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Abstract
With the increasing proliferation of Internet-of-Things (IoT) in our daily lives, security and trustworthiness are key considerations
in designing computing devices. A vast majority of IoT devices use shared caches for improved performance. Unfortunately,
the data sharing introduces the vulnerability in these systems. Side-channel attacks in shared caches have been explored for
over a decade. Existing approaches utilize side-channel (non-functional) behaviors such as time, power, and electromagnetic
radiation to attack encryption schemes. In this paper, we survey the widely used target encryption algorithms, the common
attack techniques, and recent attacks that exploit the features of cache. In particular, we focus on the cache timing attacks
against the cloud computing and embedded systems. We also survey existing countermeasures at different abstraction levels.
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1 Introduction

In the last decade, we witnessed the prevalence of cloud com-
puting and associated platforms by large companies, such
as Microsoft, Amazon, IBM, and Google. This trend is due
to the convenience, cost savings, and real-time scalabil-
ity of the cloud. Internet-of-Things (IoT) companies prefer
to using commercial cloud services to collect and analyze
data, rather than deploying their own infrastructures, con-
sidering the costs of procurement and maintenance, and
the uncertainty of future server load. For individual users,
cloud computing infrastructures such as Amazon EC2 also
provide convenient and high-performance machines with
reasonable cost. These platforms support different users by
virtual machines (VMs) to provide isolation, reduce cost,
and maintain utilization. Security and privacy are important
design considerations due to the increasing amount of secret
and sensitive data in the cloud.
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Cryptographic schemes are heavily used to prevent unan-
ticipated information leakage. For a long time, breaking
cryptographic schemes means mathematically cracking the
encryption algorithm and inferring the original text from the
ciphertext. On the other hand, side-channel attacks are able
to extract the secret key without learning the direct rela-
tion between plaintext and ciphertext. Once secret key is
obtained, deciphering the encrypted information is trivial.
The basic approach of finding the secret key is to exploit the
implementation of these schemes in real machines and make
use of the non-functional information such as power, elec-
tromagnetic, and time usage during the process of encryp-
tion or decryption. An active area of side-channel attack
researches is related to the cache and memory over the last
decade with the advantage of high resolution and stability.

Caches are employed between the CPU and main
memory (RAM) to compromise the exponentially growing
performance gap between them. The overall memory access
time is greatly reduced by buffering recently used data.
To improve memory access time, modern processors use
multiple levels of caches, with the smaller, faster, and more
expensive cache in a higher level (closer to the processor).
Although caches greatly improve average performance, the
time variation between a cache hit and a cache miss has
led to many side-channel attack researches during the recent
decade. The rationale of these attacks is that accessing
cached data in a higher level is more than one order of
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magnitude faster than the lower ones, and the attacker can
infer partial or full memory access information of the victim
by measuring access time if they share cache. In a multi-core
system, cache coherence is designed to make sure that every
core reads the most recently updated data, for example using
MESI, MOSI, and MOESI protocols. Recent cache attacks
to multi-core systems take advantage of the inclusiveness of
the last-level cache (LLC) to make sure a specific cache line
is not present in the other core’s private cache.

There are some existing surveys on side-channel attacks.
In 2009, Acıiçmez et al. [2] summarized four types of
microarchitectural attacks based on the targets: data cache,
branch prediction unit, instruction cache, and functional
units. However, most of the attacks are targeting single-core
systems. A lot of effective attacks on multi-core systems and
cloud environments are published in recent years. A recent
survey by Ge et al. [22] summarized microarchitectural
side-channel attacks and denial-of-service (DoS) attacks
with known countermeasures and developed a taxonomy.
Compared to [22], this paper describes the pitfalls of
encryption algorithms and provides a detailed analysis of
the strength and weakness of different attack techniques.
With a clear knowledge of how these attacks work, more
and better countermeasures can be designed. In Lipp’s
master thesis [41], cache timing and rowhammer attacks on
ARM are summarized together with experimental results of
popular attacks. This paper has a broader focus and
countermeasures.

This paper summarizes cache and memory side-channel
attacks, mainly focusing on cache attacks. This paper is orga-
nized as follows. Section 3 analyzes the pitfalls in the
implementations of some widely used encryption algo-
rithms, which are heavily exploited by side-channel attacks.
In Section 4, we introduce the most commonly used attack
methods with their advantages and disadvantages. The next
three sections, we summarize the attacks in different plat-
forms with detailed countermeasures in Section 9. Finally,
Section 10 summarizes this paper.

2 Background

This section describes the basics on caches and memory
hierarchy followed by an overview of side-channel analysis.

2.1 Cache Hierarchy

Cache is used to buffer recently accessed data to exploit spatial
and temporal locality. Each cache line holds a number of
adjacent bytes in memory. When any byte in the cache
line is accessed, a number (determined by the line size) of
adjacent bytes are buffered into cache. For a memory access
pattern with spatial locality, only the first access triggers

a cache miss, while the remaining accesses to successive
addresses are all cache hits. The address of memory is
decomposed into three parts, namely tag, index, and block
offset. The number of bits in block offset part is determined
by the cache line size and the block offset determines the
relative position inside the cache line. The index determines
a set of cache lines that this address can be mapped to.
Caches can be categorized by the number of cache lines in
one set: direct-mapped caches with one cache line in a set
and set-associative caches with multiple choices. Figure 1
shows the basic steps to access one memory location from
cache. First, the corresponding set is chosen based on the
index part of its address. Then tag comparison is done in
parallel for all the blocks in the set. If none of the blocks
matches, the request will be sent to the lower-level caches
or main memory.

To further decide which cache line to store the data in set-
associative caches, replacement policies are applied such
as LRU, pseudo-LRU, and round-robin. For example, LRU
chooses the least recently used cache line to be replaced
when all lines in the corresponding set are occupied.
Another important policy of cache is the inclusion policy. It
is called inclusive if all data in L1 must also be in L2, and
exclusive if the data appears at most in one level of cache.
In a multi-core system with inclusive caches, when one core
wants to evict a cache line from the processor, it can simply
evict it from the last level cache. By inclusive policy, the
cache line is guaranteed to be evicted from all the caches
including those that are private to other cores. In particular,
the Flush+Reload method introduced in Section 4.3 takes
advantage of this feature of Intel processor .

