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Given the current profusion of devices for viewing media, video content
created at one aspect ratio is often viewed on displays with different aspect
ratios. Many previous solutions address this problem by retargeting or re-
sizing the video, but a more general solution would re-edit the video for the
new display. Our method employs the three primary editing operations: pan,
cut and zoom. We let viewers implicitly reveal what is important in a video
by tracking their gaze as they watch the video. We present an algorithm that
optimizes the path of a cropping window based on the collected eyetracking
data, finds places to cut, and computes the size of the cropping window. We
present results on a variety of video clips, including close-up and distant
shots, and stationary and moving cameras. We conduct two experiments to
evaluate our results. First, we eyetrack viewers on the result videos gener-
ated by our algorithm, and second, we perform a subjective assessment of
viewer preference. These experiments show that viewer gaze patterns are
similar on our result videos and on the original video clips, and that viewers
prefer our results to an optimized crop-and-warp algorithm.
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ing]: Video analysis; I.3.3 [Picture/Image Generation]: Viewing algo-
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A cut from the woman’s face to the man’s face.

The cropping window pans to the left while zooming in.

We record gaze data from viewers on the original widescreen video. 
Each viewer is marked in a different color.

Fig. 1: We present a gaze-driven algorithm to re-edit widescreen video
(e.g., 1.75:1) to smaller aspect ratios via pans, cuts, and zooms. The result
computed by our algorithm (in color) is overlaid on the original widescreen
frame (in grayscale). Images courtesy The Walt Disney Company.

1. INTRODUCTION

Viewers consume digital content on a wide variety of display
devices, ranging from hand-held personal displays, such as cell-
phones or pico-projectors, to large displays, such as theater sys-
tems. The aspect ratio, size, and resolution of the target display de-
vice greatly influences the way filmmakers create and edit a movie.
Therefore, when the aspect ratio for display is different than the
aspect ratio anticipated at the time of the video’s production, a sig-
nificant modification of the content is required. The challenge is
to preserve, as much as possible, the narrative and impact of the
original video.

Several methods have been used to modify the size of videos,
including uniform scaling, cropping, and letterboxing. Recently,
methods for retargeting videos nonuniformly to different aspect
ratios were proposed (see [Shamir and Sorkine 2009]). However,
these methods are susceptible to noticeable artifacts, such as
squeezed shapes and waves, when a large change in aspect ratio
is needed. A solution is required that is closer, in concept, to re-
editing the movie for the new target display.
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Because it is usually impossible to reshoot scenes, change the
shooting angle, or add new shots, our challenge is to re-edit the
original footage to fit a different display without losing signifi-
cant content. We employ the three primary editing operations: pans,
cuts, and zooms. Panning is used to show different parts of the un-
derlying scene on the screen. A cut allows for a quick shift from one
part of the scene to another, when two people are talking for exam-
ple. Cropping the widescreen footage gives the effect of “zoom”,
i.e., moving closer to the action. Our method re-edits the given
video footage by automatically combining pans, cuts, and zooms.
Examples are shown in Figure 1.

This approach of re-editing, rather than re-scaling, has the advan-
tage that it guarantees that there will be no distortion in the resulting
video. Because the editing operations only remove contiguous por-
tions of the original frame, all scene structure is preserved: lines
remain straight and people are not made tall and skinny. At the
same time, because this approach makes a hard commitment about
what is and is not included in the frame, it depends on reliably de-
termining which parts of the original widescreen frame are integral
to the narrative in the original video. We allow the viewers to reveal
what is important to the narrative by tracking their gaze.

Artists employ various devices to highlight the regions of the video
that are integral to the narrative, including color (the lady wears a
striking red dress), motion (the rebel walks opposite to the crowd),
semantics (the witness points to the gun), and audio (dialogue or
sound effects). These devices attract the viewer’s gaze through a
combination of bottom-up influences such as color, motion, or the
presence of a human face, and top-down influences such as se-
mantics and narrative 1. Current saliency algorithms for images or
videos primarily capture bottom-up influences, and as a result, of-
ten misfire. We expect that research will eventually yield new algo-
rithms that incorporate top-down influences to better predict visual
saliency. Rather than waiting for these algorithms, we directly use
measurements of the viewers’ gaze as input data.

We use recorded gaze data from several human participants as the
driving input to a RANSAC algorithm that finds pans, cuts and
zooms while retaining the regions attended to by the participants
in the original video. These editing operations mimic the approach
of studio professionals when a film shot in widescreen is fit by hand
to smaller aspect ratios. The algorithm is able to handle noise in the
eyetracking data (a result of individual variation in the gaze patterns
across participants, and measurement error). We use RANSAC to
search for a path that moves a cropping window through the video
cube while maximizing the number of gaze points included. When
cuts are required to produce a video with adequate coverage of the
eyetracking data, the algorithm simultaneously finds two panning
paths and an optimal cut between them. The size of the cropping
window is determined from the spread of the gaze samples. The
change in size creates the effect of ‘zoom’ in the resulting video.

To evaluate our algorithm, we eyetrack viewers on our results
and compare this data to the gaze data captured on the original
widescreen videos. For a re-edit to be faithful, viewers must have
attended to the same regions in the result as in the original video.
This measure allows the evaluation to be performed behaviorally.
In our experiments, we find that viewer eye movements are similar
before and after the re-edits. We also perform a subjective evalua-
tion of our results by asking users to provide their preferences.

1For a discussion on mechanisms of attention, see [Baluch and Itti 2011].

(a) Original frame
(1.75:1)

(b) Scaling
 (1:1)

(c) Cropping 
(1:1)

(d) Letterboxing 
(1:1)

Fig. 2: Commonly used methods to resize video: (a) Original frame, (b)
Scaling squeezes the objects and characters, (c) Cropping removes content,
(d) Letterboxing wastes screen space.

