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Abstract—Many blockchain consensus protocols have been
proposed recently to scale the throughput of a blockchain with
available bandwidth. However, these protocols are becoming
increasingly complex, making it more and more difficult to
produce proofs of their security guarantees. We propose a novel
permissionless blockchain protocol OHIE which explicitly aims for
simplicity. OHIE composes as many parallel instances of Bitcoin’s
original (and simple) backbone protocol as needed to achieve
excellent throughput. We formally prove the safety and liveness
properties of OHIE. We demonstrate its performance with a
prototype implementation and large-scale experiments with up to
50, 000 nodes. In our experiments, OHIE achieves linear scaling
with available bandwidth, providing about 4-10Mbps transaction
throughput (under 8-20Mbps per-node available bandwidth con-
figurations) and at least about 20x better decentralization over
prior works.

I. INTRODUCTION

Blockchain protocols power several open computational
platforms, which allow a network of nodes to agree on the
state of a distributed ledger periodically. The distributed ledger
provides a total order over transactions. Nodes connect to
each other via an open peer-to-peer (P2P) overlay network,
which is permissionless: it allows any computer to connect
and participate in the computational service without registering
its identity with a central authority. A blockchain consensus
protocol enables every node to confirm a set of transactions
periodically, batched into chunks called blocks. The protocol
ensures that honest nodes all agree on the same total ordering
of the confirmed blocks, and that the set of confirmed blocks
grow over time. The earliest such protocol was in Bitcoin [39],
and has spurred interest in many blockchain platforms since.

The seminal Bitcoin protocol, published about a decade
ago [39], laid some of the key foundations for modern
blockchain protocols. But as Bitcoin gained popularity, its
low throughput has been cited as glaring concern resulting
in high costs per transaction [10]. Currently, Ethereum and
Bitcoin process only about 5KB or 10 transactions per second
on average, which is less than 0.2% of the average available
bandwidth in their respective P2P networks [19]. Many recent
research efforts have thus focused on improving the transaction
throughput, resulting in a series of beautiful designs for
permissionless blockchains [2], [12], [13], [20], [27], [28],
[32], [33], [45], [47].

Bitcoin’s core consensus protocol—called Nakamoto
consensus—still stands out in one critical aspect: it is remark-
ably simple. Nakamoto consensus can be fully described in a
few dozens of lines of pseudo-code. Such simplicity makes
it extensively amenable to re-parameterization in hundreds

of deployments, and more importantly, a series of formal
proofs on its security guarantees have been carefully and
independently established in several research works [17], [18],
[24], [26], [40].

The importance of keeping constructions simple enough
to allow such formal proofs and cross validations cannot be
over-emphasized. Consensus protocols are notoriously difficult
to analyze in the presence of byzantine failures. Formal
proofs/analysis are especially important to protocols that are
difficult to upgrade once deployed: Upgrades of blockchain
protocols after deployment (i.e., “hard forks”) cause both
philosophical disagreements and financial impact.

Some recent high-throughput blockchain protocols do strive
to retain the simplicity of Nakamoto consensus. Unfortunately,
many of them do not come with formal end-to-end secu-
rity proofs. As an example, Conflux [32] is a recent high-
throughput blockchain protocol with an elegant design. But
it has only provided informal security arguments (Section 3.3
in [32]). Our extended technical report [46] shows that in our
simulation, as the throughput of Conflux increases, the security
properties of Conflux deteriorate.1 Such an undesirable prop-
erty of Conflux is hard to discover via informal arguments.
The Conflux paper itself also presented effective attacks on a
prior protocol (Phantom [45]) that comes without proofs.