The time variation of accessing data from different levels
of caches and main memory is very large, which leads to
measurable performance difference. If a certain memory
address is buffered in the cache, next access to the same
or adjacent memory addresses that are mapped to the same
cache line will be quick. Otherwise, if the address is not
in the cache, next access will be slow. Cache side-channel
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Fig. 1 A 64-KB, two-way set associative cache with 64-byte blocks.
The 9-bit index selects among 512 sets. The selected set with two
blocks is shown in the figure
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attackers make use of this timing variation within the memory
hierarchy to learn the memory access pattern of the victim.

2.2 Main Memory

Every process uses its own virtual address to access main
memory, and it is limited in its own virtual memory space.
Each virtual memory is divided into pages which are
mapped to pages in physical memory. The translation from
virtual address to physical address is done by the memory
management unit (MMU). MMU uses a “page table” as
shown in Fig. 2. The size of virtual memory space is decided
by the length of address, e.g., the size of virtual memory
space for each process is 264 in a 64-bit system. Even
with the huge page technique (e.g., 1 GB per page), there
are still a large number of pages for a single process. To
speed up the translation of recently used pages, a special
cache named translation lookaside buffer (TLB) is used.
To avoid translation latency for each memory access, the
highest level of cache (L1) is typically indexed by virtual
address. The lower levels of caches (L2, L3) tend to use
part of the physical address as index. As each process only
knows the virtual address of its own data, intentionally
loading/evicting a specific cache line from L1 is relatively
easier than lower level cache that requires the effort to find
out the virtual address to physical address mapping.

As the private caches are often large enough to store all data
needed by encryption algorithms, cross-core attacks require
memory sharing between different cores so that the attacker
can learn the memory access pattern of others. Regarding
security, one notorious optimization in physical memory
is called kernel same-page merging (KSM) or memory dedu-
plication. The goal of KSM is to merge identical memory
pages (e.g., unchangeable shared libraries) among different
processes or virtual machines to improve physical memory
utilization, as shown in Fig. 3. In Linux, it is performed
by a kernel daemon named ksmd, which periodically scans
certain areas of user memory and looks for pages of iden-
tical content which can be replaced by a single “copy-on-
write” (COW) page [37]. As ksmd is transparent to user

page offsetvirtual page

page offsetphysical page

page table

Fig. 2 Virtual address to physical address translation

P1 P2

Physical Memory

Fig. 3 Memory deduplication: the identical pages in P1’s and P2’s
virtual address space are mapped to the same page in physical memory

processes, it enables different processes to access the same
physical memory line using their own virtual addresses. In
VMware, memory deduplication is called transparent page
sharing (TPS), which continuously scans for identical mem-
ory pages using hash functions and then merges them in the
physical memory.

2.3 Side-Channel Attacks

Rather than focusing on the mapping between plaintext
and ciphertext, a side-channel attack acquires the key by
analyzing non-functional behaviors along with encryption
or decryption operations, such as time, power, electromag-
netic radiation, and so on. Even for theoretically proved
strong encryption schemes, it is hard to avoid revealing
these physical information. Especially when implementing
these algorithms in a real machine, we often impose more
requirements such as performance optimization to it, instead
of considering merely security. Kocher [39] and Kelsey et
al. [36] demonstrated the leakage of sensitive information
using cache memory as a side channel. Page [50] expanded
this idea and described theoretical attacks via cache misses.
The applicability of this approach is limited by the assump-
tion that the cache should be initially empty with respect to
the data associated with the algorithm. With these theoreti-
cal researches, a lot of side-channel attacks are designed and
improved in the recent decade, with fewer samples needed
to extract key, and broader applicability from single com-
puter to commercial VM servers such as Amazon EC2, even
for the formally verified kernel seL4, side-channel attacks
are still effective [17].

3 Common Target Cryptosystems

To transmit an important message through public networks,
encryption schemes are required to first encode it into some
meaningless text. These encryption schemes have already
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been mathematically proved to be hard to break which means a
great amount of computational resources are required to
decrypt it and get the original message without key. How-
ever, theoretical soundness of the cryptographic systems is
not enough as many recent attacks target at the real imple-
mentations, such as side-channel attacks. In these attacks,
information from the hardware (such as power) and archi-
tecture (such as cache timing variation) is used to extract
key-related information during the process of encryption
or decryption. Cache timing attacks have been proved to
be effective over the past decade. In the reminder of this
section, we briefly analyze the implementation pitfalls of
three widely used cryptosystems that are exploited in cache
timing attacks.

3.1 RSA

RSA is one of the most widely used asymmetric public-
key cryptosystems, which was developed by Rivest, Shamir,
and Adleman in 1977. RSA algorithm generates the keys
from two randomly chosen large prime numbers p and q.
The theoretical strength of the algorithm is the difficulty of
factoring the product of two large prime numbers.

One basic operation in RSA is raising a message to
the power of the key. For example, during the encryption
process, the ciphertext is generated by

c ≡ me mod n (1)

where c, m, e, and n represent ciphertext, plaintext, key,
and the product of p and q, respectively. To implement
exponentiation in a real machine, “Square and Multiply” is
the easiest algorithm.

Algorithm 1 shows how “Square and Multiply” computes
the exponentiation. It scans the bits of the exponent e from left
to right. If the current bit of e is one, there would be an addi-
tional modular multiplication operation during the current
loop. As the sizes of the operands are often very large, this
additional operation leads to a measurable computing time
variation. Careful measurements and analysis are able to
recover the secret key, bit by bit, using statistical analysis.

Algorithm 1 Exponentiation by Square-and-Multiply

1: 1
2: for 1 downto 0 do
3:
4: mod
5: if 1 then
6:
7: mod
8: Return x

RSA algorithm is expensive compared to other symmet-
ric encryption algorithms. Using it directly to encrypt the
message is inefficient. So RSA is often used to encrypt the
symmetric key which can encrypt and decrypt the message
efficiently. To overcome the expensive computing time, a lot
of optimizations are employed:

1. Apply Chinese remainder theory to replace the remainder
of the exponentiation divided by n with the remainders
of the exponentiations divided by p and q, respectively.

2. Use sliding window to consume multiple bits of the expo-
nent at one step. This optimization uses a set of precom-
puted multipliers, e.g., {a, a3, a5, ..., a31}, to accelerate
modular exponentiation.

3. Use Montgomery modular multiplication [46] to effi-
ciently perform modular multiplication by transforming
operands to Montgomery form.

4. Use Karatsuba algorithm to improve multiplication speed
when the two operands have the same length.

Although these optimizations greatly speed up RSA algo-
rithm, they also create more opportunities for side-channel
attacks.