Contributions: Our main contribution is a method for re-editing
video to fit to a non-native aspect ratio using pans, cuts, and zooms
on the original widescreen video. We present a RANSAC-based al-
gorithm that fits a curve to viewers’ temporal gaze data. This curve
represents the center of the output window, guiding the selection
and combination of the re-editing operators (pans, and cuts). The
size of the window guides the zoom operator. We evaluate our
method through a subjective two-alternative forced choice test of
viewer preferences, and a comparison of viewer gaze on pre- and
post-edited video. Viewer preferences indicates that amongst re-
editing algorithms, our gaze-driven results are preferred to an opti-
mized crop-and-warp method. When viewers are presented with a
letterboxed version, they prefer that to a cropped video.

2. RELATED WORK

Resizing a video to fit a non-native aspect ratio is a controversial
task. Cinema enthusiasts often prefer letterboxing, which involves
placing a black matte around the original video (Figure 2(d)).
Though this method preserves the shape of the original video, it
wastes precious screen space, especially on small displays. As a
result, there have been several proposed solutions to automatically
create non-letterboxed versions of widescreen films. Linear scaling
(Figure 2(b)) squeezes or stretches the video to match the size of
the new display device, thereby changing the shapes of objects in
the video. Center-cropping (Figure 2(c)) trims the original video to
the desired size, which can result in the ‘talking noses’ artifact.

As a result of these difficulties with simple automatic solutions,
skilled editors are called upon to create a “pan and scan” version of
a widescreen video. The editor determines the region of the screen
that is important to the story for each frame of the video, and moves
the cropping window to that region [Wikipedia ]. As the “important
region” moves across the screen, the cropping window pans across
or zooms in and out. The editor could also introduce cuts to avoid
panning too fast or too often. Because pan and scan crops away part
of the picture, the director relies on the skill and experience of the
editor in selecting the regions of the screen that best communicate
the narrative and context.

In recent years, researchers have proposed automatic content-
aware retargeting methods: resizing the original format video non-
uniformly so that it fits the new screen size, while minimizing
the loss and distortion of visually important content. Two princi-
pal classes of methods were introduced for content-aware retarget-
ing [Shamir and Sorkine 2009]. Discrete methods treat the video as
a collection of individual pixels, and their goal is to add or remove
pixels to achieve the desired size while minimizing an energy mea-
sure [Avidan and Shamir 2007; Rubinstein et al. 2008]. Continuous
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methods treat the video data as a continuous signal that is sampled
according to a function, and transform this sampling function to
yield an image of the desired size [Wang et al. 2008; Wang et al.
2009; Niu et al. 2010]. Both classes of methods are susceptible to
the same types of visual distortions, such as squeezed shapes or
broken lines, and temporal incoherence (‘waves’ in the video).

Thus, more recent approaches have begun to incorporate the clas-
sic pan and scan operator by allowing for a cropping window
[Krähenbühl et al. 2009; Wang et al. 2010; Wang et al. 2011; Xi-
ang and Kankanhalli 2010b; 2010a]. These algorithms rely on com-
putational saliency to identify the regions to discard. Because this
identification is not exact, they do not know for sure which regions
to leave out. Combining non-linear scaling with a cropping win-
dow allows the operator to discard less, and therefore make fewer
wrong decisions, at the expense of distortion and waving artifacts.
For example, when two people are talking, saliency algorithms will
fire on both faces (because they do not process audio or dialogue)
and a combined operator might have to squeeze the two faces (dis-
tortion) to fit them inside a smaller aspect ratio because it has no
information about which person is more salient.

Liu and Gleicher automated the pan-and-scan operator for cine-
matic content based on computed saliency maps [Liu and Gleicher
2006]. They created a pan by moving a fixed size window, a zoom
by changing the size of a stationary window, and a cut by switch-
ing between two stationary windows. Our work generalizes these
operators by demonstrating a method to appropriately select com-
binations of the individual operators to effectively communicate the
story. For example, as shown in Figure 1, any single operator would
not have captured the entire action.

Deselaers and colleagues presented a pan-and-scan based algorithm
that simultaneously searches for the size and position of a cropping
window that encloses the relevant regions of the video [Deselaers
et al. 2008]. They disallow cropping window sizes less than
fullscreen, i.e. they only allow a zoom out. Perhaps this constraint
is meant to avoid cropping out relevant content because they use
computational saliency, based on image features such as color and
optical flow, which can easily misfire. Their formulation also penal-
izes non-smooth trajectories and thus, is limited to pans and zooms.

Additionally, there have been several other cropping window based
approaches [Wang et al. 2004; Tao et al. 2007; El-Alfy et al. 2007;
Kopf et al. 2011]. El-Alfy and colleagues [2007] propose a method
that is similar to ours, and accommodates cuts. These approaches
are built for non-cinematic videos, such as surveillance videos or
sports videos, and they weigh information content more than cin-
ematic guidelines. Our method, on the other hand, is designed for
cinematic content, for example, by requiring a ease-in-ease-out pro-
file for the cropping window trajectory.

Our approach to the problem of fitting widescreen video to a
smaller aspect ratio is to re-edit the given footage to as closely as
possible represent the narrative-important regions of the video (as
captured by viewer gaze) within the constraints of the desired as-
pect ratio. It is designed to allow for the simultaneous application
of pans, cut and zooms. We rely on eyetracking data from viewers
to identify which regions of the film are relevant and at what points
in time (a teacup might be relevant when the protagonist says that
she just drank tea, but might become irrelevant as she describes her
plans to assassinate the head of state). With this information, our al-
gorithm can confidently crop away regions that are irrelevant. Thus,
this method is inspired by the methodology of human artists, who

edit the original widescreen footage keeping the story in mind, and
make decisions about how to tell this story at a new aspect ratio.

Past work by graphics researchers has used eyetracking data col-
lected when viewers looked at images. Eyetracking has been
used for creating painterly renderings [DeCarlo and Santella 2002],
and cropping photographs [Santella et al. 2006], and to gener-
ate the saliency map input to nonlinear image retargeting meth-
ods [Castillo et al. 2011]. In parallel with this work, Katti and
colleagues utilized eyetracking data on previous frames to predict
saliency on subsequent frames for seam-carving based retargeting
of streaming videos [Katti et al. 2014]. These works essentially
used only the spatial locations of viewer gaze. Our algorithm uti-
lizes the additional temporal information in gaze data to compute
the trajectory of a cropping window.