Our goal. This work aims to develop a simple blockchain con-
sensus protocol, which should admit formal end-to-end proofs
on safety and liveness, while retaining the high throughput
achieved by state-of-the-art blockchain protocols. Specifically,
we aim to achieve:

1) Near-optimal resilience: Tolerate an adversarial compu-
tational power fraction f close to 1

2 , which is near-
optimal;

2) Throughput approaching a significant fraction of the raw
network bandwidth: The raw available network band-
width in the P2P network constitutes a crude throughput
upper bound for all blockchain protocols. We aim to
achieve a throughput, in terms of transactions processed
per second, that approaches a significant fraction of this
raw network bandwidth.2

1Related observations on Conflux have also been independently made by
Bagaria et al. [5] and Fitzi et al. [15].

2Note that the raw available bandwidth is only a rather crude upper bound,
and hence in practice it is unlikely for the throughput to reach this upper
bound. For example, this crude upper bound does not take into account factors
such that TCP slow start, probabilistic block generation, probabilistic hot-spots
in the P2P overlay network, overheads for determining which blocks to gossip,
and so on.



3) Decentralization: Many dynamically selected block pro-
posers should be able to add blocks to the blockchain per
second, rather than for example, having one leader or a
small committee add blocks over a long period of time.
More block proposers make transactions less susceptible
to censorship [34], [36], and a DoS attack against a small
number of nodes will no longer impact the availability
of the entire system [23].

Our approach. This work proposes OHIE,3 a novel
blockchain protocol for the permissionless setting. Specif-
ically, OHIE composes many parallel instances of the
Nakamoto consensus protocol. OHIE first applies a simple
mechanism to force the adversary to evenly split its adversarial
computational power across all these chains (i.e., Nakamoto
consensus instances). Next, OHIE proposes a simple solution
to securely arrive at a global order for blocks across all the
parallel chains, hence achieving consistency.

The modularity of OHIE enables us to prove (under any
given constant f < 1

2 ) its safety and liveness properties via
a reduction from those of Nakamoto consensus. Our proof
invokes existing theorems on Nakamoto consensus, making
the proof modular and streamlined [40]. By running as many
(e.g., 1000) chains as the network bandwidth permits, OHIE’s
throughput scales with available network bandwidth. Finally,
the parallel chains in OHIE lead to excellent decentralization,
since many miners can simultaneously add new blocks.

Our results. We have implemented a prototype of OHIE,
the source code of which is publicly available [1]. We have
evaluated it on Amazon EC2 with up to 50, 000 nodes, under
similar settings as in prior works [20], [32]. Our evaluation first
shows that OHIE’s throughput scales linearly with available
bandwidth, as is the case with state-of-the-art protocols [13],
[20], [28], [33], [47]. For example, under configurations
with 8-20Mbps per-node bandwidth, OHIE achieves about 4-
10Mbps transaction throughput. This translates to close to
1000 to 2500 transactions per second, assuming 500-byte
average transaction size as in Bitcoin. Such throughput is
about 550% of the throughput of AlgoRand [20] and 150%
of the throughput of Conflux [32] under similar available
bandwidth. This suggests that while explicitly focusing on
simplicity, OHIE retains the high throughput property of mod-
ern blockchain designs. Second, regardless of the throughput,
the confirmation latency for blocks in OHIE is always below
10 minutes in our experiments, under security parameters
comparable to Bitcoin and Ethereum deployments. (The con-
firmation latencies in Bitcoin and Ethereum are 60 minutes
and 3 minutes, respectively.) Finally, our experiments show
that the decentralization factor of OHIE is at least about 20x
of all prior works.

II. SYSTEM MODEL AND PROBLEM

System model. Our system model and assumptions directly
follow several prior works (e.g., [26], [40]). We model hash

3The word “ohie” comes from the Maori language and means “simple”.

functions as random oracles, and assume that some random
genesis blocks are available from an initial trusted setup. We
consider a permissionless setting, where nodes have no pre-
established identities. We use standard proof-of-work (PoW)
puzzles, a form of sybil resistance, to limit the adversary by
computation power. We assume that the entire network has
total n units of computational power, and some reasonable
estimation of n is known. Out of this, the adversary con-
trols fn units of computational power, with f being any
constant below 1

2 . The adversary can deviate arbitrarily from
the prescribed protocol, and hence is byzantine. We assume
that some procedure to estimate the total computation power
exists a-priori [18]. Standard PoW schemes help ascertain this
periodically. For instance, in Bitcoin, the rate of PoW solutions
is adjusted (periodically) to be approximately 10 minutes, and
the PoW difficulty essentially maps to the estimated total
computation power in the network. We can use the same
mechanism in our design.