Percival [53] demonstrated that these optimizations leave
“footprint” in the cache and can be utilized by cache side-
channel to extract RSA keys in a simultaneous multithread-
ing environment. For example, the multiplier operand can be
inferred by cache access time. Due to these optimizations,
200 bits out of each 512-bit exponent (two exponents after
applying Chinese remainder theory) can be obtained during
“Square and Multiply.”

3.2 AES

In contrast to RSA’s expensive modular exponentiation, the
Advanced Encryption Standard (AES) consists of merely
substitution and permutation, which is fast in both software
and hardware. Rijndael [20] is the algorithm that has been
selected as the candidate for AES by the US National Insti-
tute of Standards and Technology (NIST). During AES
encryption and decryption, ShiftRow, MixColumn, and
SubBytes operations are utilized. To improve encryption
and decryption performance, Rijndael’s algorithm intro-
duces several precomputed lookup tables to substitute such
transformations. For 128-bit keys, 8 lookup tables are pre-
computed with 256 4-byte words each. They are loaded
into memory to quickly encrypt and decrypt by performing
simple XOR operations.

In Rijndael’s algorithm, the intermediate cipher results
are called states. Figure 4 shows a SubBytes operation from
[20], which demonstrates the substitution table acting on
the state. The initial state is computed by pi ⊕ ki , where
pi and ki represent the ith byte of the plaintext and the
key, respectively. The initial state (the left table in Fig. 4)
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Fig. 4 SubBytes acts on the
individual byte of the state [20].
S-box means the substitution
table

is used to index precomputed lookup table (S-box in Fig. 4).
Then we use the retrieved element to compute state for
next round (the right table in Fig. 4). Bernstein [7]
exploited timing attacks of the input-dependent table lookup
implementations and tested it successfully on many chips
including an AMD Athlon, an Intel Pentium III, an Intel
Pentium M, an IBM PowerPC RS64 IV, and a Sun
UltraSPARC III.

Essentially, timing attacks on fast implementations of
AES are based on the key-dependent lookup tables. They
use simple XOR operation to quickly transform one state to
next. Based on the time to access a certain table element, the
attacker can infer whether the element is buffered in cache
or not. In other words, the index of lookup table, which is
computed by the plaintext, and the key can be learned by
another process.

3.3 ECDSA

Elliptic Curve Digital Signature Algorithm (ECDSA) is a
digital signature algorithm used by Bitcoin. The signature
contains a hash of message to be signed, a randomly chosen
cryptographically secure integer, and a private key. One of
the operations is called curve point multiplication. A simple
implementation could be “double and add,” which is similar
to “Square and Multiply” in RSA. To avoid the timing
variation introduced by the control flow, OpenSSL uses a
more secure implementation based on Montgomery ladder,
see Algorithm 2.

Algorithm 2 Montgomery ladder point multiplication

1: represents as binary
2: 0
3:
4: for downto 0 do
5: if 0 then
6:
7:
8: else
9:

10:

11: Return

Although Algorithm 2 eliminates the total time variation
introduced by control flow, Yarom and Benger [69] are
still able to recover key by using Flush+Reload. Their
method first flushes both instructions in line 6 and line 9 in
Algorithm 2, and then reloads them to decide which branch
is actually taken by analyzing the timing variation.

4 General Methods for Side-Channel Attacks

Cache side-channel attacks can be categorized into two
classes, as shown in Table 1. Please note that the
overhead may not be comparable since different platforms,
optimizations, environment noises, and assumptions are
used. Also, offline analysis overhead is not shown in the
table.

1. Time-driven: In time-driven attacks, the attacker mea-
sures the total execution time of cryptographic oper-
ations to extract sensitive information [4, 7, 14, 39,
65]. The rationale behind the attack is that the exe-
cution time varies with the execution paths or cache
hits/misses, which is often key-related. Therefore, the
attacker can extract keys by controlling the contents in
the shared cache and measuring the running time of the
victim. However, as the time-driven attacks measure the
whole coarse execution time, they suffer from the noise
of OS and network. Thus, a large number of samples are
needed to apply a statistical evaluation to extract key-
related information. Better time-driven attacks mean
less encryption samples to extract key. The main advan-
tage of this attack is the wide applicability which only
requires execution time measurement.

2. Access-driven: In access-driven attack, the attackers
monitor whether a specific component is used by
the cryptographic operations or not, including data
cache [26, 53, 59], instruction cache [1], and branch
prediction cache [5]. This information is learned by
measuring the time of accessing this component from
memory. If it has been accessed by the victim, the
attacker should monitor a cache hit, otherwise a cache
miss. One common access-driven attack is monitoring
the data cache to learn which lookup table entries are
being used when performing AES.
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Note that both time-driven attacks and access-driven
attacks rely on measuring time information. The key
difference in timing-driven versus access-driven is that in
the former case, the attacker has to measure the victim
process’ execution time, while in the latter case, the attacker
measures the execution time of an operation of its own. This
difference gives access-driven attacks higher fidelity than
time-driven attacks. One important requirement of these
two kinds of attacks is that the attacker process should
be allowed to run in the same processor with the victim
process, so that they can share caches with each other. There
are many methods to conduct cache side-channel attacks. In
the subsequent sections, only some of the commonly used
methods are listed.

4.1 Evict+Time

Evict+Time [48] is a time-driven attack which learns
information from the execution time of the victim process.
It consists of three stages:

1. Trigger the victim process.
2. (Evict) Fill specific cache set with attacker’s data;

hopefully, it can evict the buffered data of the victim.
3. (Time) Measure the execution time of victim process

again.

After the first execution of the victim process, the
data used for encryption or decryption is buffered in the
cache, such as some elements of lookup tables in AES.
If the attacker luckily evicts these cache lines, the second
execution of the victim process will be slower. On the
other hand, if the evicted cache lines are not useful, the
second execution will be faster. Therefore, the timing
information of the second execution reveals the memory
access pattern of the victim process. For AES, as the indexes
of lookup tables are computed by the private key, the timing
information reveals part of the key.

There are a few weaknesses of this method. First,
the assumptions of this method are strong. We assume
knowledge of the (virtual) memory address of useful data
(such as each lookup table of AES), or at least the mapping
from virtual address to physical address, and the ability
to trigger an encryption and control when it begins and
ends. Second, measuring the time of encryption process
is imprecise. Osvik et al. [48] introduced this method and
used it to extract full AES keys from an artificial services
using OpenSSL library calls. They also pointed out the
weakness of this method that additional codes are executed
when triggering the encryption, so the timing contains
considerable noise from scheduling, page table misses, and
other sources. Third, the attack is slow. Since there is only
one set evicted each round, more time is needed to fully
recover the key.