Eyetracking data, though rich in information, is also very noisy.
The noise is a result of measurement error (for example, imperfect
calibration), and also a result of variations between individual par-
ticipants. This second source of noise is reduced for artist-created
content because artists actively engage the viewers’ attention. Re-
cently, Jain and colleagues recorded this phenomenon for comic
book images [Jain et al. 2012]. For videos in particular, Dorr and
colleagues showed that eye movements are significantly more con-
sistent across viewers for Hollywood action movies compared to
movies of natural scenes, such as a video taken at a beach [Dorr
et al. 2010], and Mital and colleagues validated that motion is a
strong attentional cue [Mital et al. 2010]. Goldstein and colleagues
found that when human participants watched movie clips they at-
tended to less than 12% of the screen area more than half the
time [Goldstein et al. 2007]. This finding suggests that eyetracking
data from viewers will reasonably indicate the regions of the video
important to the narrative. As eyetracking technologies become
cheaper and more easily available (for example, webcam based eye-
tracking [Agustin et al. 2010; Abbot and Aldo 2011; Rudoy et al.
2012], it will become possible to crowdsource viewer gaze data
collection, making our algorithm easier to apply.

3. METHOD

We measure what is important to viewers in a video by record-
ing their gaze as they watch the video. The gaze data is input to
a RANSAC algorithm to find a cropping window path through the
video cube that encloses maximum saliency while maintaining the
specified smoothness characteristics. When saliency shifts sharply
from one part of the original widescreen video to another, we cut
between two cropping windows. The time location of the cut is
optimized within the RANSAC loop, based on the shift in gaze po-
sition and the increase in enclosed saliency as a result of the cut.
In addition, the spread of the gaze samples in each frame is used
to change the cropping window size to create zooms. We now de-
scribe the eyetracking procedure, and the algorithm to fit pans, cuts,
and zooms to this data.

3.1 Data Collection

We selected a variety of clips from three Hollywood films shot
in different native formats (2.35:1, 1.82:1, 1.75:1) as the original
widescreen videos that would be processed by our algorithm. A
categorization of the clips is presented in Figure 6. Six naive par-
ticipants (1 male, 5 female, age ranging from 21 to 44 years) were
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Fig. 3: Viewer gaze is plotted, and an example frame is shown from the
corresponding video (each viewer is a unique color). The x-positions are
marked on the vertical axis, and frame numbers are on the horizontal axis.

recruited from the university community. All participants had nor-
mal vision, or wore contact lenses or glasses to correct to normal
vision, and they were compensated monetarily for their time.

Participants were asked to watch a set of video clips that were re-
sized to be as large as possible on a 19 inch screen (1680×1050),
with black letterboxing to preserve the original aspect ratio. The
participants sat approximately 18-24 inches from the screen. A
visual angle of 1 degree is approximately 27 pixels at these set-
tings. Before beginning the data collection, participants were asked
to adjust the chair to a height and distance comfortable to them;
then the system was calibrated. After calibration, they were able to
move their head freely while their eyes were tracked. This setup
allowed for a natural viewing situation as no chin rest was re-
quired. The stimuli video clips were presented in randomized or-
der. Before each clip, one line of text was displayed to provide con-
text about the story. The eye movements of the participants were
recorded with SensoMotoric Instruments’ RED eyetracker, running
the iViewX software at 60Hz. Raw data is illustrated in Figure 3.

3.2 Cropping window

The pan is created through a cropping window that moves across
the original widescreen video. It is parametrized by the position
of its center (xi, yi), i = 1, 2, · · · , F , where F is the number
of frames in the video, and its size Di ∈ R2, for example,
Di = [1050, 1680]. When there is no zoom, the size Di is fixed to
be the largest window with the specified aspect ratio that fits in the
widescreen video. The cropping window path is obtained by com-
puting the x-coordinate of the center of the cropping window, i.e.,
xi, from the input gaze data.

Naively smoothed or filtered eyetracking data cannot be used to
drive the camera’s motion because eye movements and camera
movements are different in several ways. A panning camera is of-
ten employed to reframe a subject so that it remains in the frame
while moving. The pan is thought to mimic the smooth motion of
the eye as it follows a subject while keeping the movement min-
imally noticeable [Katz 1991]. The purpose of eye movements is
to process information, which can occur either by quickly shifting
visual attention (saccades), resting at the same location (fixations),
or smoothly following a moving target (smooth pursuit). Thus, we
represent the path of the cropping window with B-spline curves
that are then fitted to the gaze samples. This approach allows us
to enforce the smooth ease-in-ease-out motion that helps keep the
pan minimally noticeable. We use a RANSAC algorithm to be ro-
bust to noise, including individual variation in eye movements, and
measurement noise in the eyetracking device.
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Fig. 4: Piecewise spline curves (m = 7) with the same knot values at end
points (a = 1, b = 100) but different control points and interior knots.

3.2.1 Representation. We represent the cropping window path as
a piecewise B-spline, which allows for a flat segment (i.e., station-
ary cropping window), followed by a smoothly varying segment
(i.e., pan with ease-in-ease-out), followed by a flat segment (crop-
ping window stationary again). We impose C1 smoothness on the
computed cropping window path by representing it as a piecewise
nonuniform cubic B-spline with repeated knots. A nonuniform cu-
bic B-spline is parametrized by (m+1) control points and (m+5)
knots. For m = 7, the control points are P0,P1, · · · ,P7, and the
knots are t0, t1, · · · , t11. The first curve segment Q3 is controlled
by (P0,P1,P2,P3), and is defined in the interval [t3, t4). In gen-
eral, the curve segment Qi is computed as

Qi(t) =Pi−3 ·Bi−3,4 + Pi−2 ·Bi−2,4

+ Pi−1 ·Bi−1,4 + Pi ·Bi,4, ti ≤ t < ti+1.
(1)

Bi,j are blending functions, and i = 3, 4, · · · , 7 [Foley et al. 1996].

