advances, programmers lack a general so-
lution that systematically incorporates these methods under a unified
framework.

Scallop supports a declarative framework for programming with
foundation models. In this framework, relations form the abstraction
layer for interacting with foundation models. Our key insight is that
foundation models are stateless functions with relational inputs and
outputs. Figure 5.1a shows a Scallop program which invokes GPT to
extract the height of mountains whose names are specified in a struc-
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1 @foreign_attribute
2 def clip(pred: Predicate , labels : List[str ]):
3 # Sanity checks for predicate and labels ...
4 assert pred.args [0]. ty == Tensor and ...
5
6 @foreign_predicate (name=pred.name)
7 def run_clip (img: Tensor ) -> Facts[str ]:
8 # Invoke CLIP to classify image into labels
9 probs = clip_model (img , labels )

10 # Each result is tagged by a probability
11 for (prob , label) in zip(probs , labels ):
12 yield (prob , (label ,)) # prob ::( label ,)
13
14 return run_clip

Listing 5.1: Snippet of Python implementation of the foreign attribute clip which
uses the CLIP model for image classification. Notice that the FA clip returns the
FP run_clip.

tured table. Likewise, the program in Figure 5.1b uses the image-text
alignment model CLIP to classify images into discrete labels such as
cat and dog. Figure 5.1c shows relational input-output examples for the
two programs. Notice that the CLIP model also outputs probabilities
that allow for probabilistic reasoning.

5.2 Extensible Plugin Library

Python libraries such as the OpenAI API and the Hugging Face
ecosystem have positioned Python to be the dominant language for
interacting with foundation models. This motivates a plugin library
that allows users to interface Python-supported foundation models of
their choosing in a Scallop program.

Each plugin defines a collection of foreign attributes (FAs) and func-
tions via Scallop’s foreign interface with Python. Our design principle
for the interface is three-fold: simplicity, configurability, and composi-
tionality. Listing 5.1 illustrates one succinct implementation of the FA
that enables the use of the CLIP model shown in Figure 5.1b.

Because FAs can contain arbitrary Python code, the plugin library
augments native Scallop features with a wide range of utility functions
vital to AI applications. Some examples include plugins for image editing,
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face detection models, and chain-of-thought prompting. The modularity
of the plugin library allows users familiar with Python to create and
install custom plugins with ease.

5.3 Large Language Models

Text completion. In Scallop, language models like GPT (OpenAI,
2023b) and LLaMA (Touvron et al., 2023) can be used as basic foreign
predicates for text completion (Listing 5.2). In this case, gpt is an arity-
2 FP that takes in request, a String as the prompt, and produces
response, a String as the response. As a result, we would obtain the
fact ans("8468000"). We note that the foreign predicate gpt uses the
model gpt-3.5-turbo by default.

1 extern type gpt(bound request : String ,
2 response : String )
3 rel ans(a) = gpt(" population of NY is", a)

Listing 5.2: A snippet of Scallop using gpt as a foreign predicate.

To make the interface more relational and structural, we provide an
FA for better specification of prompts, as shown in Listing 5.3. Here,
we declare a relation named population which produces a population
number (num) given a location (loc) as input. Notice that structured
few-shot examples are provided through the argument examples. Under
the hood, the foreign attribute fills the prompt with the given location
at the bound argument {{loc}} and invokes GPT to fill in the free
argument {{num}}.

1 @gpt("the population of {{ loc }} is {{ num }}",
2 examples =[("NY", 8468000) , ...])
3 type population (bound loc: String , num: u32)

Listing 5.3: A snippet of Scallop using gpt as a foreign attribute.

Consider the Scallop program in Listing 5.4. Following the pattern
described above, the call to gpt prompts GPT-4 (gpt-4-0613) by filling
in {{mountain_name}} with the given strings and asks it to infer the
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1 @gpt(
2 " mountain {{ name }}'s height is {{ height }} meters ",
3 examples =[(" Kangchenjunga ", 8586) ,
4 ("Mont Blanc", 4805)]
5 )
6 type mountain_height (bound name: String , height : i32)
7
8 rel mountains = {"Mount Everest ", "K2"}
9 rel result (name , height ) = mountains (name) and

10 mountain_height (name , height )

Listing 5.4: A snippet of Scallop using @gpt for querying mountain heights.

Here are a few examples:
- the mountain Kangchenjunga's height is {{height}} meters
- A: {"height": "8586"}
- the mountain Mont Blanc's height is {{height}} meters
- A: {"height": "4805"}

Please answer the following question:
- the mountain Mount Everest's height is {{height}} meters

User:

 {"height": "8611"}

Assistant:

 {"height": "8848"}

Assistant:

Here are a few examples:
- the mountain Kangchenjunga's height is {{height}} meters
- A: {"height": "8586"}
- the mountain Mont Blanc's height is {{height}} meters
- A: {"height": "4805"}

Please answer the following question:
- the mountain K2's height is {{height}} meters

User:

Figure 5.2: Conversation history between User (messages generated by gpt FA) and
GPT-4 (gpt-4-0613) via OpenAI API after executing the program in Listing 5.4.

value of {{height}} for each mountain. The shots provided in examples
modify the prompt to GPT-4 as shown in Figure 5.2.
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Note that we prompt GPT-4 to give its answer in the form of a
JSON, so the response can be converted into a relational Scallop fact
to be handled by the program.

Relation extraction. Structured relational knowledge embedded in
free-form textual data can be extracted by language models. We intro-
duce a foreign attribute gpt_extract_relation for this purpose. For
instance, the predicate declared in Listing 5.5 takes in a context and
produces (subject, object, relation) triplets.

1 @gpt_extract_relation (
2 prompts =["What are the implied kinship relations ?"],
3 examples =[(
4 // bound " context " argument
5 "Alice and her son Bob went to ...",
6 // free "subject , object , relation " arguments
7 // that form the relation to be extracted by GPT
8 [("alice", "bob", "son"), ...]
9 )]

10 )
11 type extract_kinship (
12 bound context : String ,
13 subject : String ,
14 object : String ,
15 relation : String
16 )

Listing 5.5: A snippet of Scallop using gpt_extract_relation as a foreign attribute.

This attribute differs from the text completion attribute gpt in that
it can extract an arbitrary number of facts for multiple relations. To
motivate the need for such an attribute, we consider the date under-
standing task from the BIG-bench suite (Srivastava et al., 2023). In
this task, the model is given a context and asked to compute a date in
MM/DD/YYYY form.

Below is an example adapted from the date understanding task:

Q: Yesterday is February 14, 2019. What is the date 1 month
ago from today?
A: 01/15/2019
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Now suppose we have access to the following relations in Scallop:

1. mentioned_date(label, date): label is a string label for a date
which is explicitly mentioned in the question context, and date is
the corresponding MM/DD/YYYY string. When a date such as
“Christmas Day” is mentioned, it will be transformed to the exact
date of that year based on the common sense knowledge that the
LLM possesses.

2. goal(label): label is the date label whose MM/DD/YYYY
form is requested as the answer.

3. relationship(date_1, date_2, diff): the first two arguments
are a pair of date labels relevant to the question, and diff is the
time Duration between the dates.

Assuming that the above relations are supplied with complete and
accurate facts, the Scallop rules in Listing 5.6 will derive the correct
date in the relation answer. Motivated by this observation, we can use
the rules annotated by @gpt_extract_relation in Listing 5.7 to define
the GPT-4 prompt for extracting the three relations mentioned_date,
goal, and relationship in Listing 5.8 before executing the rules above.
Note that depending on the question context, the number of facts in
relations mentioned_date and relationship could vary. Thus, text
completion attributes are not sufficient for generating these relations.

1 rel derived_date (label , date) =
2 mentioned_date (label , date)
3 rel derived_date (label , date - diff) =
4 relationship (label , other , diff) and
5 derived_date (other , date)
6 rel derived_date (label , date + diff) =
7 relationship (other , label , diff) and
8 derived_date (other , date)
9 rel answer (date) =

10 goal(label) and derived_date (label , date)

Listing 5.6: Scallop logic rules for the date understanding task.
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1 @gpt_extract_relation (
2 prompts =[
3 "What are the mentioned MM/DD/YYYY dates as JSONs?",
4 "What is the goal in JSON format ?",
5 "What are the relationships of the dates as JSONs?"
6 ],
7 examples =[
8 (
9 [" Yesterday is February 14, 2019.

10 What is the date 1 month ago from today?"],
11 [
12 [(" yesterday ", " 02/14/2019 ")],
13 [("1-month -ago")],
14 [(" yesterday ", "today", "1 day"),
15 ("1-month -ago", "today", "1 month")]
16 ]
17 ),
18 // More shots hidden
19 ],
20 cot =[ false ,false ,true]
21 )
22 type extract_mentioned_date (
23 bound question :String , label:String , date: DateTime
24 ),
25 extract_goal (bound question :String , goal: String ),
26 extract_relationship (
27 bound question :String , earlier_date :String ,
28 later_date :String , diff: Duration
29 )

Listing 5.7: FA-annotated rules for date understanding.

1 rel question = { "[ Context ] What is the date ...?" }
2
3 rel mentioned_date (label , date) = question (q) and
4 extract_mentioned_date (q, label , date)
5 rel goal(label) = question (q) and
6 extract_goal (q, label)
7 rel relationship (l1 , l2 , diff) = question (q) and
8 extract_relationship (q, l1 , l2 , diff)

Listing 5.8: Scallop rules for extracting 3 relations from a question for date
understanding via the FA-annotated rules of Listing 5.7.
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Referring to Listing 5.7, each question provided in prompts (lines
2–6) corresponds to a relation of a given type signature that GPT-4
should extract from the bound argument question in Listing 5.8. The
shots provided in examples (lines 7–19) are formatted as messages that
are prepended to the conversation history given to GPT-4, as seen
in Figure 5.3. Finally, the parameter cot (line 20) is a Boolean array
where cot[i] toggles whether the ith relation should be extracted using
zero-shot chain-of-thought (CoT) prompting (Kojima et al., 2022).

Now suppose the bound argument question has value:

Jane finished her PhD in January 5th, 2008. Today is the
10th anniversary. What is the date 10 days ago?

The GPT-4 conversation history after executing the code in Listing 5.7
and Listing 5.8 is given by Figure 5.3. With a little thought, the reader
will find that applying the rules in Listing 5.6 on the relations generated
by GPT-4 in Figure 5.3 will yield the correct answer: 12/26/2017.