Given a fixed block size (e.g., 20 KB), we assume that
honest nodes form a well-connected synchronous P2P overlay
network, so that an honest node can broadcast (via gossiping)
such a block with a maximum latency of δ to other honest
nodes. Our protocol, much like Bitcoin, can tolerate variations
in the actual propagation delay. Network partitioning attacks
can delay block delivery arbitrarily and can cause honest
nodes to lose inter-connectivity [4]. Defences to mitigate these
attacks are an important area of research; however, they are
outside the scope of the design of the consensus protocol.
If the network becomes completely asynchronous, blockchain
consensus is considered impossible [40]. In the presence of
partitions, the CAP theorem suggests that protocols can either
choose liveness or safety, but not both [21], [22]; we choose
liveness—the same as Nakamoto consensus. The adversary
sees every message as soon as it is sent. The adversary can
arbitrarily inject its own messages into the system at any
time (this captures the selfish mining attack [14], where newly
mined blocks are injected at strategic points of time).

Problem definition. A blockchain protocol should enable
any node at any time to output a sequence of total-ordered
blocks, which we call the sequence of confirmed blocks (or
SCB in short). For example, in the Bitcoin protocol, the
SCB is simply the blockchain itself after removing the last
6 blocks. Safety and liveness, in the context of blockchain
protocols, correspond to the consistency and quality-growth
properties of the SCB. Informally, these two properties mean
that the SCB’s on different honest nodes at different time are
always consistent with each other, and that the total number
of honest blocks (i.e., blocks generate by honest nodes) in the
SCB grows over time at a healthy rate. We leave the formal
definitions of these properties to Section V.

Having consistency and quality-growth is sufficient to
enable a wide range of different applications. For example,
consistency prevents double-spending in a cryptocurrency—if
two transactions spend the same coin, all nodes honor only the



first transaction in the total order 4. Similarly, any “conflicting”
state updates by smart contracts running on the blockchain
can be ordered consistently by all nodes, by following the
ordering in the SCB. In fact, ensuring a total order is key to
support many different consistency properties [6], [29], [30]
for applications, including for smart contracts [3].

Finally, if the same transaction is included in multiple
blocks in the SCB, then the first occurrence will be processed,
while the remaining occurrences will be ignored. To avoid
such waste, miners should ideally pick different transactions
to include in blocks. For example, among all transactions, a
miner can pick those transactions whose hashes are the closest
to the hash of the miner’s public key. Note that this does
not impact safety or liveness at all; it simply reduces the
possibility of multiple inclusions (in different blocks) of the
same transaction.

III. CONCEPTUAL DESIGN

OHIE composes k (e.g., k = 1000) parallel instances of
Nakamoto consensus. Intuitively, we also call these k parallel
instances as k parallel chains. Each chain has a distinct genesis
block, and the chains have ids from 0 to k − 1 (which
can come from the lexicographic order of all the genesis
blocks). Within each instance, we follow the longest-path-rule
in Nakamoto consensus.5 The miners in OHIE extend the k
chains concurrently.