By appropriately designing the multiplicity of the knots, we can in-
fluence the behavior of the curve segment. We set the control points
(P0,P1,P2,P3,P4,P5,P6,P7) = (α,α, α, α, β, β, β, β), and
the knots (t0, t1, · · · , t11) = (a, a, a, a, λ, λ, µ, µ, b, b, b, b).
With this multiplicity, the curve segment Q3 is controlled by
(P0,P1,P2,P3) = (α,α, α, α) in the interval [t3, t4) = [a, λ).
The segment Q4 is of zero length because t4 = t5 = λ. The
segment Q5 is controlled by (P2,P3,P4,P5) = (α,α, β, β) in
the interval [t4, t5) = [λ, µ). The segment Q7 is controlled by
(P4,P5,P6,P7) = (β, β, β, β) in the interval [t7, t8) = [µ, b).

The value a is the start frame of the shot, and the value b is the end
frame of the shot. Therefore, the free parameters are (α, β, λ, µ).
Figure 4 illustrates the effect of changing the parameters of the
curve. The parameters for the red plot are α = 100, β = 300, λ =
30, µ = 70. By changing the control points to α = 150, β = 350,
but keeping the same knots, we can shift the curve (green). The
blue dotted line shows the effect of changing a knot to λ′ = 40.

3.2.2 Fitting the cropping window path to data. Recorded gaze
data consists of noisy measurements of ‘what is important’ to a
viewer because it is subject to individual idiosyncrasies and mea-
surement error. We fit a nonuniform cubic B-spline robustly to this
data with a RANSAC algorithm [Fischler and Bolles 1981]. The
trial set τ for each RANSAC iteration comprises of four randomly
selected gaze points. This selection is done by picking the first four
items of a random permutation of all frames, and then selecting a
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Fig. 5: The x-coordinate of the recorded gaze data is plotted for each frame of the ‘couple at the waterfront’ video shown in Figure 1. The
green and purple curves are the nonuniform B-splines computed by our algorithm corresponding to the two cropping window paths. The
black dotted line is the resulting cropping window path after a cut is introduced. The gray band is the original wide screen, the light green
and purple bands are the cropping windows at the given aspect ratio (1:1), and the darker green and purple bands represent the region used
to compute the consensus set for each RANSAC trial.

random gaze sample from each frame (to avoid picking two trial
points from the same frame).

The goal now is to find a curve, parametrized by (α, β, λ, µ), that
minimizes the saliency fitting error es,

es =
∑
i,j∈τ

||xi − x̃ij ||2, (2)

where xi is the center of the cropping window for the ith frame
(obtained by sampling the curve Q(t) at t = i), and x̃ij is the j th

recorded gaze point for the ith frame.

Because the knot sequence must be nondecreasing (a ≤ λ < µ ≤
b), there are three linear constraints to be satisfied:

a− λ ≤ 0, (3)
λ− µ ≤ K1, (4)

µ ≤ b, (5)

where K1 is a minimum distance between knots. Intuitively, K1

limits how fast the camera is allowed to pan. Additionally, the crop-
ping window should not exceed the boundary of the original screen,
i.e., 1 + Di(2)/2 ≤ α, β ≤ D−Di(2)/2.

The selection of trial points is repeated N times, and for each trial,
we use MATLAB’s constrained minimization solver to compute
the piecewise spline curve that fits the current trial samples τ . The
consensus set for this curve is

η =
{
x̃ij : |xi − x̃ij | < K2Di(2)

}
. (6)

The score of the associated trial is |η|. The parameter K2 is set to
1/3 to compute the number of gaze points enclosed within the third
guides of the cropping window. The curve with the highest score is
selected as the cropping window path. The result of this algorithm
for an example video is shown in Figure 5. The green and purple
curves are two possible pans.

3.3 Cuts

When viewer attention shifts quickly across the original widescreen
video, a cut may be preferable to a fast-moving cropping window;
our method allows the introduction of a cut based on recorded gaze
data. We fit two spline curves Ax and Bx to randomly selected
trial sets τA and τB . 2 A cut is generated by switching from Ax
to Bx based on viewer attention shifts. In practice, we find that
cutting more than once in a shot from a professionally edited movie
is unnecessary because the shots are tightly edited to begin with.

A shift in viewer attention is computed from the change in median
gaze position across consecutive frames. Candidates for cuts are
posited when the shift in the median is above a threshold value and
the two cropping windows A and B are sufficiently far apart (to
avoid a ‘jump’ cut, a cut that appears jarring to the viewer because
the scenes before and after the cut are too similar [Dmytryk 1984]):

median
j=1···γi

(x̃i+1
j )−median

j=1···γi
(x̃ij) > K3, (7)

|Axi −B xi| > K4, (8)

where γi is the number of gaze points recorded for frame i. Each
candidate cut κ is ranked by the number of gaze points enclosed by
the resulting cropping window path. Let xfinal

i denote the cropping
window path for the cut κ:

xfinal
i =

{
Axi if i ≤ κ,
Bxi otherwise. (9)

Then, the consensus set is computed as in Equation 6, η ={
x̃ij : |xfinal

i − x̃ij | < K2Di(1)
}

and the score of the associated cut
is |η|. If the candidate cut with the highest score κ∗ encloses more
gaze samples than either one of the individual cropping windows,
the corresponding resulting path xfinal∗ is the path selected for this
RANSAC iteration. In Figure 5, the final path is shown as a black
and white dotted line.

2For smarter sampling, τB is selected from among the samples outside the
consensus set of xA.
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Foreground
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moving 1 clip 3 clips

Background objects are moving. Background objects are stationary.
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Fig. 6: We ran our algorithm on a variety of clips (12-24 seconds in dura-
tion) taken from three Hollywood films: Herbie Rides Again, Who Framed
Roger Rabbit, and The Black Hole. The clips are categorized based on the
motion of the foreground object, the scene camera and the background ob-
jects. When one clip fits more than one category, it is counted in both cate-
gories (for example, if the scene camera was stationary for half the duration
and moved in the other half).