This example points towards a general pattern for programming
neurosymbolically with foundation models. Given a problem, we decom-
pose it into two sub-tasks. The first is to extract structured information
with an LM via an FA like gpt_extract_relation. This is followed
by logical reasoning and arithmetic over the structured data, expressed
concisely as relational rules native to Scallop. By confining the LM’s
role to relation extraction, we mitigate the effects of model hallucination
and make key reasoning steps more robust and interpretable.

5.4 Embedding Models and Vector Databases

Textual embeddings are useful in performing tasks such as information
retrieval. In Scallop, embedding models are usually modeled as foreign
predicates. Listing 5.9 declares an FP encapsulating a cross-encoder
(Nogueira and Cho, 2019).

In line 3, we compute the cosine-similarity of the encoded embeddings
using a soft-join on the variable e. As a result, we obtain a probabilistic
fact like 0.9::sim() whose probability encodes the cosine-similarity
between the textual embeddings of "cat" and "neko".
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Redacted: messages generated from subsequent shots

Generated by FA from
shots given in the

examples parameter;
prepended to the

conversation when
querying OpenAI API

Actual conversation
between FA (User) and

GPT-4 Assistant for
extracting relations
from the given input

question

User:

question:
- Yesterday is February 14, 2019. What is the date 1 month ago from today?

What are the mentioned MM/DD/YYYY dates in JSON format?

User:

What are the relationships of the dates in JSON format?
Please give your reasoning step by step before giving the JSON output.

Redacted: GPT's chain-of-thought reasoning

[{"earlier_date": "PhD-finish-date", "later_date": "anniversary", "diff": "10 years"},
 {"earlier_date": "10-days-ago", "later_date": "anniversary", "diff": "10 days"}]

Assistant:

[{"goal": "1-month-ago"}]

Assistant:

User:

What is the goal in JSON format?

[{"label": "yesterday", "date": "02/14/2019"}]

Assistant:

[{"earlier_date": "yesterday", "later_date": "today", "diff": "1 day"},
 {"earlier_date": "1-month-ago", "later_date": "today", "diff": "1 month"}]

Assistant:

User:

question:
- Jane finished her PhD in January 5th, 2008. Today is the 10th anniversary. 
  What is the date 10 days ago?

What are the mentioned MM/DD/YYYY dates in JSON format?

[{"label": "PhD-finish-date", "date": "01/05/2008"},
 {"label": "anniversary", "date": "01/05/2018"}]

Assistant:

[{"goal": "10-days-ago"}]

Assistant:

User:

What is the goal in JSON format?

User:

What are the relationships of the dates in JSON format?

Figure 5.3: The GPT-4 conversation history after executing the program in List-
ing 5.7, with annotations and redactions in italics.



5.5. Vision and Multi-Modal Models 197

1 @cross_encoder ("nli -deberta -v3 - xsmall ")
2 type enc(bound input: String , embed: Tensor )
3 rel sim () = enc("cat", e) and enc("neko", e)

Listing 5.9: Scallop snippet using cross_encoder as a foreign attribute.

One application of these techniques is in information retrieval. For
example, consider the task from HotpotQA (Yang et al., 2018). In this
Wikipedia-based question answering (QA) dataset, the model takes an
input with 2 parts: 1) a question, and 2) 10 Wikipedia paragraphs as
the context for answering the question. Among the 10 Wikipedia pages,
at most 2 are relevant to the answer, while the others are distractors.

In Listing 5.10, we implement an adaptation of FE2H (Li et al., 2022).
The method is a 2 stage procedure. First, we turn the 10 documents into
a vector database by embedding each document with the gpt_encoder
FP (lines 1–2, 11). We then use cosine similarity (via Scallop’s built-in
soft_eq) to select the 2 documents most relevant to the question (lines
8–15), which are provided as context to GPT-4 to do QA (lines 17–22).
By retrieving only 2 documents, the context we generate is inherently
less distracting than the naive context of all 10 documents.

5.5 Vision and Multi-Modal Models

Image classification models. Image-text alignment models, such as
CLIP (Radford et al., 2021), can be used off-the-shelf as zero-shot image
classification models. Figure 5.1b shows an example usage of the @clip
attribute. We also note that dynamically-generated classification labels
can be provided to CLIP via a bounded argument in the predicate.

Image segmentation models. OWL-ViT (Minderer et al., 2022), Seg-
ment Anything Model (SAM) (Kirillov et al., 2023), and Dual-Shot
Face Detector (DSFD) (Li et al., 2018) are included in Scallop as image
segmentation (IS) and object localization (LOC) models. IS and LOC
models can provide many outputs, such as bounding boxes, classified
labels, masks, and cropped images.
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1 @gpt_encoder
2 type $embed_text ( String ) -> Tensor
3
4 type question (q: String )
5
6 type context (id: i32 , c: String )
7
8 rel relevant (id) = id := top <2>(
9 id: question (q) and

10 context (id , c) and
11 soft_eq <Tensor >( $embed_text (q), $embed_text (c))
12 )
13 rel relevant_context ( $string_concat (c1 , "\n", c2)) =
14 relevant (id1) and relevant (id2) and id1 < id2 and
15 context (id1 , c1) and context (id2 , c2)
16
17 @gpt( prompt ="Given {{ ctxt }}\n{{q}}\n
18 Please think step -by -step {{ ans }}")
19 type qa(bound q:String , bound ctxt:String , ans: String )
20
21 rel answer (a) = question (q) and
22 relevant_context (c) and qa(q, c, a)

Listing 5.10: Scallop program for information retrieval in the HotpotQA task.

For instance, the OWL-ViT model can be used and configured
as shown in Listing 5.11. Here, the find_obj predicate takes in an
image, and finds image segments containing “human face” or “rocket”.
According to the names of the arguments, the model extracts 3 values
per segment: ID, label, and cropped image. Note that each produced
fact is tagged with a probability, representing the model’s confidence.

1 @owl_vit (["human face", " rocket "])
2 type find_obj (
3 bound img: Tensor , id: u32 ,
4 label: String , cropped_image : Tensor
5 )

Listing 5.11: Scallop snippet using owl_vit as a foreign attribute.
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Image generation models. Visual generative models such as Stable
Diffusion (Rombach et al., 2022) and DALL-E (Ramesh et al., 2021)
can be regarded as relations as well.

Listing 5.12 shows the declaration of the gen_image predicate, which
encapsulates a diffusion model. As can be seen from the signature,
it takes in a String text as input and produces a Tensor image as
output. Optional arguments such as the desired image resolution and
the number of inference steps can be supplied to dictate the granularity
of the generated image.

1 @stable_diffusion ("stable -diffusion -v1 -4")
2 type gen_image (bound txt: String , img: Tensor )

Listing 5.12: Scallop snippet using stable_diffusion as a foreign attribute.

An example in compositionality. To demonstrate Scallop’s usefulness
in composing foundation models of various modalities, we introduce our
face-tagging task based on that of VisProg (Gupta and Kembhavi,
2022). In our task, the model is given an image with a descriptive
natural-language filename, and needs to output an edited image where
all faces relevant to the description are boxed with their names. An
example input-output pair is shown in Figure 5.4.

Figure 5.4: The face-tagging input (left) and output (right) of the image with
descriptive filename microsoft_ceos.jpeg.
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1 type input_path ( String )
2 type input_name ( String )
3 rel image( $load_image (path)) = input_path (path)
4
5 @gpt(
6 prompt ="Give a semicolon - delimited list of people
7 that could appear in an image titled `{{ name }}',
8 where each item is a person 's name: {{ list }}"
9 )

10 type list_gpt (bound name: String , list: String )
11
12 rel names(list) = input_name (name) and
13 list_gpt (name , list)
14
15 @face_detection (
16 ["cropped -image", "bbox -x", "bbox -y",
17 "bbox -w", "bbox -h"],
18 enlarge_face_factor =1.3
19 )
20 type face(bound img: Tensor , id: u32 ,
21 face_img : Tensor , x: u32 , y: u32 , w: u32 , h: u32
22 )
23
24 rel face_image (id , face_img ) =
25 image(img) and face(img , id , face_img , _, _, _, _)
26 rel face_bbox (id , x, y, w, h) =
27 image(img) and face(img , id , _, x, y, w, h)
28
29 @clip( prompt ="the face of {{}}", score_threshold =0.8)
30 type face_name (
31 bound face: Tensor , bound list: String , name: String
32 )
33
34 rel identity (id , name) =
35 name := top <1>( name:
36 face_name (img , $string_concat (list), name) and
37 face_image (id , img) and names(list)
38 )
39
40 // Omitted : labeling identified faces w/ boxes

Listing 5.13: Scallop program for face-tagging.
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The code for face-tagging is provided in Listing 5.13. Our solution
obtains a set of possible names from GPT-4 (lines 5–13) and candidate
faces from the DSFD face detection model (lines 15–27). These are
provided to CLIP for object classification (lines 29–32), after which
probabilistic reasoning filters the most relevant face-name pairs (lines
34–38). Finally, the program calls image-editing foreign functions from
the plugin library that use the face-name pairs to draw the captioned
face boxes (code omitted).



6
Advanced Applications

Neurosymbolic methods decompose a problem into two core compo-
nents: neural perception and logical deduction to enjoy the benefits of
both deep learning and traditional algorithms. In real-world scenarios,
Scallop users may be particularly interested in understanding when and
how to apply this paradigm. This section is designed to address these
queries, providing targeted insights into the practical application of
neurosymbolic methods by multiple complex tasks.

Determining the optimal division of neural and logical components is
fundamental to applying Scallop effectively. When given a task, one may
start by envisioning its solution through a purely neural approach, then
assess how it would be tackled using only logical methodologies. These
two perspectives serve as extreme baselines. Following this, select a
suitable intermediate representation that allows for seamless extraction
of perceptual inputs and efficient neurosymbolic learning.

In this section, we cover three tasks where the neurosymbolic
paradigm improves upon the previous state-of-the-art baseline. Due
to the tasks’ complexity, we elide the end-to-end Python and Scallop
code. Rather, we focus on the conceptual advancements that each appli-
cation brings, such as unique symbolic representation of unstructured

202
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data, special logical reasoning patterns, and newly adapted learning
paradigms. Specifically, we discuss the following topics for each task:

Understanding the Input Dataset A detailed examination of the
nature and structure of datasets appropriate for neurosymbolic methods,
setting the stage for effective processing by Scallop.