4.2 Prime+Probe

Prime+Probe [48, 53] first fills the cache with its own data
and then checks which one is evicted after triggering the
encryption process.

1. (Prime) The attacker occupies specific (or all) cache
sets with data.

2. The victim process is scheduled to run and access its
own data.

3. (Probe) The attacker accesses the same data which is
loaded into cache during the Prime stage. If the victim
process has loaded some data that maps to the same
cache lines and evicts the data of the attacker, a longer
probe time will be observed by the attacker due to a
cache miss. Otherwise, the data would be in the cache
and the probe time is relatively short.

Rather than measuring the time of encryption process as
Evict+Time, in Prime+Probe, the attacker only measures
its own running time which is effective and noise-resistant.
Furthermore, as different cache sets can be inspected
simultaneously during probing stage, less encryption calls
are required.

The mapping between virtual and physical addresses
makes the attack complicated. For a virtually indexed cache
so as most modern L1 cache, it is not a problem. For a
physically indexed cache, we need to find out the mapping
between virtual address and physically address first. One
benefit from memory deduplication is that they can use
different virtual addresses to refer to the same physical
address when the attacker and victim use the same shared
library.

4.3 Flush+Reload

Gullasch et al. [26] first came up with the main idea of
this method and attacked L1 cache on AES. Yarom et al.
[70] extended his method to L3 cache for cross-core attacks
and named it Flush+Reload. It is a powerful attack which
determines a specific instruction or data accessed by victim
process.

1. (Flush) Flush a memory line from the cache.
2. The attacker waits for the victim process to run.
3. (Reload) Measure the time to reload the memory line.

In the paper of Yarom et al. [70], they introduced
an attack on the instruction cache. Their method flushes
and measures the time to reload the same instructions in
the Square, Multiply, and Reduce functions. If the victim
process executes these lines before reloading, reloading
is faster than the other case. So the timing variation of
reloading reveals the exact execution path of the victim
process.

J Hardw Syst Secur (2018) 2:33–50 39



It is easy to see that Flush+Reload is actually a variant
of Prime+Probe. There are two differences between them.
First, Flush+Reload relies on memory deduplication to
share pages between the attacker and the victim processes.
So it typically works on read-only shared memory. Second,
the data loaded in the first step is different. In Prime+Probe,
the attacker loads any data that can be mapped to the
monitored cache set. As the data with the same index in
their address maps to the same cache set, there are a lot of
candidates to choose from. For such attacks on cache with
large associativity such as the last level cache, the Prime
stage requires to load multiple cache to fill the whole set.
However, in Flush+Reload, the attacker flushes out some
specific memory to fill the whole set from the cache, by
which a high resolution is achieved.

The magic behind Flush+Reload is the instruction
clflush that is able to evict specific memory lines from all
the cache levels, including the shared last level cache. This
attack can only work in such processors with inclusive last-
level caches to achieve cross-core evicting, i.e., when one
core evicts the data from shared last-level cache, the data is
also evicted from all the private caches of other cores.

One important problem in the attack is to decide how
long should the attacker wait for the victim process in the
second stage, since the attacker does not have any control
over the victim process. If the attacker waits for a too short
period of time, the victim may not reach a certain instruction
yet, which leads to false-negative conclusion. Other noises
come from prefetching and speculative execution.

4.4 Other Variations

As Flush+Reload relies on the x86 instruction clflush, it is
easy to design a system which restricts the usage of clflush.
Gruss et al. [24] replaced the flush process in Flush+Reload
with eviction and proposed Evict+Reload technique. The
eviction is similar to Evict+Time which evicts certain
memory from cache by accessing addresses that are mapped
to the same cache set. The disadvantage of this attack is the
prior knowledge of virtual to physical address mapping.

In 2016, Gruss et al. [25] came up with Flush+Flush after
observing that the execution time of clflush instruction also
depends on whether the memory line is in the cache or not.
If the memory line has been loaded into cache by the victim,
it takes longer time to complete clflush. Replacing Reload
with Flush can reduce the number of cache misses incurred
by reload and will not trigger prefetching, which can help
this attack evade some detection mechanisms.

5 Cache Attacks on Single-Core Systems

Processes that run in the same core share L1 data cache,
L1 instruction cache, and branch prediction cache. This
level of sharing enables the possibility of cross-process
attacks. Tsunoo et al. [60] exploited collisions in the
memory lookups invoked internally by the cipher instead
of collisions created by the attacker, and demonstrated a
timing attack using this knowledge. Brumley and Boneh
[14] demonstrated a more advanced and practical timing
attack against RSA to an OpenSSL-based web server, which
was improved by [3]. Percival [53] demonstrated how to
apply an attack to RSA by monitoring the multipliers in
cache. To defend this attack, Intel recommends crypto-
algorithms with no secret- or data-dependent memory
access pattern at coarser than cache line granularity [12].
Scatter-gather technique, which scatters each multiplier
across cache lines and gathers them to a single buffer before
multiplication, ensures that secret-dependent accesses are at
a finer than cache line granularity to defend side-channel
attacks. However, Yarom et al. [71] recently proposed an
attack exploiting cache-bank conflicts to bypass the scatter-
gather technique in OpenSSL. They recovered 4096-bit
RSA with 16,000 decryptions showing that the offsets of
multiplier accesses inside cache line still depend on the
key.

In 2005, Bernstein [7] proposed a practical time-driven
attack against the OpenSSL implementation of AES. His
main idea is to exploit the statistical patterns in the
encryption time of different plaintexts P under a known key
K . After learning the time information from the interested
encryption process, key candidates are chosen based on the
correlation followed by an exhaustive search. As the method
only needs time measurement, it is simple and portable.
However, there are some disadvantages in this attack.

1. Privileges are required to perform cryptographic opera-
tions with a user-defined key, which is the critical part
of this attack to learn the correlation.

2. As discussed in Section 4, time-driven attacks suffer
from noise in a real system. A large number of samples
are required to extract key.