3.4 Zoom

Reducing the size of the cropping window gives the effect of
“zoom” by making the scene look bigger. We compute the change
in cropping window size from the spread of the gaze data. Intu-
itively, when the gaze samples are clustered tightly, a smaller crop-
ping window can capture the region underneath the gaze samples.

We measure the spread of gaze data through the standard deviation
σi of the gaze points x̃ij for the ith frame. The ratio ρi is computed
as

ρi =
σi

max
k=1···F

(σk)
. (10)

We fit a nonuniform piecewise B-spline, denoted by q, to the sam-
ples ρi with a RANSAC algorithm similar to Section 3.2.2. The
consensus set η for each RANSAC trial is the set of sample points
that are within a given distance K5 of the spline curve,

η = ρi : |ρi − qi| < K5, (11)

where K5 = 0.2. The score of the associated trial is |η|. Let the
curve with the highest score be q∗. Then this curve is transformed
linearly (scaled and shifted)

q∗∗i = K6q
∗
i + (1−max(q∗k)

k=1···F
), (12)

where K6 = 0.5. This transformation allows us to modulate the
extent of the zoom effect by changing the parameter K6. Decreas-
ing the value causes the zoom to become less pronounced. The shift
up causes the maximum window size to be equal to the maximum
possible size that will fit inside the original widescreen frame. The
zoom effect is then created by scaling the size of the cropping win-
dow by q∗∗i before rendering.

4. RESULTS

We present results on eighteen video clips, selected to have moving
and stationary background, foreground objects, and camera. Figure
6 shows the number of clips in each category. Eight clips involve
a moving camera. The foreground objects and background objects
both show significant movement in seven clips.

The same parameter values were used for all the examples. The
number of RANSAC trials is N = 1000, and the parameters are

Our result (1:1)Original widescreen video (1.75:1) Wang et al. 2011(1:1)

Wang et al. 2011(1:1)Our result (1:1)Original widescreen video (1.75:1)

Original widescreen video (1.83:1) Wang et al. 2011(1:1)Our result (1:1)

Fig. 7: Sample frames are shown from two example sequences. We compare
with the optimized crop and warp method of Wang et al. (2011). Significant
distortions are introduced by their method for large scale changes. Images
from Herbie Rides Again courtesy The Walt Disney Company.

Original widescreen video (1.75:1) Our result with no zoom Our result with zoom

Fig. 8: Two example videos where our method zooms into the scene. Images
from Herbie Rides Again courtesy The Walt Disney Company.

K1 = 100, K2 = 1/3, K3 = K1. K4 is set to allow 20% overlap
between the two cropping windows A and B,

K4 = min(Di(2),max(D(2)− 1.2Di(2),Di(2)/2)).

K5 is set to 0.2, and K6 is set to 0.5 or 1. These parameters were
selected based on a clip taken from each of the example videos; the
algorithm was then run on the entire duration of the example videos
and the results are presented in the accompanying video submis-
sion. In Figure 7, we show a frame each from two example videos
at the 1:1 aspect ratio. Figure 8 shows two examples where our
method zooms in. The parameter K6 = 1 for this figure. Gener-
ally, this default value works well. In the accompanying video, we
also show K6 = 0.5 as a comparison.

A 30 second sequence takes approximately 40 minutes of com-
putation time because the nonuniform B-spline blending functions
need to be computed for each RANSAC trial. The trials could be
parallelized to reduce the computation time. The run time for our
method is independent of the resolution of the video.
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Fig. 9: The red markers show the mean percent included gaze samples
for each example clip. The mean percentage for all example videos is
81.2%(σ = 8.4) and the median percentage is 81.4%.

5. EVALUATION

We show a comparison of our method with an optimized crop and
warp approach, [Wang et al. 2011], in Figure 7. The squeezing
artifact is apparent in individual frames. We evaluate our method
by eyetracking viewers watching the result videos, as well as ask-
ing viewers to indicate their subjective preference through a forced
choice questionnaire. A comparison of viewer eye movements be-
fore and after the re-editing operations tests whether viewers are
absorbing the same information. Their subjective preference tells
us whether they liked what they saw.

5.1 Eyetracking

We ran the evaluation on the most aggressive aspect ratio presented
in this paper, i.e., 1:1. The video clips were displayed at their re-
edited size, with a gray background, on a 19 inch screen. Partici-
pants sat 18-24 inches from the screen, and the order of presenta-
tion was randomized.

The first check we perform is the percentage of recorded gaze data
on the original video that was included in the result. This check
is similar to the validation performed in [Chamaret and Le Meur
2008]. The included set for each frame i of a video v is

ψ′iv =
{
x̃ij : |xi − x̃ij | < Di(2)

}
i = 1, ...,Nv. (13)

The percentage of gaze data included for a whole video is the
mean over all frames of the video and the average percentage for V
videos is

ψ′′ =
1

V

V∑
v=1

Nv∑
i=1

|ψ′iv|
γi

. (14)

For the eighteen example clips we tested (12 − 43 seconds each),
the percentage of included gaze samples are shown in Figure 9. The
average included percentage is ψ′′ = 81.2%.

The second check examines the extent to which our re-editing
algorithm alters viewer eye movements. We compare the eye-
tracking data of viewers watching our result videos with the
eyetracking data collected on the original clips. Let rv =
[[x̃1, x̃2, · · · , x̃n]T , [ỹ1, ỹ2, · · · , ỹn]T ] be the gaze data on the orig-
inal video, and r′v be the recorded gaze data on the retargeted
video, where v indexes the video clip. This data is a distribution,
with a per-frame mean µ, median η, and standard deviation σ.
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Fig. 10: The gaze data captured on the original widescreen video is shown
in red and the data captured on our result (transformed to widescreen coor-
dinates) is shown in blue. We plot the median instead of the mean to reduce
the effect of outlier gaze data on the computed distance values. The thick
blue line represents the median gaze data recorded on our result videos
and the thick red line represents the median gaze data for the original
widescreen videos. The thin blue and red lines represent the standard devi-
ations for each frame. Images from Herbie Rides Again courtesy The Walt
Disney Company.