Choosing the Structured Representation Discussion of the interme-
diate representations that Scallop utilizes to seamlessly integrate logical
reasoning with perceptual data.

Neural Architecture and Scallop Programs We provide the neural
network architectures utilized for each task and describe how these are
integrated into Scallop programs.

Performance Metrics Evaluation of the improvements and efficiencies
brought by adopting the neurosymbolic paradigm.

6.1 Learning Composition Rules for Kinship Reasoning

CLUTRR (Sinha et al., 2019) consists of kinship reasoning questions.
Given a context that describes a family’s routine activity, the goal is
to deduce the relationship between two family members that is not
explicitly mentioned in the story.

We showcase one CLUTRR example in Figure 6.1. The input text
is “Rich’s daughter Kelly made dinner for her sister Kim. Dorothy went
to her brother Rich’s birthday party. Anne went shopping with her
sister Kim. ” From this narrative, we infer several relationships: Rich
is Dorothy’s brother, Kelly is Rich’s daughter, Kim is Kelly’s sister,
and Anne is Kim’s sister. Leveraging our common sense knowledge, we
understand that one’s sister’s sister is also her sister, a sister’s father
is her father, and a brother’s daughter is his niece. Consequently, we
deduce that Anne is Kelly’s sister, making Rich Anne’s father, and
Dorothy, Anne’s aunt.

The family kinship graph of the CLUTRR dataset is synthetic
and the names of the family members are randomized. However, the
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Loss   

Predicted Query Output

0.01::kin(sister, A, D) 
0.02::kin(father, A, D) 
... 
0.84::kin(niece, A, D) 

kin(r3, x, z) :- co(r1, r2, r3), 
    kin(r1, x, y), kin(r2, y, z). 
kin(r, y, x) :- sym(r), kin(r, x, y). 
... 

0.99::co(son, son, grandson)
0.01::co(father, sister, son)
...
0.98::co(brother, son, nephew)

Input Text

0.92::kin(daughter, K, R) 
0.05::kin(sister, K, R) 
... 
0.03::kin(father, K, A) 
0.89::kin(sister, K, A) 
... 
0.95::kin(uncle, J, B) 

Language 
Model 

Differentiable Symbolic Reasoner  

Rich's daughter Kelly made
dinner for her sister Kim.
Dorothy went to her brother
Rich's birthday party. Anne
went shopping with her 
sister Kim. Julia decided to
call her uncle Benjamin on 
his birthday. Frank took his
son Charles and daughter 
Rachel out for pizza.

Ground Truth Query Output

kin(niece, A, D) 

Query

kin(r, A, D)? 

forall(a, b: kin(father, a, b) =>  
  kin(son, b, a) ∨ kin(daughter, b, a)) 

Semantic Loss (weighted sum)

Question

How is Dorothy 
related to Anne? 

Probabilistic Input Facts

Figure 6.1: Overview of kinship reasoning with an example where “Anne is the
niece of Dorothy” can be inferred from the context. We abbreviate the names with
their first initials in the relational symbols, and the composite relationship with “co”.

sentences included in the story are crowd-sourced and hence there is a
considerable amount of naturalness inside the dataset. The CLUTRR
dataset is further divided into different difficulties measured by k, the
number of facts used in the reasoning chain. For training, we only use
10K data points with 5K k = 2 and another 5K k = 3, meaning that we
can only receive supervision on data with short reasoning chains. The
test set, on the other hand, contains 1.1K examples with k ∈ {2, . . . , 10}.

6.1.1 Structured Representation: Family Graph

One natural representation of kinship is the family graph, as shown in
Figure 6.2. The nodes in the family graph represents the family members,
and the edges represents the relationship between the connected two
family members. We can thus express the family graph with facts.

Figure 6.2: The family graph corresponding to the story shown in Figure 6.1. Edges
representing family relations directly extracted from the story are colored in black,
while those requiring derivation using common sense knowledge are colored in blue.
Additionally, names are abbreviated using their initials.
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Logic rules can be applied to known facts to deduce new ones. For
example, below is a Horn clause, which reads “if b is a’s brother and c

is b’s daughter, then c is a’s niece”:

niece(a, c) ← brother(a, b) ∧ daughter(b, c).

Note that the structure of the above rule can be captured by a
higher-order logical predicate called “composite” (abbreviated as comp).
This allows us to express many other similarly structured rules with
ease. For instance, we can have comp(brother, daughter, niece) and
comp(father, mother, grandmother). With this set of rules, we may
derive more facts based on known kinship relations. In fact, composition
is the only kind of rule we need for kinship reasoning. In general, there
are many other useful higher-order predicates to reason over knowledge
bases, which we list out in Table 6.1.

Table 6.1: Higher-order predicate examples.

Predicate Example
composite composite(mother, father, grandfather)
transitive transitive(relative)
symmetric symmetric(spouse)

inverse inverse(husband, wife)
implies implies(mother, parent)

The logic for reasoning over kinship relations is realized in Scallop in
Listing 6.1. Line 2 declares the ternary relation kinship among subject,
object, and their relationships. Line 3 then declares composite that
is a higher-order predicate relating 3 kinship relations. We declare on
lines 7–9 the rule that composes two existing kinship facts to derive a
new kinship fact.

We note that integrity constraints are also included as logical rules.
Specifically, we include a unary relation named violate storing boolean
to encode the likelihood of integrity violations based on predefined rules.
In this application, we choose to have violation (negative) rules rather
than integrity (positive) rules for two reasons. First, it is more modular
because multiple violation criteria can be “or”-ed together to form a
larger violation criteria, allowing violation rules to be expressed as
multiple Scallop rules. Secondly, the likelihood of integrity violation can
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1 // Relation declarations
2 type kinship (rela: String , sub: String , obj: String )
3 type composite (r1: String , r2: String , r3: String )
4 type question (sub: String , obj: String )
5
6 // Rules to derive the final answer
7 rel kinship (r3 ,a,c) = kinship (r1 ,a,b) and
8 kinship (r2 ,b,c) and
9 composite (r1 ,r2 ,r3) and a != c

10 rel answer (r) = question (s, o), kinship (r, s, o)
11
12 // Integrity constraints :
13 // (6 for kinship and 2 for rule learning )
14 rel violate (!r) = r :=
15 forall (a,b : kinship (" mother ",a,b)
16 => kinship ("son",b,a) or kinship (" daughter ",b,a))
17 // Other constraints are omitted ...

Listing 6.1: The Scallop program for reasoning over kinship graphs in CLUTRR.

be directly used for semantic constraint loss, which we will introduce
later in Section 6.1.2.

6.1.2 Learning Pipeline

The learning pipeline concerns tightly integrating a perceptive model for
relation extraction with Scallop’s symbolic engine for logical reasoning.
There are two add-ons we introduce for this specific application. First,
we initialize the common sense knowledge rules used for logical deduction
using language models, then further tune them through our end-to-
end pipeline, alleviating human efforts. Secondly, we employ integrity
constraints on the extracted relation graphs and the logical rules, to
improve the logical consistency of LMs and the learned rules.

Based on this design, we formalize our method as follows. We adopt
pretrained LMs to build relation extractors, denotedMθ, which take in
the natural language input x and return a set of probabilistic relational
symbols r. Next, we employ a differentiable deductive reasoning program,
Pϕ, where ϕ represents the weights of the learned logic rules. It takes as
input the probabilistic relational symbols and the query q and outputs



6.1. Learning Composition Rules for Kinship Reasoning 207

a distribution ŷ over the set of all possible relations R. Overall, the
deductive model is written as

ŷ = Pϕ(Mθ(x), q). (6.1)

Additionally, we have the semantic loss (sl) derived by another sym-
bolic program Psl computing the probability of violating the integrity
constraints:

lsl = Psl(Mθ(x), ϕ) (6.2)

Combined, we aim to minimize the objective J over training set D with
loss function L:

J(θ, ϕ) = 1
|D|

∑
(x,q,y)∈D

w1L(Pϕ(Mθ(x), q), y) + w2Psl(Mθ(x), ϕ),

(6.3)
where w1 and w2 are tunable hyper-parameters to balance the deduction
loss and semantic loss. Though shown as two separate programs Pϕ
and Psl, they share the same Scallop program in practice, as shown in
Listing 6.1. We only need to additionally configure the Scallop module
to output two relations, answer (for kinship prediction) and violation
(for semantic loss).

6.1.3 Relation Extraction

Since pretrained LMs have strong pattern recognition capabilities for
tasks like Named-Entity-Recognition (NER) and Relation Extraction
(RE) (Tenney et al., 2019; Soares et al., 2019), we adopt them as our
neural components in Scallop. To ensure that LMs take in strings of
similar length, we divide the whole context into multiple windows. The
goal is to extract the relations between every pair of entities in each
windowed context. Concretely, our relation extractor Mθ comprises
three components: 1) a Named-Entity Recognizer (NER) to obtain the
entities in the input text, 2) a pretrained language model, to be fine-
tuned, that converts windowed text into embeddings, and 3) a classifier
that takes in the embedding of entities and predicts the relationship
between them. The set of parameters θ contains the parameters of both
the LM and the classifier.
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We assume the relations to be classified come from a finite set of
relations R. For example in CLUTRR (Sinha et al., 2019), we have
20 kinship relations including mother, son, uncle, father-in-law, etc.
In practice, we perform (|R|+ 1)-way classification over each pair of
entities, where the extra class stands for “n/a”. The windowed contexts
are split based on simple heuristics of “contiguous one to three sentences
that contain at least two entities”, to account for coreference resolution.
The windowed contexts can be overlapping and we allow the reasoning
module to deal with noisy and redundant data. Overall, assuming
that there are m windows and n entities in the context x, we extract
mn(n − 1)(|R| + 1) probabilistic relational symbols. Each symbol is
denoted as an atom of the form p(s, o), where p ∈ R ∪ {n/a} is the
relational predicate, and s, o are the two entities connected by the
predicate. We denote the probability of such symbol extracted by the
LM and relational classifier as Pr(p(s, o) | θ). All these probabilities
combined form the output vector r =Mθ(x) ∈ Rmn(n−1)(|R|+1).