A. Mining in OHIE

Consider any fixed block size (e.g., 20 KB), and the
corresponding block propagation delay δ (e.g., 2 seconds).
Existing results [26], [40] on Nakamoto consensus show that
for any given constant f < 1

2 , there exists some constant c
such that if the block interval (i.e., average time needed to
generate the next block on the chain) is at least c · δ, then
Nakamoto consensus will offer some nice security properties.
(Theorem 2 later makes this precise.) As an example, for
f = 0.43, it suffices [40] for c = 5. Such c · δ, together
with n, then maps to a certain PoW difficulty p in Nakamoto
consensus, which is the probability of mining success for one
hash operation. (Theorem 2 gives the precise mapping.) Given
p, the hash of a valid block in Nakamoto should have log2

1
p

leading zeros.
In OHIE, to tolerate the same f as above, the hash of a valid

block should have log2
1
kp leading zeros, where the value p is

chosen to be the same as in the above Nakamoto consensus
protocol. Next, the last log2 k bits of the hash6 of the OHIE
block will index to one of the k chains in OHIE, and the block

4Transactions spending the same coin as earlier ones in the total order can
simply be skipped as invalid by the user.

5Nakamoto consensus, strictly speaking, maintains a tree of blocks [39].
The longest-path-rule selects the longest path from the root (i.e., genesis block)
to some leaf of the tree, where the leaf is chosen such that the path length is
maximized. This path is often referred to as the chain.

6Under our random oracle assumption, any log2 k bits of the hash (other
that the first log2

1
kp

bits) work. In implementation, one can choose to use
any portion (other that the first log2

1
kp

bits) of the hash as appropriate, based
on the specific hash function.

will be assigned to and will extend from that chain. We have
assumed the hash function to be a random oracle, and note
that log2

1
kp + log2 k = log2

1
p . Hence for any given chain in

OHIE, the probability of one hash operation (either done by
honest nodes or done by the adversary) generating a block for
that chain7 is exactly p, which is the same as in Nakamoto
consensus. Similarly, the block interval for any given chain in
OHIE will be the same as in Nakamoto consensus.

The above relation can be formalized: Taking all mech-
anisms in OHIE (especially the Merkle tree mechanism de-
scribed next) into account, Lemma 3 later will prove that the
behavior of any given chain in OHIE almost follows exactly
the same distribution as the behavior of the single chain in
Nakamoto consensus. Note that different chains in OHIE are
still correlated, since a block is assigned to exactly one chain.
But we will be able to properly bound the probability of all bad
events (whether correlated or not) via a simple union bound.

Finally, since OHIE has k parallel chains, on expectation
there will be total k blocks (across all chains) generated every
c ·δ time, instead of just one block. Our experiments later will
confirm the following simple yet critical property: Propagating
many parallel blocks has minimal negative impact on the block
propagation delay δ, as compared to propagating a single such
block, until we start to saturate the network bandwidth of the
system. Hence in OHIE, we use as large a k as possible to
effectively utilize all the bandwidth in the system, subject to
the condition that δ is minimally impacted.

B. Security of Individual Chains
In Nakamoto consensus, a new block B extends from

some existing block A. The PoW computes over B, which
contains the hash of A as a field, cryptographically binding
the extension of A by B. In OHIE, however, a miner does not
know which chain a new block will extend until it finishes the
PoW puzzle, the last log2 k bits of which then determine the
chain extended.

To deal with this, in OHIE, a miner uses a Merkle tree [37]
to bind to the last blocks of all the k chains in its local view.
Specifically, let Ai be the last block8 of chain i, for 0 ≤
i ≤ k−1. The miner computes a Merkle tree using hash(A0)
through hash(Ak−1) as the tree leaves. The root of the Merkle
tree is included in the new block B as an input to the PoW
puzzle. After B is mined, the integer i that corresponds to
the last log2 k bits of hash(B) determines the block Ai from
which B extends. When disseminating B in the network, a
miner includes hash(Ai) and the Merkle proof of hash(Ai)
in the message. (The value of i will be directly obtained from
the hash of B.) The Merkle proofs are standard, consisting of
log2 k off-path hashes [37].

Intuitively, the above design binds each successful PoW
to a single existing block on a single chain from which

7Namely, total log2
1
p

positions in the block’s hash must match some pre-
determined values, respectively.