There are several metrics to compute the distance between two
distributions. A first-order metric is the distance between the per-
frame mean or median values. A higher-order metric is a statis-
tic such as the chi-squared distance, or the Earth Mover’s Dis-
tance [Judd et al. 2012; Zhao and Koch 2012].

Because we compare viewer gaze on videos of different sizes, di-
rectly computing differences in the pixel locations of the points of
regard will not yield the comparison we are looking for: we want
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Fig. 11: The red markers show the percentage distance between the median
gaze position on our results at the 1:1 aspect ratio and the median position
of the included gaze samples for the original widescreen video, i.e., the
distance between the median of the blue markers and the median of those
red markers that lie on the colored portion of the frame in Figure 10. The
average distance over all example clips is 79.3 pixels (σ = 21.8), which is
less than 10% of the width of the original widescreen frame.

to measure whether viewers could be looking at the same object in
the result video as in the original video. Thus, the gaze data on the
result video are transformed back to the coordinates of the original
video with the inverse operator w.

The gaze distribution on the re-edited video will likely be differ-
ent from the original distribution even if viewers are looking at the
same objects. For example, the standard deviation of the gaze data
on the original widescreen video is generally larger than on the
result video because the eyes move across a larger region of the
screen. Therefore, metrics like Chi-square and Earth Movers Dis-
tance (after histogram normalization), will return non-zero values.

In Figure 10, we plot the median gaze positions for each frame
of the ‘lawyer’ video. Then, the distance δ between included gaze
data on the original video (i.e., those red markers that are inside
the colored portion of the frame in Figure 10) and gaze data on the
retargeted video is defined

δ =
1

V

V∑
v=1

∆(η(w(r′v)), η(rincl
v )), (15)

where ∆ is the root mean squared distance between the median
gaze position per frame, averaged over all the frames for video v.
For our eighteen example clips, the distance ∆ is plotted in red
in Figure 11 and the average distance δ = 79.3, shown as a blue
dotted line. Sample frames are shown in Figure 10.

We take a closer look at two cuts introduced by our method; the
corresponding frames are shown in the first and third rows in Fig-
ure 10. Our method selected the appropriate locations to introduce
the cuts because viewer gaze shifts from left to right and right to
left respectively in the original widescreen video. This shift can be
seen in the sample frames, and on the graph where we have marked
the frames with the label ‘New cut’. The sample frames shown in
the second row correspond to a cut that was part of the original
video (Frame #333 and #334). Our algorithm placed the cropping
window to the right side of the original widescreen after this cut. It
takes some time for the viewers of the original widescreen video to
shift their attention to the group of lawyers.

The consistency in viewer eye movements on the original video
and our re-edited result (as illustrated for the lawyer video in Fig-
ure 10) suggests that viewers are absorbing the same information
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Number of bins=3

Number of bins=10

Fig. 12: We compute the Chi-squared distance between the gaze data on
the original widescreen video and our result for each frame, and we report
the average distance over all frames in a clip. Because this distance metric
depends on the number of bins in the underlying histogram, we show the
values for three bins in red and ten bins in blue. We show results on eighteen
videos from a database of twenty three clips. Clip ID refers to the index of
the video in the database.

from our re-edited results as from the original widescreen videos.
It indicates that even though our method crops away large parts
of the screen, and introduces additional camera movement, view-
ers are not distracted away from the regions of the video that are
important for the understanding of the narrative. The eyetracking
based evaluation also reveals the importance of continuity editing.
Because our method treats each shot independently, the viewer eye
movements lag by a couple of frames from Frame #333 to Frame
#334 in Figure 10. We discuss the use of cinematic conventions for
future algorithms in Section 6.

In Figures 12 and 13, we plot two higher-order distance metrics, the
Chi-squared distance, and the Earth Mover’s distance. Both met-
rics histogram the gaze locations, and then, compute the distance
between the two histograms. Thus, the computed values depend on
the number of bins. We report the distances for three bins and ten
bins respectively. Because the number of gaze samples per frame
is small (approximately 6-12), and may be different for the original
widescreen video and the corresponding result video, both metrics
yield small non-zero numeric values even when the gaze distribu-
tions are quite similar.

The videos showing the eyetracking data on the input and on the
output are available as supplementary material. All the evaluated
result videos are pans and cuts, without zoom. Gaze data does not
clearly test the zoom operation because a viewer’s gaze patterns are
unlikely to be altered if he or she sees a face at its original size or a
little larger. Gaze data does reveal if the viewer was led to look in a
certain direction by the camera pan, or if the viewer missed seeing
a portion of the frame because our method cut too early. Thus, we
collect eyetracking data on re-edited results with pans and cuts.

5.2 User Preference

We also evaluate our method by asking users to submit their pref-
erences. We conduct a two alternative forced choice study where
fifteen participants compared results generated by our method,
with the results generated by an optimized crop-and-warp method
by [Wang et al. 2011], and the letterboxed version of the same clip.
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Fig. 13: We compute the Earth Mover’s distance between the gaze data on
the original widescreen video and our result for each frame, and we report
the average distance over all frames in a clip. Because this distance metric
depends on the number of bins in the underlying histogram, we show the
values for three bins in red and ten bins in blue. Even though the gaze
distributions are quite similar, the distance metric does not return a zero
value because the total number of gaze points can be different.

We use five video clips in our experiment. The participants first
watch the original widescreen clip, then one version of this clip at
the reduced aspect ratio 1:1 (“Video 1”), and then another version
of the clip at the reduced aspect ratio (“Video 2”). After this, they
are required to answer the question “Which is a better representa-
tion of the original clip at this reduced aspect ratio? (Video 1 or
Video 2)”. Because the order of presentation could bias the par-
ticipants, we repeat the comparison with the order switched. Thus,
each participant rates 5 videos × 2 blocks = 10 video compar-
isons of our method versus [Wang et al. 2011], and similarly for
our method versus letterboxing. The order of presentation of the
blocks is counterbalanced across participants.