Rule learning. Hand-crafted rules could be expensive or even impossi-
ble to obtain. To alleviate this issue, Scallop applies LMs to help auto-
matically extract rules, and further utilizes the differentiable pipeline
to fine-tune the rules. Each rule has an attached a weight, initial-
ized by prompting an underlying LM. Thus, let a composition rule be
prob :: comp(r, p, q), which means one’s r’s p is their q, with probability
weight prob. For example, the facts listed in Listing 6.2 means, one’s
father’s father is always one’s grandfather (probability 1.0). At the same
time, one’s brother’s daughter is one’s niece with 0.9 probability.

1 rel composite = {
2 1.0::( " father ", " father ", " grandfather "),
3 0.9::( " brother ", " daughter ", "niece"),
4 // ... other weighted composite rules
5 }

Listing 6.2: A few probabilistic composite rules that are learned.

Given that the relations r, p, q ∈ R, Scallop automatically enumer-
ates r and p from R while querying for LM to unmask the value of q.
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LM then returns a distribution of words, which we take an intersection
with R. The probabilities combined form the initial rule weights ϕ. This
type of rule extraction strategy is different from existing approaches in
inductive logic programming since we are exploiting LMs for existing
knowledge about relationships.

Note that LMs often make simple mistakes answering such prompts.
In fact, with the above prompt, even GPT-3 can only produce 62% of
composition rules correctly. While we can edit the prompt to include few-
shot examples, in this work we consider fine-tuning such rule weights
ϕ within our differentiable reasoning pipeline. Note that there are
exponentially many rule weights to be fine-tuned. For example, the
composition rule used for kinship reasoning has 3 arguments, resulting
in |R|3 = 203 candidate rules.

In practice, we use two optimizers with different hyper-parameters
to update the rule weights ϕ and the underlying model parameter θ, in
order to account for optimizing different types of weights.

Semantic loss and integrity constraints. In general, learning with
weak supervision labels is hard, not to mention that the deductive rules
are learned as well. We thereby introduce an additional semantic loss
during training. Here, semantic loss is derived by a set of integrity
constraints used to regularize the predicted entity-relation graph as well
as the learned logic rules. In particular, we consider rules that detect
violations of integrity constraints. For example, “if A is B’s father, then
B should be A’s son or daughter” is an integrity constraint for relation
extraction—if the model predicts a father relationship between A and
B, then it should also predict a son or daughter relationship between B
and A. Encoded in first order logic, it is

∀a, b, father(a, b)⇒ (son(b, a) ∨ daughter(b, a)).

The violation of this formula is encoded in Scallop on lines 14–16 of
Listing 6.1. Through differentiable reasoning, we evaluate the probability
of such constraints being violated, yielding our expected semantic loss.
In practice, an arbitrary number of constraints can be included, though
too many interleaved ones could hinder learning.
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6.1.4 Experiment

Setup. The CLUTRR dataset is divided into different difficulties
measured by k, the number of facts used in the reasoning chain. For
training, we only have 10K data points with 5K k = 2 and another
5K k = 3, meaning that we can only receive supervision on data with
short reasoning chains. The test set, on the other hand, contains 1.1K
examples with k ∈ {2, . . . , 10}. We first initialize all possible kinship
composition rules with GPT-3 provided probabilities, and extract the
relationship from the given story.

Baselines. We compare Scallop with a spectrum of baselines from
purely neural to logically structured. The baselines include pretrained
large language models (BERT (Kenton and Toutanova, 2019) and
RoBERTa (Liu et al., 2019), non-LM counterparts (BiLSTM (Hochreiter
and Schmidhuber, 1997; Cho et al., 2014) and BERT-LSTM), structured
models (GAT (Veličković et al., 2018), RN (Santoro et al., 2017), and
MAC (Hudson and Manning, 2018)), and other neurosymbolic models
(CTP (Minervini et al., 2020b) and RuleBert (Saeed et al., 2021)). The
structured models include those models with relational inductive biases,
while the neurosymbolic models use logic constraints.

Performance. We compare the performance of Scallop against multi-
ple baselines in Figure 6.3, which shows that our neurosymbolic solution
outperforms all compared neural baselines by a large margin. We also
show the top 20 learned rules from the CLUTRR experiment in Fig-
ure 6.2. All top-20 learned rules match our expected real-life kinship
relations.

6.2 Visual Question Answering on Scene Images

In this section, we describe the Scallop program for one of our benchmark
applications, CLEVR (Johnson et al., 2016). In Figure 6.4, we illustrate
a concrete example from the CLEVR dataset. The program is given
two inputs, namely the image (left) and the question (top-right), and it
is expected to produce an answer (bottom-right). In general, the images
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Figure 6.3: Scallop’s performance on CLUTRR compared with various baselines.

Table 6.2: The learned logic rules (expressed as Horn rules) with top@20 confidence
in CLUTRR rule learning.

Confidence Rule
1.154 mother(A,B) ← sister(A,C) ∧ mother(C,B)
1.152 daughter(A,B) ← daughter(A,C) ∧ sister(C,B)
1.125 sister(A,B) ← daughter(A,C) ∧ aunt(C,B)
1.125 father(A,B) ← brother(A,C) ∧ father(C,B)
1.123 granddaughter(A,B) ← grandson(A,C) ∧ sister(C,B)
1.120 brother(A,B) ← sister(A,C) ∧ brother(C,B)
1.117 brother(A,B) ← son(A,C) ∧ uncle(C,B)
1.105 brother(A,B) ← daughter(A,C) ∧ uncle(C,B)
1.104 daughter(A,B) ← wife(A,C) ∧ daughter(C,B)
1.102 mother(A,B) ← brother(A,C) ∧ mother(C,B)
1.102 brother(A,B) ← father(A,C) ∧ son(C,B)
1.096 sister(A,B) ← mother(A,C) ∧ daughter(C,B)
1.071 sister(A,B) ← father(A,C) ∧ daughter(C,B)
1.071 son(A,B) ← son(A,C) ∧ brother(C,B)
1.070 uncle(A,B) ← father(A,C) ∧ brother(C,B)
1.066 daughter(A,B) ← son(A,C) ∧ sister(C,B)
1.061 brother(A,B) ← brother(A,C) ∧ brother(C,B)
1.056 grandson(A,B) ← husband(A,C) ∧ grandson(C,B)
1.055 sister(A,B) ← son(A,C) ∧ aunt(C,B)
1.053 grandmother(A,B) ← sister(A,C) ∧ grandmother(C,B)
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in the CLEVR dataset may contain up to 10 primitive objects, each
with a predefined set of shapes, colors, materials, and sizes. There is a
range of questions whose answer may be numbers (counting questions),
true/false (existence or comparing or assertive questions), or properties
(querying color).

Question : Is there a yellow cube?

Programmatic Query:
Exists ( FilterColor (

FilterShape (Scene ()," cube "),
" yellow "))

Answer : true

Figure 6.4: An example problem in CLEVR. Our model is supposed to answer the
given question based on the image shown on the left.

We decompose our solution to this application into three sub-tasks:
(a) extracting a structured scene graph from the input image, (b)
extracting an executable query program from the input natural language
(NL) question, and (c) combining both to answer the question based on
the scene graph. Here, (a) and (b) require the processing of unstructured
data such as image and natural language question, and therefore may be
neural. On the other hand, (c) can be programmed and fully symbolic.
We may choose to have both neural networks for (a) and (b) to be
trained by our end-to-end pipeline. But in light of the advancements of
foundation models such as GPT-4 (OpenAI, 2023b) and CLIP (Radford
et al., 2021), in this section we present an off-the-shelf no-training
solution. We next describe how we solve each of these sub-tasks.

6.2.1 Image to structured scene graph

To convert an image to a structured scene graph, we use two vision
models: OWL-ViT (Minderer et al., 2022) for obtaining object segments,
and CLIP (Radford et al., 2021) for classifying object properties. The
goal is to construct a scene graph which contains the shape, color,
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material, and size for each object, as well as the spatial relationships
between each pair of objects.

Our object detection predicate is defined in Listing 6.3. We use
the @owl_vit foreign attribute to decorate a predicate segment_image.
Here, the image has one bounded argument which is the input image,
and it produces image segments represented by 5 tuples, containing
segment id (id), segmented image (cropped_image), the area of seg-
ment (area), the center x coordinate (bbox_center_x), and the bottom
y coordinate (bbox_bottom_y). Specifically, segmented images can be
passed to downstream image classifiers, the area is used to classify
whether the object is big or small, and the coordinates are used to deter-
mine spatial relationships between objects. We illustrate the produced
table in Figure 6.5.

1 @owl_vit (["cube", " sphere ", " cylinder "],
2 expand_crop_region =10, limit =10,
3 flatten_probability =true)
4 type segment_image (
5 bound img: Tensor , id: u32 ,
6 cropped_image : Tensor , area: u32 ,
7 bbox_center_x : u32 , bbox_bottom_y : u32)

Listing 6.3: Definition of the relation used for image segmentation, using OWL-ViT.

@owl_vit(["cube","sphere"],...)
type image_segment(
  bound img: Tensor, 
  id: u32, 
  cropped: Tensor,
  area: u32,
  bbox_center_x: u32,
  bbox_center_y: u32)

prob id segment area x y

0.99 0 625 515 169

0.98 1 134 262 166

... ... ...

Figure 6.5: An illustration of the segment_image relation.

Note that the arguments we pass to @owl_vit contain expected
labels of cube, sphere, and cylinder. Because OWL-ViT does not
perform well at classifying given geometric objects by shape, we do not
use it to query the labels associated with each object. Rather, these
labels identify the image segments the model extracts from the base
image.
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We set expand_crop_region to be 10, which expands the cropped
images by the given factor. Since the bounding boxes of the objects are
tight, enlarging the crop region can help subsequent classifiers to better
see the object. With the limit set to 10, OWL-ViT only generates 10
image segments. Lastly, we set flatten_probability to be true. This
is due to that OWL-ViT is not trained on CLEVR, so it produces very
low confidence scores on all recognized objects. In order to not let the
scores affect downstream computation, we overwrite the probability to
1 for all objects.

With all the above setup, we may load the image specified by the
image directory path using the foreign function $load_image, and
then segment the image using the segment_image predicate defined
previously. Our code is illustrated in Listing 6.4.

1 // the user provide the image with its directory
2 type img_dir ( directory : String )
3
4 // load the image as a tensor
5 type image(img: Tensor )
6 rel image( $load_image (d)) = img_dir (d)
7
8 // segment the image using our segment_image relation
9 rel obj_seg (id , seg , area , x, y) = image(img) and

10 segment_image (img , id , seg , area , x, y)
11 rel obj(id) = obj_seg (id , _, _, _, _)

Listing 6.4: The Scallop program that loads and segments a CLEVR image.

