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6k vertices
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anye>0and k< (1—¢€)n
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Setpair Definition

Definition (Setpair W = (W;, Wp))

A setpair W = (W;, W, is an ordered pair of disjoint vertex sets; either
Wt or W, may be empty.
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Setpair Definition

Definition (Setpair W = (W;, Wp))

A setpair W = (W;, W, is an ordered pair of disjoint vertex sets; either
Wt or W, may be empty.

Definition (§(W) = o(W;, Wp))

The set of edges with one end-vertex in W; and the other in W,
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Setpair Formulations and Relaxation

Setpair Formulations and Relaxation

Setpair Formulation
min Z CeXe

ecE

st. Yy =f(W) YWeSs (1)
ees(W)
x; € {0,1} Veec E

where S is all possible combinations of setpairs.
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Setpair Formulations and Relaxation

Setpair Formulations and Relaxation

Setpair Formulation

st. Yy =f(W) YWeSs (1)
ees(W)
x; € {0,1} Veec E

where S is all possible combinations of setpairs.

F(W) = max{0,k — |V \ (Wp U W;)|}, if Wy #£ 0 and Wy, # 0
B 0, otherwise
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Setpair Formulations and Relaxation

An log(k) Approximation Algorithm for Undirected Graphs

Theorem (Frank and Tardos)

Let G=(V,E), r, and c: E — Ry be as above. There is a
2-approximation algorithm for the mincost k-outconnected problem.
Moreover, the subgraph found by this algorithm has cost at most 2z(k),
where z(k) the optimal solution of LP.
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An log(k) Approximation Algorithm for Undirected Graphs

Theorem (Frank and Tardos)

Let G=(V,E), r, and c: E — Ry be as above. There is a
2-approximation algorithm for the mincost k-outconnected problem.
Moreover, the subgraph found by this algorithm has cost at most 2z(k),
where z(k) the optimal solution of LP.

Definition (3-Critical Graph)

A graph G = (V, E) is called 3-critical if the vertex connectivity decreases
by |S| on removing the vertices in any set S of at most three vertices, that
is, if K(G —S) =k(G) — S|, S € V,|S| <3, where £(G) denote the
vertex connectivity.
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An log(k) Approximation Algorithm for Undirected Graphs

Theorem (Frank and Tardos)

Let G=(V,E), r, and c: E — Ry be as above. There is a
2-approximation algorithm for the mincost k-outconnected problem.
Moreover, the subgraph found by this algorithm has cost at most 2z(k),
where z(k) the optimal solution of LP.

Definition (3-Critical Graph)

A graph G = (V, E) is called 3-critical if the vertex connectivity decreases
by |S| on removing the vertices in any set S of at most three vertices, that
is, if K(G —S) =k(G) — S|, S € V,|S| <3, where £(G) denote the
vertex connectivity.

Theorem (Mader)

A 3-critical graph with vertex connectivity k has less than 6k? vertices.
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log(k) Approximation Algorithm (Cont.)

Approximation Algorithm

@ H; < minimum spanning tree on G

O Find three vertices r1, r», r3 by exhaustively checking for each vertex
set such that k(H; — S) > 1 —3, | = k(H,)

© Apply Frank-Tardos algorithm with each root r; to find a supergraph
H;j on H; which is (/ 4+ 1)-outconnected from r;

Q Hi1 is the union of H;1 + Hi2 + Hi3
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log(k) Approximation Algorithm (Cont.)

At every iteration i = 1,2,..., we have k(Hiy+1) > x(H;) + 1.
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log(k) Approximation Algorithm (Cont.)

At every iteration i = 1,2,..., we have k(Hj+1) > k(H;) + 1.

6z(k)

At every iteration i = 1,2,..., we have c(H;1) — c(H;) < =, where
| = H(H,‘).
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log(k) Approximation Algorithm (Cont.)

At every iteration i = 1,2,..., we have k(Hj+1) > k(H;) + 1.