Previously, comparisons have been designed so that the participant
views the original video, and the two retargeted versions side-by-
side. This design is useful to find out if visual artifacts are notice-
able to viewers, because a side-by-side comparison encourages the
viewer to difference the two videos. If a viewer differences our re-
sult with a method based on nonlinear rescaling, our method would
be rated as more preferable because it does not introduce the ar-
tifacts that rescaling does (structural artifacts such as waving or
squeezing). We design our study to present each video sequentially.
This presentation allows the viewer to assess each clip individually,
undistracted by a second clip playing simultaneously.

We perform our evaluation on clips long enough to contain a con-
text or a conversation, to better mimic the experience of watching
an actual film. The five clips are 12, 9, 15, 23 and 6 seconds in dura-
tion, respectively. The complete experiment takes about 17-20 min-
utes to complete. We also choose to administer the experiment in
situ to be able to control the quality of video playback. Participants
were recruited through a website, in accordance with IRB proto-
col. The participants watched the videos while sitting 18-24 inches
from on a 19 inch screen. We ran a total of fifteen participants (age
range 18-55 years). We discarded the data of one participant as she
was clearly distracted during the experiment.

The data collected from the experiment is shown in Table I. Each
participant compared our method (GDR) to [Wang et al. 2011]
(W2011) 10 times, leading to a total of 140 comparisons. Of the
10 comparisons a participant rated, the average number of times a
participant preferred GDR over W2011 is µ = 8.42(σ = 2.59).

↓ preferred over→ GDR W2011 Letterboxing
GDR - 84% 15%
W2011 16% - -
Letterboxing 85% - -

Table I. : Preferences of the 14 participants in our subjective user evalu-
ation at full size. Our re-editing approach (GDR) was preferred 84% over
a state-of-the-art nonlinear crop-and-warp method (W2011). Letterboxing
was preferred for 85% of the comparisons with GDR.

↓ preferred over→ GDR W2011 Letterboxing
GDR - 62% 25%

W2011 38% - -
Letterboxing 75% - -

Table II. : Preferences of the 25 participants in our subjective user evalua-
tion at small size. Our re-editing approach (GDR) was preferred in 62% of
the comparisons with a crop-and-warp method (W2011). Letterboxing was
preferred in 75% of the comparisons with GDR.

GDR preferred over “Video 1” is GDR “Video 2” is GDR
W2011 63% 61%

Letterboxing 23% 26%

Table III. : We checked for order effects in the preferences of the 25 par-
ticipants in our subjective user evaluation at small size. Because there is no
clear trend that the subjects always prefer our results when it is shown first,
we can conclude that repeating the comparison in both orders is effective
at mitigating bias due to presentation order.

This observation is significantly greater than the chance value
µchance = 5, based on a one-tailed t-test, with p < 0.001,
t(13) = 4.95. The effect size of r = 0.8081 indicates a large ef-
fect. The observed statistical power is 0.998 [Erdfelder et al. 1996],
suggesting that even a small number of participants is sufficient to
observe the effect.

As shown in Table I, each participant compared our method (GDR)
to letterboxing 10 times, leading to a total of 140 comparisons. On
average, out of the 10 comparisons a participant rated, he or she
preferred letterboxing to GDR µ = 8.5 times (σ = 1.56). The
preference values are significantly greater than chance (µchance =
5), based on a one-tailed t-test, with p < 0.001, t(13) = 8.4130,
r = 0.9191. The observed statistical power is 0.99.

5.3 User Preference at Mobile Phone Size

We additionally performed an evaluation of our method at a view-
ing size that mimics a mobile phone. Because mobile phones range
in size from 2.3 − 2.8 inches, we present the videos at 2.6 inches
in height when shown on a 15” laptop screen at its native resolu-
tion (1440×900). The background was set to gray. The experiment
design was identical to the design in Section 5.2. We recruited 25
naive participants through a website, in accordance with IRB guide-
lines, leading to a total of 250 preference values for each compari-
son. The collected data are summarized in Table II.

The pixels per degree of visual angle (ppd) were comparable for the
‘regular size’ experiment and the ‘mobile phone size’ experiment,
and the values were comparable to the pixels per degree for mobile
phones (ranging from 34−46 ppd for external monitor, 28−46 ppd
for laptop screen, and 30−53 ppd for mobile phones). Because vi-
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sual resolution comparisons are meaningful only for normal view-
ing distances for the device considered, mobile phones, and laptops
or desktops, have very different pixel per inch resolutions, but sim-
ilar pixel per degree resolutions. As the variety of display devices
increases, perception researchers are beginning to study how the
interaction of pixel resolution and visual angle impacts people’s
abilities to resolve visual properties [Healey and Sawant 2012].

We found that on average, out of 10 comparisons, a participant pre-
ferred GDR over W2011 µ = 6.24 times (σ = 2.88). This pref-
erence is greater than the chance preference value µchance = 5,
based on a one-tailed t-test (p = 0.02, p < 0.05, t(24) = 2.15).
The effect size is r = 0.403 and the post-hoc statistical power is
0.67. Additionally, participants on average preferred letterboxing
to GDR µ = 7.52 times (σ = 2.92). This observation is highly
significant (p < 0.001, t(24) = 4.31), based on a one-tailed t-test.
The effect size is r = 0.66 and the the observed power is 0.99.
These findings indicate that user preferences at mobile phone sizes
follow the same trend: our results on gaze-driven video re-editing
are preferred relative to an optimized crop-and-warp method, and
letterboxed videos are preferred relative to the re-edited videos.

6. DISCUSSION

We have presented an algorithm for re-editing videos to better fit a
device with a smaller aspect ratio. Our method uses the gaze data
of viewers on the original video to determine the important parts of
the frame. We compute B-spline paths for two cropping windows,
and find an optimal cut between them using a RANSAC approach.
The zoom is computed from the per-frame standard deviation of
the input gaze data. We compare the gaze data of viewers on the
re-edited videos with gaze data on the original videos. The median
location of viewer gaze on the pre- and post-edited videos is within
10% of the frame dimension.