We next define the classifiers for shape, color, material, and sizes.
For instance, we utilize the foreign attribute @clip to classify each
object segment with a label among three possible shapes: cube, sphere,
and cylinder (Listing 6.5). In order to interface with CLIP, we write
a prompt "a {{}} shaped object". Each label is used to replace the
{{}} pattern in the prompt, producing short phrases like “a cube shaped
object”. Then, the three prompts are passed to CLIP along with the
object image, and facts with labels are returned with probabilities. The
classifier for color is done similarly, shown also in Listing 6.5.
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1 // Classify each object into a certain shape
2 @clip (["cube", " cylinder ", " sphere "],
3 prompt ="a {{}} shaped object ")
4 type class_shape (bound obj_img :Tensor , shape: String )
5 rel shape(o, s) = obj_seg (o, seg , _, _, _) and
6 class_shape (seg , s)
7
8 // Classify each object into a certain color
9 @clip (["red", "blue", " yellow ", " purple ", "gray"],

10 prompt ="a {{}} colored object ")
11 type class_color (bound obj_img :Tensor , color: String )
12 rel color(o, c) = obj_seg (o, seg , _, _, _) and
13 class_color (seg , c)

Listing 6.5: Classifier relations using CLIP.

The spatial relationship (left, right, front, and behind) is derived
from object coordinates (Listing 6.6). We note that we are not using a
neural component for this because the spatial relationships from object
coordinates are fairly precise. Combining everything together, we have
produced the relationships color, shape, material, size, and relate,
forming the scene graph of the image.

1 // obtain the object position
2 rel obj_pos (o, x, y) = obj_seg (o, _, _, x, y)
3
4 // left/right spatial relation
5 rel rpos(o1 , o2 , if x1 <x2 then "left" else "right")
6 = obj_pos (o1 , x1 , _) and obj_pos (o2 , x2 , _)
7 and o1 != o2
8
9 // front/ behind spatial relation

10 rel rpos(o1 , o2 , if y1 >y2 then "front" else " behind ")
11 = obj_pos (o1 , _, y1) and obj_pos (o2 , _, y2)
12 and o1 != o2

Listing 6.6: Scallop rules for deriving spatial relations between pairs of objects.
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6.2.2 NL question to programmatic query

We use the GPT-4 model (OpenAI, 2023b) for converting a natural
language question into a programmatic query. The first step is defining
the domain specific language (DSL) for querying the CLEVR dataset,
as shown in Listing 6.7. Notice that the DSL is represented by the user-
defined algebraic data type (ADT) Query, which contains constructs for
getting objects, counting objects, checking existence of objects, and
even comparing counts obtained from evaluating multiple queries.

1 type Query = Scene ()
2 | FilterShape (Query , String )
3 | // and material / color / size
4 | MoreThan (Query , Query)
5 | // and less -than / equals
6 | SameSize (Query)
7 | // and color / material / size
8 | QueryColor (Query)
9 | // and size / shape / material

10 | Count(Query)
11 | Exists (Query)
12 | Relate (Query , String )
13 | // ... and other variants

Listing 6.7: The DSL for representing the NL questions in the CLEVR dataset,
defined in Scallop.

We then create the semantic parser for the DSL by configuring a rela-
tion to parse the natural language question into a programmatic Query,
shown in Listing 6.8. For this, we utilize the @gpt_semantic_parse
foreign attribute provided in Scallop. Other than the model argument
which is used to specify the OpenAI model to call, we pass the 3
main arguments to gpt_semantic_parse, namely header, prompt, and
examples. header constitutes the system prompt, while the structured
examples are expanded with the prompt into the few-shot examples.
In Figure 6.6 we show one specific example of “conversation” with LLM
to precisely parse the NL question into Query.
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1 @gpt_semantic_parse (
2 header ="""
3 Please convert a question into its programmatic
4 form according to the following language :
5
6 Expr = Scene () | FilterShape (Expr , String ) | ...
7
8 Please pick shapes among \" cylinder \", ...;
9 Colors are among \" red \", \" blue \", ...;

10 Materials are among \" shiny metal \" and ...;
11 Sizes are among \" large \" and \" small \";
12 Spatial relations are among \" left \", ...""",
13 prompt =""" Question : {{s}} \n Query: {{e}}""",
14 examples =[
15 ("How many red objects are there?",
16 "Count( FilterColor (Scene (), \" red \"))"),
17 ("Is there a cube?",
18 " Exists ( FilterShape (Scene (), \" cube \"))"),
19 ...] ,
20 model="gpt -4")
21 type parse_query (bound s: String , q: Query)
22
23 // convert input NL question to a programmatic query
24 type question (q: String )
25 rel prog_query (q) = question (s) and parse_query (s, q)

Listing 6.8: A semantic parser relation parse_query.

6.2.3 Putting it all together

The last part which brings everything together is the semantics of our
Query DSL, shown in Listing 6.7. We can start by treating each variant
of our DSL as a function. Assume Oall = {o1, o2, . . . , on} represents the
set of all objects in the scene. Then we have an arbitrary set of objects
represented as O ∈ P(Oall) where P is the powerset operation. Denoting
O = P(Oall), we assign function types and functional semantics to the
variants in our DSL (Figure 6.7). For instance, Scene is a function that
returns all the objects in the scene. Count takes in a set of objects and
returns the cardinality of that set. Assuming we have relational predi-
cates such as shape and color pre-populated with facts in our scene
graph, we may use them to define the functions such as FilterShape
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Please convert a question for asking a visual 
question into its programmatic form according to 
the following language:
    Expr = Scene() 
         | FilterShape(Expr, String) 
         | …
Please pick shapes among "cylinder", ...

System prompt

Question: How many red objects are there?

User prompt (Provided as Shot #1)

Count(FilterColor(Scene(), "red"))

Assistant Response (Provided as Shot #1)

Question: Is there a cube?

User prompt (Provided as Shot #2)

Exists(FilterShape(Scene(), "cube"))

Assistant Response (Provided as Shot #2)

…other few shot examples…

Question: Is there an object to the left of
the cube?

User prompt (Real question)

Exists(Relate(FilterShape(Scene(), "cube"), "left"))

Assistant Response (Real Response from GPT-4)

Figure 6.6: A “conversation” between user and the LLM for semantically parsing the
NL question into programmatic query in our domain specific language (Listing 6.7).
We use few-shot prompting in order to generate accurate programmatic query.
Everything except the last bubble (green) is generated by our @gpt_semantic_parse
foreign attribute–the assistance response for few-shot examples are also mocked to
give the LLM an impression of the expected output format.

and QueryColor. Definitions of other predicates are omitted since they
look similar to what we show.

Unsurprisingly, it turns out that the definition of these functions
can all be translated into relational rules. We may define eval which
recursively evaluates each “function call” into their respective output.
Note that since the functions have different return types, we define dif-
ferent eval_* relations, shown in Listing 6.9. Specifically for eval_obj,
even though the original functions return sets of objects, we may define
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Scene : ()→ O Scene() = Oall
Count : O → N Count(O) = |O|

Exists : O → B Exists(O) = 1|O|>0
FilterShape : O × S→ O FilterShape(O, s) = {o | o ∈ O ∧ shape(o, s)}
QueryColor : Oall → C QueryColor(o) = c where color(o, c)

MoreThan : O ×O → B MoreThan(O1, O2) = 1|O1|>|O2|

Figure 6.7: The functional semantics of our defined DSL. We show the type of each
“function” as well as their concrete definitions. Here, S = {big, small} represents
the set of shapes and C = {red, blue, . . . } represents the set of all possible colors
appearing in the dataset.

1 // for functions like Count that return numbers
2 type eval_num (q: Query , n: usize)
3
4 // for functions like Exists that return booleans
5 type eval_bool (q: Query , b: bool)
6
7 // for functions like Scene that return object sets
8 // note: we use `u32 ` to represent Object IDs
9 type eval_obj (q: Query , obj_id : u32)

10
11 // for functions like QueryColor that return
12 // stringified attributes , such as
13 // "red", "cube", "left", "large", etc.
14 type eval_str (q: Query , attr: String )

Listing 6.9: The type declarations of eval_* relations in Scallop.

a relation whose facts relate a function with one of the objects in its
output set. Such a representation is natural (and unique) in relational
programming—it allows us to tag each output with probabilities, which
might be very hard to do in traditional functional semantics.

We can now start defining the semantics of our DSL in Scallop
(Listing 6.10). The semantics is inductively defined on the Query data
structure. Each rule essentially encodes the evaluation of one variant
in our DSL. For instance, the rule on line 2 states that evaluating the
Scene() results in any object o where o is an object. The rule on lines
3-4 handles the FilterShape(e1, s) query: it evaluates the subquery
e1 to obtain object o, and further quantifies it using the shape(o,
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1 // evaluating variants which return set of objects ...
2 rel eval_obj (Scene (), o) = obj(o)
3 rel eval_obj ( FilterShape (e1 , s), o) =
4 eval_obj (e1 , o) and shape(o, s)
5
6 // evaluating variants which return numbers ...
7 rel eval_num (e, n) = n := count(
8 o: eval_obj (e1 , o) where e: case e is Count(e1))
9

10 // evaluating variants which return boolean ...
11 rel eval_bool (e, b) = b := exists (
12 o: eval_obj (e1 , o) where e: case e is Exists (e1))
13 rel eval_bool ( MoreThan (e1 , e2), n1 > n2) =
14 eval_num (e1 , n1) and eval_num (e2 , n2)
15
16 // evaluating variants which return attributes ...
17 rel eval_str ( QueryColor (e),c) =
18 eval_obj (e, o), color(o, c)

Listing 6.10: The semantics of CLEVR DSL defined in Scallop.

s) atom to make sure that it has the desired shape. For the rules
handling count and exists, we directly use the corresponding aggregator
in Scallop. Note that we use the explicit group-by operation with the
where keyword, so that the default behavior is to return 0 (for count)
or false (for exists).

The rules are thus defined relatively concisely. While the rules
look like their functional counterparts, they actually have underlying
probabilistic and differentiable semantics. As such, the probabilities
produced by image segmentation models and classifiers can propagate
to produce a probabilistic distribution of answers.