Independently from Bernstein, Osvik et al. [48] describe
a similar attack named Evict+Time (see Section 4.1). They
also proposed an access-driven attack named Prime+Probe
(see Section 4.2), to AES with the knowledge of physical
and virtual addresses of lookup tables. Acıiçmez et al. [4]
exploited the internal collisions of AES and described a new
cache timing attack. Their method can work remotely under
a multitasking or simultaneous multithreading system.
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Gullasch et al. [26] presented an asynchronous model
of cache side-channel attack, which is the original idea of
Flush+Reload on AES. In their method, the attacker is
assumed to have an identical machine with the victim. Two
neural networks are trained in this machine to carry out
offline learning to extract key from 168,000 encryptions.
After the training, the attacker does not need to know
plaintext or ciphertext, and only 100 encryptions are enough
to extract the key. As the neural network is trained in a
particular machine (Linux OS, single-core x86 system),
substantial adjustments are required after updates of the
operating system or moving to a different machine.

Single-core attacks mainly focus on the first-level cache.
There are benefits to attack L1, such as less load instructions
are needed to prime or evict the cache due to the small
size of L1. However, as the access time variation between
L1 caches and L2 caches is only a few cycles in modern
processors, the noise of time measurement in the real system
makes the attack harder.

6 Cache Attacks onMulti-core Systems

Modern chip multiprocessors (CMPs) use shared cache,
such as last-level cache, to reduce communication latency
between threads or processes. Cache side-channel attacks
make use of LLC to generate contention as long as two cores
are in the same package. With the help of cache policies,
such as replacement policy, inclusive policy, and so on, one
process can intentionally remove data from another core’s
private cache.

Based on Prime+Probe technique, Liu et al. [43]
demonstrated a cross-core, cross-VM attack on “Square and
Multiply” exponentiation algorithm and sliding-window
exponentiation introduced in Section 3.1. They pointed
out a few problems to handle before constructing efficient
Prime+Probe on LLC:

1. As L1 and L2 are usually large enough to satisfy memory
accesses, the encryption process rarely touches LLC.
So merely observing LLC is not enough to gather the
memory access pattern of another core. Similar to Flush+
Reload, cache inclusiveness is important to ensure the
visibility of cross-core memory access pattern.

2. When conducting Prime+Probe in L1, the whole cache
is primed and probed. However, as LLC is greatly larger
than the higher levels, it is infeasible to prime and
probe the whole cache in each round. They proposed to
identify relevant security-critical accesses by scanning
the whole LLC and looking for temporal access patterns.

3. As discussed in Section 4.2, the first step of Prime+Probe
is to occupy specific cache sets. To achieve that, an eviction
set is constructed in the virtual space of the attacker.
However, as LLC is physically indexed, mapping from
virtual address to physical address is required.

4. Probing resolution is another consideration. Priming
one cache set in LLC requires more load instructions,
since LLC has higher associativity. Furthermore, longer
latency of LLC leads to longer probing time. They
observed that probing an LLC is about one order of
magnitude slower [43].

After dealing with these problems, they repeatedly
decrypted a known plaintext using the same key in GnuPG.
They claimed that their attack can work in a real cloud
environment due to their minimal assumptions, such as
cache inclusiveness, large-page mappings. However, as the
real cloud environment contains more noise and other
mechanisms to prevent such attack, there are no experiments
in their paper to show it is practical to attack a real cloud.

Oren et al. [47] extended Liu et al. [43] to web-based
cache side-channel attack without the assumption of large-
page. As long as the victim launches the attack from
sandboxed JavaScript, the browsing activity is monitored.
By targeting at web, the attack can be applied to different
platforms, such as Mac OS, Linux, and cross-VM, and does
not require the victim to install program from the attacker.

7 Cross-VM Level Attacks

With the prevalence of cloud computing, security risks over
the cloud are also rising. Cloud computing infrastructures,
such as Microsoft Azure and Amazon EC2, allow multiple
users to share physical machines rather than dedicating
one machine to one user. Users can run their own virtual
machines (VMs) to be isolated with other users. The
layer between virtual machine and physical machine is
called virtual machine manager (VMM) enabling personal
configurations and managing resources.

7.1 Co-resident

To apply cache side-channel attacks to cross VMs over the
Internet, one important challenge is to physically mount
the attacker’s VM to be co-resident with the target VM,
while recent cloud infrastructures try to distribute tenants
over all physical resources. Ristenpart et al. [55] were the
first to introduce a method to mount the attacker to be co-
resident with the target so that LLC attack can be applied
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on Amazon’s EC2. As Amazon’s EC2 allows customers
to instantiate VMs on demand, Ristenpart et al. repeatedly
instantiated new VMs in an empirical way to maximize the
likelihood of placing co-resident with the target. During
this period, a simple and low-overhead method is applied
to check whether the target and the victim are co-resident.
Although the information revealed in their attack is quite
coarse, such as cache usage and traffic rate estimation,
their co-residency technique provides a way to let cache
side-channel attacks break through the sandboxing and leak
cryptographic information.

Even in 2016, it was not hard to get co-resident in cloud
settings. For example, İnci et al. [31] launched 4 accounts in
Amazon EC2 and launched 20 instances for each account,
then performed LLC co-location detection test to determine
co-location pairs. They successfully got 7 pairs among the
80 instances. Other than co-residency, Owens and Wang
[49] observed the special property of the delay of reading
and writing to a deduplicated memory. They proposed an
OS fingerprinting mechanism by accessing the unique pages
of different OS to decide the OS type and version of other
VMs, which is helpful to subsequent attacks. With the help
of co-resident mounting, more and more researches start
to attack cloud environments by extending and applying
similar techniques used in local multi-core settings.

7.2 Prime+Probe

Zhang et al. [75] demonstrated an instruction cache-based
access-driven side-channel attack on Xen virtualization
platform. They first assumed the knowledge of the process
running in the victim VM and the ability to have a copy
of it. Their main steps are shown in Fig. 5, including the
preprocess step to mount the VM to be co-resident with
the victim and Phase 3 to reduce background noise. Their
attack is against libgcrypt v.1.5.0 cryptographic library, in
particular the “Square and Multiply” implementation which
is commonly used in RSA and ElGamal (see Section 3.1).
As their attack is against L1 instruction cache, the attacker’s
virtual CPU needs to frequently regain control the same core
with the victim, which is relying on a weakness in the Xen
scheduler. They performed 300,000,000 trials and 6 h to
collect data.