We evaluate our method through a two-alternative forced choice
user study that asks viewers to indicate their preference for one of
two videos. The results show that viewers find our results to be
a better representation of the original video compared to an opti-
mized crop-and-warp method, and letterboxed videos to be a better
representation of the original video compared to our method. This
study was performed at two sizes, a ‘regular’ size, and a ‘mobile
phone’ size. The finding that viewers prefer watching the video at
the original aspect ratio (even after letterboxing) perhaps reflects
audience validation of the directorial vision that caused a certain
aspect ratio to be chosen for a film (for example, Sydney Pollack’s
lawsuit for his 1975 film [Young 2008]). Alternatively, this find-
ing could be a result of a bias introduced by the question of what
constitutes a ‘better representation’ of the original video.

We also ran an informal study where viewers were shown videos re-
sized to a ‘mobile phone’ size by our method, crop-and-warp, and
letterboxing, and asked to rate each video on a 7-point scale. We
found that there was a significant difference in the responses to the
questions, ‘How well are you able to see the expressions on the ac-
tors’ faces?’ and ‘How much would you want to watch this video on
a mobile phone?’. For both questions, our method was rated better
than either letterboxing, or crop-and-warp. Interestingly, there was
no significant difference in the ratings for ‘How well can you see
the action?’ indicating perhaps that closeups are less required for
conveying that the actor is moving across the screen. These trends
suggest that the standard two-alternative forced choice comparison
metric for video retargeting methods might not capture all the nu-

Fig. 14: Top row: Our result in color is overlaid on the grayscale original
frame. Because the character darts quickly across the frame, the required
pan velocity is too high, and our algorithm introduces a cut instead. This
creates a result with a ‘jump cut’. Bottom row: Viewer gaze for this video,
and the cropping window path computed by our method. See Figure 5 for an
explanation of the colors. Images from The Black Hole courtesy The Walt
Disney Company.

ances of viewing experiences at differently sized devices. An ex-
ploration of the evaluation metrics used by the community would
make for an interesting and useful future direction.

A limitation of our algorithm is the extent to which it can re-edit a
scene with fast motion, or short cuts. When the algorithm fails, it
is most often because the reduction that we have asked for is im-
possible without two or more cuts or a high velocity pan. Figure 14
illustrates the performance of our method on a scene with fast mo-
tion. The character darts out of the door and through the corridor.
Because of the threshold on how fast a single cropping window is
allowed to pan is kept the same for all our examples, our method
selects a cut as the optimal solution. This solution results in a ‘jump
cut’. Another limitation of our method is that it is applied to indi-
vidual shots, which can lead to sudden camera moves during grad-
ual shot transitions such as dissolves. This type of artifact could be
addressed by introducing a continuity term for edits across shots.

As eyetracking technologies become cheaper and more easily avail-
able (for example, webcam based eyetracking [Agustin et al. 2010;
Abbot and Aldo 2011]), it will become possible to obtain eyetrack-
ing information even by crowdsourcing viewer gaze [Rudoy et al.
2012]. Hence, collecting large quantities of gaze data will become
feasible in terms of both quality and cost. In the future, eyetracking
could also be done on smart personal devices such as smartphones,
and on a per user basis to automatically create a personalized ver-
sion of a movie. Such research would provide a big data comple-
ment to current work on understanding how viewers view television
and film on mobile devices (for example, [Knoche et al. 2008]).

For viewer attention to be a viable input to computer graphics al-
gorithms, we need an estimate for how many viewers should be
eyetracked to access the “canonical” eye movement pattern. We
computed the change in mean gaze location per frame of a video
clip as the number of viewers in the database was increased. The
shift in mean gaze location levels off at around four or five view-
ers. The numeric value will not reach zero because it is not nec-
essary that the true distribution of gaze locations is drawn from a
single Gaussian distribution. It could be a mixture distribution, if
the scene included two people talking, and both the expression of
the speaker and the reaction of the listener were salient.

Our re-editing algorithm guarantees that the structure of the under-
lying scene will be preserved, i.e., faces will not be made tall and
skinny, and lines will not be broken. However, a drastic change in
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Fig. 15: Left column: Our result. Right column: Our result in color is over-
laid on the grayscale original frame. Red dots mark viewer gaze on the
original video, and blue dots mark viewer gaze on the re-edited result. Be-
cause eyetracking data only indicates the pixels that are being attended, it is
possible for a cropping window to truncate a secondary character while op-
timizing the smoothness of the pan. Though our comparison of viewer gaze
on pre- and post-edited videos shows that these truncations do not distract
attention away from the primary character, a human editor might select a
different cropping window to avoid this artifact. Images from Herbie Rides
Again courtesy The Walt Disney Company.

aspect ratio will necessarily compel the re-editing algorithm to crop
away large parts of the underlying scene. It might seem that our
algorithm is susceptible to artifacts such as cutting faces in half be-
cause of this. However, as the re-edit is driven by the viewer’s gaze,
it avoids cutting off a region that was attended to. Secondary faces
or limbs may get truncated (for example, Figure 15). Our compar-
ison of viewer gaze on pre- and post-edited videos shows that be-
cause the regions attended by the viewer on the original video are
preserved during the re-edit, the secondary faces or limbs that may
get truncated do not alter the viewer’s attentional patterns.

Our algorithm for placing cuts is largely successful in inserting
them so that they are not disruptive to the viewing pattern. How-
ever, our approach does tend towards using cuts because two win-
dows will always provide more coverage of the salient regions than
one, particularly with the relatively slow panning velocities that we
have allowed. A statistical analysis of the camera motion and edit-
ing patterns used in the original film might help to provide addi-
tional information about when difficult scenes could be re-edited
with more cuts, faster pans, or zooms. Eye movement research in-
dicates that cinematic guidelines such as continuity editing result
in viewers experiencing increased ‘edit blindness’ [Smith and Hen-
derson 2008]. Continuity editing rules include techniques such as
matching the action before and after the cut, and aligning a cut to a
sound effect. Future work could incorporate such guidelines from
the study of cinema (for example [Dmytryk 1984]) to create more
pleasing re-edits. Combining such an analysis with gaze data might
also benefit other applications, such as reframing for aesthetic rea-
sons (see e.g., [Liu et al. 2010]), and video summarization.
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