6.2.4 Evaluation

We evaluate our method against another no-fine-tuning VQA model,
ViLT-VQA (Kim et al., 2021) as a baseline. As shown in Table 6.3, our
method significantly outperforms the baseline model on the CLEVR
dataset under the no-fine-tuning setting. We note that the CLEVR
dataset requires systematic compositional reasoning, meaning that pure
data-driven neural models may never reach the generalizability of models
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Table 6.3: Quantitative results on CLEVR dataset.

Method CLEVR

Recall@1 Recall@3

ViLT-VQA 0.241 0.523

Ours 0.463 0.638

with symbolic components. Additionally, we have attempted to solve
CLEVR under other settings, such as with the training of simple unary
attribute and binary relation classifiers from scratch. There, Scallop is
used as the differentiable module in an end-to-end training loop, with
which we obtain an accuracy of 95.4% (Li et al., 2023). In general, we
conclude that a neurosymbolic approach is very suitable for solving
VQA tasks that require both perception and reasoning.

6.3 Aligning Texts and Videos for Video Scene Graph Generation

Understanding video semantics has gained prominence due to a wide
range of applications such as video search, text-video retrieval, video
question answering, video segmentation, and video captioning. Video
semantics constitutes two crucial aspects: spatial semantics, which
concern the entities in the video, their individual attributes, and their
semantic relationships; and temporal semantics, which capture actions
and properties evolving through time. For example, the video described
in Figure 6.8 by the phrase “pushing a box off the desk by hand” involves
entities like “box” and “hand”, which are connected by the spatial
relation “touching”. It also features two temporally consecutive states:
the “box” is first “on” the “desk”, and then “not above” the “desk”.

To explicitly learn combined spatial and temporal semantics, a
structured representation called Spatio-Temporal Scene Graph (STSG)
(Shang et al., 2017; Zhu et al., 2022) has been proposed to represent
entity relations throughout a video. Existing approaches for learning
STSGs from video data are typically fully-supervised (Nag et al., 2023;
Cong et al., 2021). They can potentially learn high-fidelity STSGs but
are greatly hindered in practice due to the complexity of low-level
annotations that are laborious to obtain (Yang et al., 2023).
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Figure 6.8: An example from 20BN demonstrating the end-to-end learning pipeline.
The model Mθ processes a video to generate a probabilistic STSG. With 3-shot
GPT-4, an STSL specification is derived from the video caption, which describes a
temporal sequence of two events: “the box is on the desk touched by a hand” and
“the box is not above the desk.” The alignment checker then aligns the STSL program
with the probabilistic STSG, resulting in a differentiable alignment score of 0.95.

Weak supervision emerges as a promising approach to address this
challenge. For example, the vast availability of video captions provides
a valuable source of weak supervisory signals. However, key difficulties
arise in effectively learning STSGs from such weak supervision. Is it
even feasible to use video captions given the sparsity and noise in the
signals they provide? Captions often focus only on the primary objects,
ignoring underlying details, and many temporal signals are either hidden
or must be inferred. How can we provide useful fine-grained signals
under such circumstances?

To address these challenges, we propose transforming captions into
logical specifications using large language models to explicitly reveal the
hidden spatial and temporal information. This transformation creates
a shared foundation to systematically align captions with predicted
STSGs. The alignment process should (a) capture both spatial and
temporal nuances to provide fine-grained supervision for underlying
STSG generators; (b) allow diversity, naturalness, and fuzziness in the
video and caption data; and (c) account for common-sense knowledge
that may be implicit or ambiguous in the captions.

We set out by designing STSL, a general and expressive Spatio-
Temporal Specification Language for specifying fine-grained spatio-
temporal properties. STSL is grounded in Finite Linear Temporal Logic
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(LTLf ) (De Giacomo and Vardi, 2013) which is used to describe temporal
properties over finite traces of action and states. STSL subsumes action
sequences commonly seen in video-action alignment tasks (Chang et al.,
2019) while capturing additional temporal nuances such as “until” (U)
and “finally” (♢). It also allows to express common-sense constraints for
extra supervision. Finally, combined with relational predicates extracted
from natural language, such as “is pushing off” and “lies above”, it can
even specify the open-domain spatial semantics of videos.

We combine STSG and STSL into a novel framework for learning
fine-grained video representations. In particular, we implement STSL
and a specification checker for it atop the Scallop neurosymbolic frame-
work. Our checker computes an alignment score between a pair of
predicted STSG and an STSL specification describing the input video.
Intuitively, the alignment score represents the likelihood of the STSL
specification being satisfied over the STSG extracted from the video. We
leverage the end-to-end differentiable reasoning capability of Scallop to
enable training of the STSG model using weak supervision. To provide
additional supervision, we incorporate contrastive learning, time-span
supervision, and semantic loss into our loss function design. Further,
since such specifications are usually unavailable in existing datasets, we
devise a generic prompting template that utilizes a large language model
like GPT-4 (OpenAI et al., 2024) to convert any caption into an STSL
program. This enables us to leverage widely accessible video datasets
with captions for learning a fine-grained STSG extraction model. We
illustrate the full learning pipeline in Figure 6.8, which the remainder
of this section will describe in greater detail.

We begin by presenting the high-level problem definition. We are
given a dataset D of video-caption pairs (X,C), where X = [x1, . . . , xn]
is a video containing n frames, and C is a natural language caption
describing the video. We wish to learn a neural model Mθ which extracts
a spatio-temporal scene graph (STSG), r̂ = Mθ(X) that conforms to
the corresponding caption C. During training time, given a loss function
L, we aim to minimize the following main objective:

J(θ) = 1
|D|

∑
(X,C)∈D

L(Pr(Mθ(X) |= LLM(C)), 1), (6.4)
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where LLM(C) is an STSL formula ψ generated by LLM from the caption
C, and Pr(r̂ |= ψ) is the alignment score (probability of alignment)
computed by our spatio-temporal alignment checker.

6.3.1 Video to Probabilistic Relational Database

A probabilistic spatio-temporal scene graph is a probabilistic rela-
tional database that contains two types of facts denoted by relations
unary_atom and binary_atom, for unary and binary predicates respec-
tively, each associated with a probability denoting the likelihood that
the fact is true. For example, 0.05::unary_atom("deformed", 3, e)
means that “entity e is unlikely to be deformed at time stamp 3,” while
0.92::binary_atom("push", 10, h, b) indicates that “object h is
highly likely to be pushing object b at time stamp 10.” This flexible
representation supports the seamless incorporation of unary and binary
keywords into the database. The unified probabilistic database enables
our method to be model-agnostic, supporting both closed-domain STSG
classification models and open-world vision-language models for con-
verting input video data into relational database representations.With
a unified formalization, an STSG generator, Mθ, parameterized by θ,
takes in pixel-based raw video data X, and generates a distribution of
STSGs. This distribution is then encoded as a predicted probabilistic
relational database, r̂ = Mθ(X).

6.3.2 Spatio-Temporal Specification Language

Linear Temporal Logic (LTL) (Pnueli, 1977) is a formal logic system
extending propositional logic with concepts about time. It is commonly
used for formally describing temporal events, with applications in soft-
ware verification (Chaki et al., 2005; Kesten et al., 1998) and control
(Ding et al., 2014; Sadigh et al., 2014). As we operate on prerecorded,
finite-length videos, our language is developed using LTLf (De Giacomo
and Vardi, 2013), which supports LTL reasoning over finite traces. Thus,
we use LTLf as a framework for specifying events and their temporal
relationships.

Our STSL (Figure 6.9) further extends LTLf by introducing rela-
tional predicates and variables. It starts from the specification ψ which
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existentially quantifies variables in an STSL formula. The formula φ is
inductively defined, with basic elements as relational atoms α of the
form a(t1, . . . , tn). Note that the terms t̄ = {t1, . . . , tn} can contain
quantified variables to be later grounded into concrete entities based on
context Γ, denoted by substΓ(t̄). From here, φ can be constructed using
basic propositional logic components ∧ (and) and ¬ (not). The system
additionally includes temporal unary operators ⃝ (next), □ (always),
and ♢ (finally), and a binary operator U (until) (Albers et al., 2009).
For example, the description “A hand continues to touch the box until
it drops.” can be represented as an STSL formula

ψ = touch(h, b) U drop(b, _). (6.5)

Note that an argument to the predicate drop is a wildcard (_), since
we do not specify where the box drops from. This formula might seem
too strict since it requires the two events to be consecutive. To make
the specification more general, we alter Eqn. 6.5 to “♢(touch(h, b) ∧
♢drop(b, _))”. Here, the two events, touch and drop, need to happen
in chronological order but are not required to be consecutive.

(Term) t ::= c | v
(Formula) φ ::= a(t) | ¬a(t) | φ1 ∧ φ2

| ⃝φ | □φ | ♢φ | φ1 U φ2
(Specification) ψ ::= ∃v1, . . . , vk, s.t. φ

Figure 6.9: The formal syntax of STSL, where a represents relational predicates,
c represents constants, and v represents variables. Here, ∧ and ¬ represent logical
“and” and “not” respectively. Formula may also contain temporal operators⃝ (next),
□ (global), ♢ (finally), and U (until).

In Listing 6.11 we define the STSL using algebraic data types (ADTs).
We stratify an STSL formula into a temporal formula and a logical
formula so that the semantics can be implemented more succinctly later.
In the temporal section (lines 6-10), we cover all the core temporal
operations supported in STSL. In the logical section (lines 14–18), we
can have conjunction as the only logical connective; negation can only
be applied to unary or binary atoms, allowing us to define NegUnary and
NegBinary atomic formulas. Note that if we allow arbitrary negation,
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1 // Term: constant string or variable or wildcard
2 type Term = Const( String ) | Var(Var) | Wildcard ()
3
4 // TForm: temporal formula , containing
5 // `Global `, `Finally `, `Until `, and `Next `
6 type TForm = Global (TForm)
7 | Finally (TForm)
8 | Until(TForm , TForm)
9 | Next(TForm)

10 | Logic(LForm)
11
12 // LForm: logical formula , containing logical
13 // conjunction and atomic queries
14 type LForm = And(LForm , LForm)
15 | Unary(String , Term)
16 | Binary (String , Term , Term)
17 | NegUnary (String , Term)
18 | NegBinary (String , Term , Term)
19
20 // an example specification : touch(h,b) U drop(b,_)
21 const MY_SPEC = Until(
22 Binary ("touch ", Var("h"), Var("b")),
23 Binary ("drop", Var("b"), Wildcard ()))

Listing 6.11: STSL defined in Scallop.

then our semantics might suffer from unstratified negation, prohibiting
our program to be compiled by the Scallop compiler. On lines 21–23,
we show one example specification representing Equation 6.5.