Irazoqui et al. [34] proposed a new cross-core cross-
VM attack that does not rely on memory deduplication.
However, their cross-VM attack relies on hugepages of
LLC, i.e., each page with 2-G size. The benefit of hugepages
is to reduce table entries in MMU, while reveals 21 bits
of address information rather than 12 bits in page size 4 K
from the security perspective. Their attack is a variation
of Prime+Probe by exploiting access time variations from
the OpenSSL implementation of AES. Their attack is
very efficient compared with Flush+Reload due to the
small number of sets being profiled. Similarly, İnci et al.
[31] expanded the Prime+Probe method in [43] based on
hugepages and profiled a small number of sets in LLC to
extract RSA key from Amazon EC2.

7.3 Flush+Reload

The Flush+Reload is one of the most effective, high-
resolution cache side-channel attacks. Yarom et al. [70]
applied this method both on local multi-core system and on
cross-VM scenarios such as VMware ESXi 5.1 and CentOS
6.5 with KVM. The details of this method are introduced
in Section 4.3. In summary, this attack used mmap to gain
a copy of victim’s executable file. Relying on page de-
duplication mechanisms, they used clflush in x86 to flush a
certain instruction out of all levels of cache to monitor the
code path of the victim. Their attack is also against “Square
and Multiply” in RSA whose execution path is determined
by the bits of key. They first flushed out one instruction
line out of memory, then probed whether the victim used
this instruction or not. This high-resolution attack is able to
recover 96.7% of the bits by a single signature. Yarom et
al. [69] also showed Flush+Reload can be used to recover
the secret key from the Elliptic Curve Digital Signature
Algorithm (ECDSA). With the secret key around 571 bits,
the attack took only one signing process and less than 1 s to
recover the key.

Flush+Reload technique can also be used to recover
key from the implementation of AES in OpenSSL in
VMware [33]. Irazoqui et al. assumed the knowledge of
the offset of the lookup tables with respect to the library.
As VMware provide transparent page sharing, they are able
to recover key across cores in VM within less than 1 min

Fig. 5 Main steps in the attack from Zhang et al. [75]
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by monitoring a single-shared memory line. Before [33],
Irazoqui et al. [32] also showed how to use Bernstein’s
timing side channel to extract key-related information from
AES implementation running in VMs such as Xen and
VMware. The difference between these two works is the
efficiency: the latter takes 229 encryptions and more than 4 h
while the former takes only 1 min.

Other Flush+Reload approaches include a known-
ciphertext cross-VM attack by Gülmezoğlu et al. [27]
against AES, and an automation-driven framework by
Zhang et al. [76] to attack the web applications in PaaS
environments.

8 Embedded andMobile Devices

Embedded and mobile devices include smartphones, tablets,
wearables, and automobiles. With billions of such devices
in daily life, their security problem is becoming more and
more important. There are many successful applications
of side-channel attacks on embedded and mobile devices,
such as power side-channel attacks and electromagnetic
side-channel attacks. Cache side-channel attacks have been
extensively studied on x86 architectures, but much less so
on embedded devices.

8.1 Unique Characteristics in Embedded and Mobile
Devices

Embedded and mobile devices have four unique charac-
teristics that affect the success of side-channel attack on
them. First, as the processors of embedded devices are often
designed to support limited applications, their instruction
sets are based on RISC architecture, such as the most widely
used ARM processor. These instructions are not so “power-
ful” as x86; for instance, the lack of similar instructions as
clflush to flush out specific memory out of all cache levels
makes Flush+Reload (see Section 4) unable to be applied
directly. Then, the sizes and levels of caches in embed-
ded systems are typically smaller. However, in recent years,
the processors are becoming more and more powerful,
and cache levels are increasing. Nowadays, the most high-
performance embedded processors contain two (Cortex

A73) or three levels (Apple A9) of caches. Next, the details
of the cache are poorly documented, such as cache coher-
ence protocols, which makes it hard for the attacker to
be successful. Finally, the implementations of encryption
schemes differ from that in desktop or server in some
aspects such as the size of lookup table.

In the next three sections, we review existing cache side-
channel attacks against embedded systems in two broad
categories.

8.2 Time-Driven

Cache timing channel attack is explored in the area of ARM-
based devices since 2010 by Bogdanov et al. [11]. They
proposed a new cache timing attack, namely differential
cache-collision attack, to the OpenSSL implementation of
AES running on ARM9 microprocessors. It is called a wide
collision, if the same AES S-box value is queried twice for
a plaintext pair. The authors tried to trigger wide collisions
by choosing plaintexts P1 and P2 in a specific way where
two plaintexts only differ at diagonal elements in the 4 × 4
matrix representation (see Fig. 6), then sent (P1, P2) to
the encryption routine and measured the encryption time
of P2. If a wide collision happened, the encryption time
is expected to be short. After trying a large number of
(P1, P2) pairs, key recovery method is applied on those
pairs that triggered wide collisions. One problem of this
method is a large number of false positives. It is resolved
by increasing the number of computations, which also
increases the complexity of the key search phase.

The applicability of Bernstein’s cache timing attack [7]
in ARM processors is investigated by [56, 57, 65]. Weiß et
al. [65] demonstrated that cache timing attacks can bypass
system virtualization and compared the vulnerability of
different AES implementations.

With respect to the cache-collision attack and Bernstein’s
cache timing attack, Spreitzer and Plos [57] investigated
their applicability in real environments: an Acer Iconia
A510, a Google Nexus S, and a Samsung Galaxy SIII. The
common problem of these two methods is the key search
space. Differential cache-collision attack reduces key space
from 128 to 52 bits and Bernstein’s cache timing attack
reduces key space to 58–73 bits, which is still too large

Fig. 6 Pairs of 16-byte
plaintexts represented in 4 × 4
AES state [11]
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for exhaustive key search. Another problem of differential
cache-collision attack is that encryptions with or without
wide collisions are hardly distinguishable.

8.3 Access-Driven

L2 cache in ARM is physically indexed, which forms
the basis for the powerful and high-resolution access-
driven attack Flush+Reload. However, before applying
Flush+Reload to ARM processor, a few problems [72] need
to be tackled:

– How to realize clflush in ARM to flush out a specific
memory from all levels of caches?

– How to get high-resolution clock which is accessible in
x86 as rdtsc?

– What is the cache coherence of ARM? Flush+Reload
asks for strict inclusiveness to apply cross-core attacks.

Zhang et al. [72] proposed a return-oriented Flush+Reload
attack on last-level caches of ARM processors to detect
hardware events and trace software execution paths. They
tackled the above problems by (1) a processor-specific
cache-flush interface taking advantage of clearcache system
call, (2) POSIX clock gettime system call, and (3) a method
using only cache timing to empirically determine whether
the L2 cache is inclusive, exclusive, or non-inclusive.