Lemma

At every iteration i = 1,2, ..., we have c(Hjt+1) — c(H;) < 65(_1(,), where

| = /<L(H,‘).

Theorem

Let G = (V,E) be a k-vertex connected graph with at least 6k? vertices.
Then the algorithm terminates with a k-VCSS that has cost at most

6 log kz(k), where z(k) is the optimal value of the LP relaxation. The
algorithm runs in time O(k%n*(n + k2%)).
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Structure of a Basic Solution (Extreme Point Optimum

Solution)

@ Crossing Setpairs
@ Bisubmodular Functions, Crossing Bisupermodular Functions

@ Skew Bisupermodular Functions

IS O T I EN T G MY L E E QLY RET A pproximation Algorithms for Minimum-Cos June 11, 2010 8 /12



Setpair Formulations and Relaxation

Theorem

Let the requirement function f of (LP) be skew bisupermodular, and let x
be a feasible solution to (LP) such that x. > 0 for all edges e € E.
Suppose that the setpairs W and Y have f(W) > 0, f(Y) > 0, and
moreover, W and Y overlap, and are tight (also, note that W is tight, it
overlaps Y, and f(W) > 0). Then one of the following holds:
@ The setpairs W ® Y and W & Y are tight, and
XwW + Xy = Xwgy + Xway-
o The setpairs W @ Y and W & Y are tight, and
Xw +Xy = Xwey T Xwey-
where xw denote the edge incidence vector of (W) and a setpair W is
called tight if x(6(W)) = f(W) given a feasible solution x to (LP).

IS O T I EN T G MY L E E QLY RET A pproximation Algorithms for Minimum-Cos June 11, 2010 9/12



Setpair Formulations and Relaxation

Theorem

Let the requirement function f of (LP) be skew bisupermodular, and let x
be a basic solution to (LP) such that 0 < x. < 1 for all edges e € E. Then
there exists a non-overlapping family L of tight setpairs such that:

o Every setpair W € L has f(W) > 1.

o |L|=|E|

@ The vectors xyw, W € L, are linearly independent.

@ x is the unique solution to {x(6(W)) = f(W),YW € L}.
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Setpair Formulations and Relaxation

Let k and n be positive integers, and let ¢ < 1 be a positive number such
that k is at most (1 — €)n. There is a polynomial-time algorithm that,
given an n-vertex (directed or undirected) graph, finds a solution to the
k-vertex connectivity problem of cost at most O(+/n/¢) times the optimal
cost.
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Setpair Formulations and Relaxation

Let k and n be positive integers, and let ¢ < 1 be a positive number such
that k is at most (1 — €)n. There is a polynomial-time algorithm that,
given an n-vertex (directed or undirected) graph, finds a solution to the
k-vertex connectivity problem of cost at most O(+/n/¢) times the optimal
cost.

Let € < 1 be a positive number, and suppose that k < (1 — €)n. Then any
nonzero basic solution of (LP-VC) has an edge of weight Q(\/€/n).
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Setpair Formulations and Relaxation

Let k and n be positive integers, and let ¢ < 1 be a positive number such
that k is at most (1 — €)n. There is a polynomial-time algorithm that,
given an n-vertex (directed or undirected) graph, finds a solution to the
k-vertex connectivity problem of cost at most O(+/n/¢) times the optimal
cost.

Theorem

Let € < 1 be a positive number, and suppose that k < (1 — €)n. Then any
nonzero basic solution of (LP-VC) has an edge of weight Q(\/€/n).

o

Theorem

Suppose that the requirement function f for the linear program (LP-VC) is
crossing (or, skew) bisupermodular. Let x be a nonzero basic solution of
(LP-VC), and let L be a non-crossing family of setpairs characterizing x.
Then there exists an edge e with xe > 1/Q(\/|L]).

/
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Questions?

IS O T I EN T G MY L E E QLY RET A pproximation Algorithms for Minimum-Cos June 11, 2010 12 /12



Questions?

Thank you !
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