6.3.3 Natural Language to Spatio-Temporal Specification

To leverage the abundance of video captions as weak supervision signals,
we employ a large language model (LLM) to automatically extract
a programmatic specification ψ from each video caption c. Directly
converting captions into a formal program is particularly challenging
for an LLM, especially in a low-data language like STSL. We hence use
a few-shot learning approach with an LLM to generate an intermediate
structured representation of the caption in JSON format. For each cap-
tion c, our goal is to convert it into a series of events ē = {e1, e2, . . . , en}.
Each event includes (a) a detailed natural language description of the
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event, which guides the generation of subsequent details; (b) a series of
unary, binary, positive, and negative predicates describing the seman-
tics of the scenario; (c) the location of the event, loc(ei), in the video
where the event occurs, represented as a fraction of the video length;
and (d) the duration of the event, dur(ei), also expressed as a fraction.
In Section 6.3.5, we explain how these structured representations are
incorporated into the loss function.

To extract such structured representations from the caption, we
designed a generic prompt template, which consists of the following
components: (a) examples for temporal specification in fraction numbers:
“0”, “1/2”, “2/3”, “1”; (b) scene graph keywords, such as object names
and relations; and (c) few-shot examples of caption and JSON struc-
tured representations pairs. We illustrate a caption and its structured
representation in Figure 6.10.

Figure 6.10: An illustration of our pipeline for natural language caption to pro-
grammatic spatio-temporal specification.

The programmatic spatio-temporal specification is then generated
by postprocessing the events in sequential order. Consequently, we
can generate the programmatic spatio-temporal specification ψ for the
caption as a sequence of events in chronological order:

ψ = ♢ei∈ēψi, ψi =
∧
ϕj∈ψi

ϕj (6.6)

6.3.4 Spatio-Temporal Alignment Checking

Given a probabilistic database r that encodes a distribution of STSGs
(Section 6.3.1), and a specification ψ in STSL, we aim to measure the
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alignment score Pr(r |= ψ) in an end-to-end and differentiable manner.
Conceptually, each probabilistic fact f in the database can be toggled
on or off, resulting in 2|r| distinct worlds. Denoting each world (i.e.
a concrete STSG) as w ∈ P(r),1 we can check whether the world w

satisfies the specification ψ or not. From here, the alignment score can
be computed as the sum of the probabilities of worlds satisfying ψ:

Pr(r |= ψ) =
∑

w∈P(r)
w|=ψ

Pr(w), (6.7)

Pr(w) =
∏
f∈w Pr(f)

∏
f ′∈r\w(1− Pr(f ′)) (6.8)

Enumerating all possible worlds is intractable due to its exponential
complexity. Since Scallop employs scalable algorithms, we can approx-
imate this probability and greatly reduce the probabilistic reasoning
time. We also note that some of the STSG w sampled from P(r) might
be infeasible due to involving conflicting facts (e.g., a box is above and
below a desk at the same time). To further enhance the logic deduction
efficiency, we extend Scallop’s “top-k proofs” provenance to support
general disjunctive constraints and early removal of infeasible STSGs
that do not satisfy the specification.

We implement the alignment checker with Scallop, as partially shown
in Listing 6.12. This helps us to succinctly and precisely encode the for-
mal semantics of STSL. It inductively computes the alignment between
a temporal slice of r and an STSL formula. The whole specification ψ

is aligned if the full r (from 1 to m) satisfies ψ with a concrete variable
grounding Γ, which maps variables to concrete entities. We illustrate
one simplified evaluation process in Figure 6.11. The checker iteratively
aligns the predicted probabilistic events (simplified to just climb and
walk) with the specification. At the 4th iteration, 3 different satisfying
alignments are derived, yielding a final alignment score of 0.58.

As for our Scallop implementation of the alignment checker, we start
by defining the relations storing our STSG (lines 7–9 of Listing 6.13).
Since in STSG we only deal with unary and binary relations, we hard-
code the two relations unary_atom and binary_atom. One important
difference between our alignment checker and the semantics of other

1P represents power-set.
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1 // grounding a term into an object
2 type ground_term (t: Term , o: Obj)
3 rel ground_term (Var(v), o) = var_obj (v, o)
4 rel ground_term (Const(c), o) = name(o, c)
5 rel ground_term ( Wildcard (), o) = object (o)
6
7 // aligning logical formula
8 type align_lform (phi: LForm , s: Time)
9 rel align_lform ( Binary (pred , t1 , t2), s) =

10 ground_term (t1 , o1) and ground_term (t2 , o2)
11 and binary_atom (pred , s, o1 , o2) and time(s)
12 rel align_lform ( NegBinary (pred , t1 , t2), s) =
13 ground_term (t1 , o1) and ground_term (t2 , o2)
14 and not binary_atom (pred , s, o1 , o2) and time(s)
15 // handling other logical formulas ...
16
17 // aligning temporal formula : the formula `psi ` is
18 // aligned with the scene graph starting from time
19 // `s`, given the variable assignment context
20 type align_tform (psi: TForm , s: Time)
21 rel align_tform ( Global (p1), s) =
22 max_time (n) and align_all_tform (p1 , s, n)
23 rel align_tform ( Finally (p1), s) =
24 align_once_tform (p1 , s)
25 rel align_tform (Until(p1 , p2), s) =
26 time(t + 1) and s < (t + 1)
27 and align_all_tform (p1 , s, t)
28 and align_tform (p2 , t + 1)
29 // handling other temporal formulas ...

Listing 6.12: The (partial) alignment checker for STSL, implemented in Scallop.

DSLs shown before is that our alignment checker needs the constraint
solving capability due to specifications having variables. Specifically, we
need to solve each variable v to a concrete object o in the scene. This
means that each variable can only be assigned to one object, forming a
mutual exclusion. For this, we use an aggregator in Scallop, disjunct,
that constructs the mutual exclusion in the tag space, as shown on line
15 of Listing 6.13.

We now present the Scallop code for the STSL alignment checker
(Listing 6.12). Starting from lines 1–5, we define the relation used to
ground each term into concrete objects. Specifically, when the term is
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Figure 6.11: The evaluation process aligning a spatio-temporal scene graph (DB)
with a specification climb U walk. This figure elides showing the arguments of the
relational predicates and focuses only on matching sequential events.

1 // Type definitions
2 type Var = String
3 type Obj = u32
4 type Time = u32
5
6 // Spatial - temporal scene graph
7 type time(time: Time)
8 type unary_atom (pred: String , fid: Time , o1: Obj)
9 type binary_atom (pred: String , fid: Time ,

10 o1: Obj , o2: Obj)
11
12 // Variable assignments
13 type name(o: Obj , name: Var)
14 type variable (var: Var), object (o: Obj)
15 rel var_obj = disjunct [v](o: variable (v), object (o))

Listing 6.13: Setting up the Spatio-Temporal Scene Graph (STSG) as well as the
variable assignment solving context.

a variable (Var), we use the var_obj relation defined in Listing 6.13
to ground it into an object o. Note that var_obj has mutual exclusion
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within it, meaning that if two facts where a single variable is assigned to
two objects present in a single proof, then the proof will be rejected by
Scallop’s provenance system. We continue to define the rules for aligning
logical formulas, which require the grounding of all terms appearing in
the atoms. As for aligning temporal formulas, we deal with temporal
relations. For instance, on line 21, aligning Global formula at time step
s means that the subformula p1 needs to be aligned for all time steps
between s and n. This is exactly what we define in the formal semantics
of STSL (Figure 6.12).

⟨w, s⟩ |= ψ iff ∃Γ, ⟨Γ, w, s⟩ |= φ

⟨Γ, w, s⟩ |= a(t̄) iff a(c̄) ∈ w[s] ∧ c̄ = substΓ(t̄)
⟨Γ, w, s⟩ |= φ1 ∧ φ2 iff ⟨Γ, w, s⟩ |= φ1 ∧ ⟨Γ, w, s⟩ |= φ2
⟨Γ, w, s⟩ |= ¬φ iff ⟨Γ, w, s⟩ ̸|= φ

⟨Γ, w, s⟩ |=⃝φ iff ⟨Γ, w, s+ 1⟩ |= φ

⟨Γ, w, s⟩ |= φ1Uφ2 iff ∃i.s ≤ i ∧ ⟨Γ, w, i⟩ |= φ2,

∀k.s ≤ k < i, ⟨Γ, w, k⟩ |= φ1

Figure 6.12: Formal semantics of STSL. ⟨w, s⟩ |= ψ means the STSL specification ψ
is aligned with the ST-SG w starting from time s. We use w |= ψ as an abbreviation
for ⟨w, 1⟩ |= ψ.