Lipp et al. [42] showed that Prime+Probe and
Evict+Reload attacks can be applied to Android smart-
phones without root privileges to recover keys. Furthermore,
their attack techniques can be used to monitor keystroke
and swipe actions that require a high resolution and high
accuracy. To get the mapping of virtual-to-physical trans-
lation, they took advantage of a vulnerability (reading
/proc/<pid>/pagemaps) in the Android kernel.

9 Countermeasures

There are a wide variety of countermeasures against cache
timing attacks. Table 2 broadly classifies them into three
categories and lists their overhead. This section describes
attack detection methods followed by three classes of
effective countermeasures.

9.1 Attack Detection

Attack detection enables users to realize the existence
of an attacker and take proper countermeasures, such as
relocating virtual machine. Once a side-channel attack is
detected, a suitable countermeasure can be employed. Side-
channel attacks typically cause abnormal cache references
and misses. So hardware performance counters can be used
to detect cache attacks. Hardware performance counters
are common in modern microprocessors, with special

purpose registers to store specific program behaviors such
as clock cycles, cache hits/misses, branch misses, and so
on. Chiappetta et al. [15] proposed three methods based
on hardware performance counters to detect Flush+Reload
methods by Yarom et al. [70]. Machine learning and neural
networks are used in two of their methods to deal with
the potential presence of false positives and increase the
confidence of the detection. In the training network, they
used total instructions, total CPU cycles, L2 cache hits, L3
cache misses, and L3 cache total accesses as input features.
Their method is able to detect Flush+Reload attacks in
about one fifth of the total time needed by the attacker, with
no requirements to modify hardware or operating system.
Payer [52] developed their detection system HexPADS
by collecting hardware performance counters to analyze
abnormal behaviors by side-channel attacks. The metrics
to define attacks include cache behaviors, execution time,
loaded libraries, and so on.

In cloud environments, as physical co-location [55] is the
first step in the cloud setting side-channel attack such as
Prime+Probe and Flush+Reload, the techniques to detect
such co-location can be crucial to prevent such attacks.
Zhang et al. [74] proposed a method that inverts cache
side channel for tenants to verify physical isolation of their
VMs. Bates et al. [6] utilized traffic analysis to determine
co-location in cloud. Zhang et al. [76] demonstrated that de-
duplication enables co-location detection from co-located
VMs in PaaS clouds. Wu et al. [66], Zhang et al. [68], and
Varadarajan et al. [62] showed that memory bus contention
can be used to detect co-location. In 2016, İnci et al. [30] did
experiments on three famous commercial clouds, Amazon
EC2, Google Compute Engine, and Microsoft Azure, then
compared three co-location detection methods. The results
show that co-location in these cloud services is still possible.

9.2 Code-Level Countermeasure

This section describes two types of code-level countermea-
sures.

9.2.1 Constant-Time Techniques

Most cache side-channel attacks are based on the the
variation of encryption time related to the key and data. The
time variation can come from memory accesses (e.g., AES
in Section 3.2) and branches (e.g., RSA in Section 3.1).
Constant-time techniques are used in some cryptographic
libraries (e.g., NaCl by Bernstein et al. [8]) to prevent cache
side-channel attacks. There are some drawbacks in this
method:

– Constant-time techniques are difficult to implement due
to hardware complexity, especially with the goal to
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achieve high performance at the same time, for some
time-consuming algorithms such as RSA.

– Constant-time implementations are platform-dependent.
For example, the “constant-time” fix in OpenSSL
against Lucky Thirteen attack still exhibits data-
dependent execution time on ARM [17].

Brickell et al. [13] revisited AES implementation and
proposed an alternative way to use a compact S-box table
small enough to be able to prefetch all elements into only
4 cache lines, and randomly permute tables frequently. By
using x86 SSE SIMD instructions, the critical part of their
permuted compact round is constant time without branches.
The experimental results show that the distribution of their
average execution time follows a Gaussian distribution.

Bitslicing is a technique to achieve efficient crypto-
graphic algorithms [10]. Matsui and Nakajima [45] showed
the constant-time implementation of AES using bitslic-
ing can achieve performance improvement. Käsper and
Schwabe [35] presented an efficient constant-time AES
implementation using bitslicing. Their implementation can
achieve 6.92 cycles/byte on Intel Core i7, compared to 10
cycles/byte on the same platform using lookup table-based
implementation of AES. Hamburg [28] proposed another
efficient way to eliminate data- and key-dependent branches
and memory references using vector permute instructions.

9.2.2 Compiler Techniques

Modifying encryption implementations by adding noise or
randomization is a potential method to defend side-channel
attacks. One example of eliminating timing variation is
adding dummy operations to weaken timing signals [48,
50]. However, to completely remove all side-channel effects
from encryption implementation requires a lot of manual
programmer effort with the risk of being incompatible in
different platforms. To overcome this disadvantage, com-
piler techniques have been proposed to automatically
change implementations.

Coppens et al. [18] demonstrated that automated
compiler techniques can be used to defend side-channel
attacks. They eliminated key-dependent control flow by
eliminating the conditional move instructions in a compiler
back-end using if-conversion. The elimination of control
flow can also indirectly defend side-channel attacks against
instruction cache and branch prediction. Cleemput et al.
[16] evaluated several compiler techniques to reduce time
variations caused by data flow. Their results show that
there is a trade-off between security and performance using
compiler techniques.

Crane et al. [19] thwarted cache-based side-channel attacks
by randomly choosing different execution paths during
runtime. Different paths are generated by NOP insertion,

function reordering, register randomization, and instruction
substitution to ensure the semantical equivalence, which
results in infinite number of paths theoretically. These func-
tional equivalent copies of execution paths are randomly
chosen during runtime to generate exponentially different
results of execution time.

9.3 Operating System-Level Countermeasures

This section describes three types of OS-level countermea-
sures.

9.3.1 Restricting Fine-Grained TimeMeasurements

Osvik et al. [48] suggested to hide timing information
such as adding random delays or normalizing all timings
to a fixed value. They also noticed the implementation
difficulties and performance overhead by this approach. As
many timing side-channel attacks use rdtsc to obtain timing
information, Percival [53] suggested disabling the use of
rdtsc or more practically limiting the frequency of reading
time stamp counter. Vattikonda et al. [63] weakened timing
channels by implementing “fuzzy time” in virtual machine
manager. They modified the value of the rdtsc register
taking advantage of the softtsc kernel option in Xen.