6.3.5 Loss Function

Contrastive Learning. Unavoidable dataset biases exist in the specifi-
cation. Contrastive learning can effectively reduce the bias and generate
explanations of better quality. Let (Xi, ψi) and (Xj , ψj) be two data-
points in a mini-batch B, where ψi and ψj are the specifications for video
Xi and Xj correspondingly, already extracted by LLMs. If Xi |= ψj ,
then it is an extra positive sample to the video Xi, else it is a negative
sample to Xi. Let the relational database representing the STSG pre-
dicted by the model be r = Mθ(Xi). We can thus define our contrastive
loss Lc:
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l(B,w, ψ) = 1
|B|

∑
(Xj ,ψj)∈B

L(Pr(w |= ψ),1[ψ = ψj ]) (6.9)

Lc = 1
|B|

∑
(X,ψ)∈B

∑
w∈P(Mθ(X))

l(B,w, ψ) (6.10)

Time-Span Supervision. A video caption is expanded into a sequence
of events using an LLM, with each event assigned a specific temporal
target, detailing its location and duration within the video, as illustrated
in Section 6.3.3. By aligning the spatio-temporal specification ψ with
the video, we can identify when its sub-specifications, ψ1, ψ2, . . . , ψn,
are met. This alignment facilitates weak supervision across the entire
time span. Formally, we define σ(s, l, d) ∈ [0, 1], the time span alignment
score, as a function on actual time stamp s, expected time stamp l,
and expected event duration d. In particular, σ(s, l, d) should peak at 1
when the event happens exactly at the expected locations (s = l). In
practice, we embed σ into the computation of probabilistic alignment
between STSG w and an atomic specification a(t̄), where we utilize the
expected location (loc(a)) and the duration (dur(a)) extracted by the
LLM:

Pr(⟨Γ, w, s⟩ |= a(t̄)) = ρ(Γ, w, s, a(t̄)) · σ(s, loc(a),dur(a)) (6.11)
ρ(Γ, w, s, a(t̄)) = Pr(a(c̄) | a(c̄) ∈ w[s] ∧ c̄ = substΓ(t̄)) (6.12)

σ(s, l, d) = max(0, 1− 2|s− l|
d

) (6.13)

Semantic Loss. To provide further supervision, we resort to human
knowledge encoded in the form of integrity constraints. We introduce
semantic loss reflecting the probability of violating the integrity con-
straints. For example, an entity in a video cannot be open and closed
at the same time; an entity that is not bendable cannot be deformed.
These integrity constraints may interweave so heavily that it is hard
to use a simple disjoint multi-class classifier to enforce. We encode
all integrity constraints in the form of first-order logic rules, and our
reasoning engine generates the probability that these constraints are
violated. We thus have the semantic loss as an extra-weighted term
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after calculating the other loss components. Let n be the number of
integrity constraints and ICi be the i-th integrity constraint; we have:

Ls =
n∑
i=1

∑
w∈P(Mθ(X))

L(Pr(w ̸|= ψICi), 0). (6.14)

6.3.6 Evaluating on OpenPVSG

Dataset. The OpenPVSG (Yang et al., 2023) dataset comprises 400
videos sourced from Ego4D (Grauman et al., 2021), VidOr (Shang
et al., 2019; Thomee et al., 2016), and EpicKitchen (Damen et al.,
2022; Damen et al., 2018). This dataset offers fine-grained ground truth
annotations of STSGs for 150K frames, encompassing 126 object classes
and 57 relation classes. We train on 1, 832 video-caption pairs, and
evaluate on 438 video-STSG pairs.

Experimental Setup. As illustrated in Figure 6.13, our objective
is to train an STSG generator capable of taking a video clip with ob-
ject bounding boxes as input and predicting the properties, attributes,
and relationships between objects. We leverage our learning pipeline
to fine-tune three vision-language models—VIOLET (Fu et al., 2021),
SigLIP (Zhai et al., 2023), and CLIP (Radford et al., 2021)—using
weak supervision from captions. These models predict both similarity
scores between cropped objects and unary predicate keywords, as well
as between object pairs and binary predicate keywords, resulting in a
probabilistic STSG. All backbone models support open-world vocabu-
laries and are thus robust to the fuzziness present in GPT-4-generated
structured representations.

Evaluation Metric. We evaluate model performance using Re-
call@k (R@k) which estimates whether the ground truth label is within
the top-k prediction of a given model. During evaluation, the model
processes (a) the full vocabulary of object and relation classes and (b)
preprocessed cropped objects and object pairs, predicting the corre-
sponding probabilistic STSG. In particular, unary R@k assesses object
category prediction capability, while binary R@k evaluates pair-wise
prediction of binary relations. Unlike the original VIOU metric from
the OpenPVSG, which combines object segmentation, object classifi-
cation, and relational classification into a single score, R@k provides a
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Figure 6.13: Pipeline illustration with CLIP as the backbone model for probabilistic
STSG generation.

Table 6.4: We show the performance improvements of base backbone models and
their fine-tuned version, on the R@k metrics of unary and binary predicate predic-
tion. As shown by the increments, Scallop’s weak supervisory learning framework
significantly enhances all three models’ performance on the STSG extraction tasks.

Backbone Unary Binary
R@1 R@5 R@10 R@1 R@5 R@10

VIOLET
Base 0.0660 0.1855 0.2983 0.0460 0.1307 0.2636
FT 0.0878 0.2574 0.3463 0.0501 0.2028 0.3451
Incr. ↑ 0.0218 ↑ 0.0719 ↑ 0.0480 ↑ 0.0041 ↑ 0.0721 ↑ 0.0815

SigLIP
Base 0.0000 0.0179 0.0483 0.0000 0.0362 0.1667
FT 0.1467 0.2627 0.3152 0.0347 0.1624 0.3012
Incr. ↑ 0.1467 ↑ 0.2448 ↑ 0.2669 ↑ 0.0347 ↑ 0.1262 ↑ 0.1345

CLIP
Base 0.1633 0.3381 0.4404 0.0197 0.0673 0.0988
FT 0.2778 0.5231 0.6402 0.1482 0.4214 0.5398
Incr. ↑ 0.1145 ↑ 0.1850 ↑ 0.1998 ↑ 0.1284 ↑ 0.3540 ↑ 0.4410

more detailed assessment of a model’s ability to recognize objects and
relations separately.

Backbone models significantly improve after algorithmic
weak supervision. We validate Scallop’ effectiveness in learning STSGs
with weak supervision by comparing the performance improvements
of the backbone models after fine-tuning. As shown in Table 6.4, our
method significantly enhances backbone performance using only captions
for weak supervision on the OpenPVSG dataset.

Data efficiency. To further assess our method’s data efficiency, we
train the model on 10% and 50% of the training dataset. As illustrated in
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Figure 6.14: Data-efficient fine-tuning on OpenPVSG dataset: Providing only 10%,
50%, and 100% of the training dataset significantly enhances the performance of
CLIP model.

Table 6.5: Comparison between weakly supervised Scallop-CLIP and fully supervised
IPS and VPS methods on various backbones trained on the full OpenPVSG. Scallop-
CLIP significantly outperforms all baselines, except on Binary R@1, despite using
weak supervision.

Method Unary Binary
Acc. (%) R@1 R@5 R@10

IPS-Vanilla 15.13 0.0741 0.1081 0.1109
IPS-Filter 13.14 0.0777 0.1040 0.1133
IPS-Conv 15.13 0.0861 0.1143 0.1218
IPS-Trans 14.67 0.1419 0.2032 0.2207
VPS-Vanilla 5.49 0.0374 0.0517 0.0531
VPS-Filter 5.46 0.0405 0.0480 0.0488
VPS-Conv 7.46 0.1616 0.1781 0.2343
VPS-Trans 5.46 0.1019 0.1499 0.1562
Scallop-CLIP 27.78 0.1482 0.4214 0.5398

Figure 6.14, even with just 10% of the training data (183 video-caption
pairs), our method significantly enhances the unary R@1 from 0.1633
to 0.2305 and the binary R@1 from 0.0197 to 0.1261. On average, using
just 10% of the data achieves 70.75% of the performance obtained with
the full dataset, highlighting our pipeline’s data efficiency.
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Weak-supervision may outperform full-supervision. To better
understand the efficacy of weak supervision, we also compare them
against fully supervised methods. We study 8 fully supervised baselines,
which employ two different video panoptic segmentation strategies:
Image Panoptic Segmentation with Tracker (IPS) and Video Panoptic
Segmentation (VPS). For relation extraction, the baselines employ
4 model architectures: (1) Vanilla: fully-connected layers, (2) Filter:
handcrafted filters, (3) Conv: 1D-convolutional layers, and (4) Trans:
transformer encoders. As shown in Table 6.5, Scallop-CLIP significantly
outperforms the best fully supervised methods in all metrics except for
binary R@1, where it ranks just after the top-performing VPS-Conv.



7
Conclusion

Logical reasoning and deep learning embody two prevalent paradigms
of modern programming. The two paradigms are complementary in
nature. For instance, the task of code completion requires deep learning
to comprehend programmer intent from the code context, and logical
reasoning to ensure that the generated code is correct. A central ques-
tion in AI then is how to program such tasks by integrating the two
paradigms. Neurosymbolic programming (Chaudhuri et al., 2021) is an
emerging approach to integrate symbolic knowledge and reasoning with
neural models for better efficiency, interpretability, and generalizability
than the neural or symbolic counterparts alone.

In this article, we introduce Scallop, a general-purpose programming
language and framework designed for developing neurosymbolic appli-
cations. Scallop’s main contributions are threefold: a rich and intuitive
core language, a scalable and configurable provenance framework, and
seamless integration with neural networks, including foundation models.
Scallop’s relational and declarative programming paradigm simplifies
the specification of logical reasoning components. Its differentiable rea-
soning module, built on a specialized provenance framework, supports
efficient neurosymbolic learning through algorithmic supervision. Fur-

237
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thermore, Scallop’s flexible interface provides access to state-of-the-art
foundation models, enhancing its capability to tackle complex tasks
that require both perceptual understanding and reasoning.

7.1 Limitations

While Scallop excels in scenarios (a), (b), and (c) as outlined in Fig-
ure 1.2, where we can assume the symbolic component is provided,
there are still challenges in learning, synthesizing, or refining a Scallop
program within the learning loop. Additionally, Scallop is well-suited
for defining discrete and logical rules but is less effective for specifying
numerical properties, limiting its application for low-level control tasks
in robotics. Furthermore, the Datalog-based syntax of Scallop poses diffi-
culties in specifying programs that require planning or causal reasoning.
The current provenance framework is optimized for probabilistic and
differentiable reasoning components; however, how it could propagate
learning signals for large language models remains an open question.

7.2 Future Work

To address these limitations, we plan to advance Scallop along three
primary directions:

1. Efficiency. We aim to enhance Scallop’s performance by developing
more optimized provenance frameworks and runtime environments.
Specifically, we intend to improve compiler optimizations and
introduce advanced runtime storage systems for greater efficiency.
Additionally, implementing a GPU-based runtime for Scallop will
allow the inference engine to run on GPUs, similar to neural
components, enhancing scalability and speed.

2. Expressiveness. Expanding Scallop’s language capabilities to sup-
port more complex probabilistic specifications, as well as planning,
causal, and counterfactual programs, will greatly increase its ex-
pressiveness. This will require extensions to both Scallop’s surface
syntax and underlying semantics, broadening the range of tasks
Scallop can effectively handle.
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3. Applicability. To expand Scallop’s applicability, we plan to incor-
porate it into diverse machine learning scenarios and benchmark
its performance in these contexts. Through focused research in
machine learning and neurosymbolic learning, we aim to adapt
Scallop to a broader set of tasks. Finally, we intend to explore
applications in safety-critical domains such as robotics, healthcare,
and scientific research, which will not only demonstrate Scallop’s
versatility but also advance the field of neurosymbolic AI.
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