Martin et al. [44] identified three ways for the attacker to
gather timing information:

(a) Internal sources in hardware, such as time stamp
counter.

(b) External sources come from other computers or
devices. Martin et al. [44] claimed that external sources
are not fine enough to distinguish microarchitectural
events.

(c) Virtual clocks created by software. Percival [53]
proposed a virtual clock implementation on multi-
processor system with shared memory. In his imple-
mentation, one thread repeatedly increments a memory
location which is used by another thread as a time
counter.

With respect to hardware sources, Martin et al. [44]
revisited some techniques such as disallowing user-
space rdtsc instruction, masking the least significant bits,
or adding random offset. The results show that these
techniques are either impractical or insufficient. They
proposed a solution as adding a real delay to rdtsc calls to
limit the frequency. For software clocks, they used a detector
to detect shared memory communications and a delay
producer to insert delays to these communications. They
validated the correctness of their implementation without
breaking the existing software. Then they proved that their
approach can defend statistical analysis which is a concern
in [48, 53] as a potential way to defeat rdtsc fuzzing.
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9.3.2 Preventing Physical Memory Sharing

Cross-core attack Flush+Reload and its variations against
LLC rely on physical memory sharing between different
processes to leak information. VMware has turned off trans-
parent page sharing by default. Zhou et al. [77] proposed
a copy-on-access memory management subsystem named
CacheBar to prevent physical memory sharing between con-
tainers. They define physical page state transitions as in
Fig. 7. This scheme automatically creates a copy of the
physical page demanded by another security domain. They
used model checking to formally prove the correctness of
copy-on-access and experimental results to show the low
overhead.

9.3.3 Cache Flushing

Cache flushing during context switch can be used to defend
side-channel attacks based on L1, BTB, and TLB, which
are relatively small to be flushed during context switch.
Zhang and Reiter [73] proposed a periodic cache cleansing
mechanism to mitigate side-channel attacks. By repeatedly
cleaning L1 cache, this approach effectively eliminates
timing variation exploited by the attacker. Extensions to
other resources are discussed, such as branch prediction
cache. They used two modes and skipped unnecessary
cache cleansings to achieve less than 7% performance
overhead. However, users should be involved in defining
which operations are sensitive to trigger cleansing. Godfrey
and Zulkernine [23] suggested flushing all cache levels

Fig. 7 State transition of a physical page from Zhou et al. [77]

during context switch in VM scheduler. A new field is
added to VCPU to indicate the owner of current cache
data. Switching to idle or the same domain will not
trigger cache flushing. They showed that their hypervisors
can effectively prevent side channels with less than 15%
overhead. Varadarajan et al. [61] are the first to propose that
increasing a minimum runtime guarantee can mitigate side-
channel attacks by reducing preemption frequency. Then
they integrated a state-cleansing mechanism for L1 cache
and branch predictor, and measured 8.4μs overhead from
the stand-alone cleansing.

9.4 Architectural Level

Most side-channel attacks described above require sharing
cache between processes or cores. By repeatedly writing
and reading in the shared cache, the attacker is able to learn
the memory access pattern of the victim. So restricting the
ability from architectural level can be an effective way to
prevent side-channel attacks.

9.4.1 Cache Partition

Cache coloring is proposed as an effective mechanism
to defend parallel side channels, which has already been
heavily exploited to improve the performance by avoiding
excessive cache conflicts. Cache is divided into several
groups when using cache coloring, and some specific
fraction of memory address is used to decide which group
to map the data. Percival [53] suggested to avoid cache
sharing or selectively evicting cache based on thread. Page
[51] proposed cache partitioning to block cache-based side-
channel attacks with high design and performance cost.
Wang and Lee [64] proposed the PartitionLocked cache
(PLcache) to dynamically lock cache lines. In their design,
extra attributes, such as ID, are added to each cache line
to indicate the owner. Evictions from different owners are
restricted. Similarly, stealthy memory [21, 38] is proposed
to lock some cache lines to store sensitive data.

Raj et al. [54] demonstrated how to use cache partition
to defend side-channel attacks in VMs based on page
coloring. When more VMs are running at the same
time, their performance overhead is large since cache
is exclusively partitioned using colors. Godfrey and
Zulkernine [23] implemented and evaluated selective cache
flushing and cache coloring-based cache partitioning in
Xen. Experimental results show that selective cache
flushing is effective to defend sequential side channels
with 15% overhead when testing Apache benchmark. Cache
coloring-based cache partition is effective for parallel side
channels and the overhead is dependent on the number of
partitions and can go up to 30%.
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9.4.2 Randomization

Similar to the usage in time fuzzing, randomization is
used to obfuscate cache access patterns. Wang and Lee
[64] proposed Random Permutation Cache (RPCache) to
randomize cache mappings, where the index scheme is
decided by the permutation table of each process. They
suggested using a Permutation Register Set to avoid
looking up permutation table during each access. Although
RPCache can thwart most cache-based side-channel attacks
with low overhead (1% in SPEC2000 benchmark), there are
no fabricated hardware using RPCache yet. Later, Kong et
al. [40] extend RPCache using informing loads to allow the
critical process to gain control once a miss happens when
accessing sensitive data.

In addition to cache level randomization, Pax Project
introduced randomization to memory level, named address
space layout randomization (ASLR) [58]. Most of modern
operating systems, including Linux, Windows, Mac OS,
iOS, and Android, have integrated it to defend attacks. The
main idea behind this technique is to put address space
targets in unpredictable locations to make it harder for
the attacker to exploit the desired address. Similar address
obfuscation researches are also studied heavily in academia
[9, 67]. Recently, Hund et al. [29] proposed a generic side-
channel attack to infer the precise location of privileged
kernel module, although both user and kernel space are
protected by ASLR.

10 Summary

Security is a major concern in personal computers as
well as embedded and cyber-physical systems. The cache
and memory systems are designed to improve the average
performance in these systems. However, the improvement
in performance also introduced different kinds of security
vulnerabilities in the system. Side-channel attacks are
a technique that can break the security protection by
exploiting non-functional behaviors. Substantial research
efforts have been devoted to this area. This paper
surveyed the recent memory-level side-channel attacks and
countermeasures, mainly focusing on the timing attacks
against cloud and embedded systems. In addition, the
encryption implementation holes exploited by these attacks
are detailed to provide an insight for improving the security
strength of future systems.
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