8Exactly the same as in Nakamoto consensus, the last block here refers to
the very last block on the longest path from the genesis block. In particular,
this last block is not yet partially-confirmed. (In fact, none of the last T blocks
on the path are partially-confirmed.)
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Fig. 1: Illustrating confirm bar under T = 2. Here chain 0, 1, and 2 have 2, 6, and 2 partially-confirmed blocks, respectively.
On chain 1, only the first 2 blocks are fully-confirmed.

the new block extends. For further understanding, let us
consider the following example scenario. The adversary may
intentionally choose A0 through Ak−1 all from (say) chain
3, for constructing the Merkle tree. Assume the adversary
finds a block B whose hash has log2

1
kp leading zeros. If

the last log2 k bits of B does not equal to 3, then B will
not be accepted by any honest node. Otherwise B will be
accepted, and B can only extend from A3 (instead of any
other block) on chain 3. The reason is that the honest nodes
will need to verify the 4th leaf (which corresponds to chain
3) on the Merkle tree. Only A3 can pass such verification.
Also note that the adversary may intentionally not use the
last block on chain 3 as A3. This is not a problem, since
the security of OHIE ultimately inherits (see Section V) from
the security of Nakamoto consensus [40], and the adversary
in Nakamoto consensus can already extend from any block
(instead of extending from the last block).

C. Ordering Blocks across Chains – A Starting Point

Section V will show that each individual chain in OHIE
inherits the proven security properties of Nakamoto consen-
sus [40]. For example, with high probability, all blocks on a
chain except the last T blocks (for some parameter T ) are
confirmed — the ordering of these confirmed blocks on the
chain will no longer change in the future. This however does
not yet give us a total ordering of all the confirmed blocks
across all the k chains in OHIE. Recall from Section II that
a node needs to generate an SCB (i.e., a total order of all
confirmed blocks) satisfying consistency and quality-growth.
To avoid notational collision, from this point on, we call
all blocks on a chain except the last T blocks as partially-
confirmed. Once a partially-confirmed block is added to SCB,
it becomes fully-confirmed.

One way to design the SCB is to first include the first
partially-confirmed block on each of the k chains (there are
total k such blocks, and we order them by their chain ids),
and then add the second partially-confirmed block on each of
the k chains, and so on. This would work well, if every chain
has the same number of partially-confirmed blocks.

When the chains do not have the same number of partially-
confirmed blocks, we will need to impose a confirmation bar
(denoted as confirm bar) that is limited by the chain with the
smallest number of partially-confirmed blocks (see Figure 1).

Blocks after confirm bar cannot be included in the total
order yet. This causes a serious problem, since with blocks
extending chains at random, some chains can have more blocks
than others. In fact in our experiments (results not shown),
such imbalance appears to even grow unbounded over time.

D. Ordering Blocks across Chains – Our Approach

Imagine that the longest chain is 8 blocks longer than
the shortest chain. Our basic idea to overcome the previous
problem is that when the next block on the shortest chain
is generated, we simply view it as 8 blocks worth. Figure 2
illustrates this idea. Here each block has two additional fields
used for ordering blocks across chains, denoted as a tuple
(rank, next rank). In the total ordering of fully-confirmed
blocks, the blocks are ordered by increasing rank values, with
tie-breaking based on the chain ids. The chain id of a block
is simply the id of the chain to which the block belongs. For
any new block B that extends from some existing block A,
we directly set B’s rank to be the same as A’s next rank.
Putting it another way, A’s next rank specifies (and fixes)
the rank of B. A genesis block always has rank of 0 and
next rank of 1.

Determining next rank. Properly setting the next rank of
a new block B is key to our design. A miner sees all the
chains, and can infer the expected rank of the next upcoming
block on each chain (before B is added to its chain). For
example, at time t1 in Figure 2, the next rank of the current
last block (not the last partially-confirmed block) on each of
the three chains is 1, 5, and 1, respectively. Hence these will be
the rank of the upcoming blocks on those chain, respectively.
Let x denote the maximum (i.e., 5) among these values, and
x corresponds to the “longest” chain (in terms of rank) among
the k chains. Regardless of which chain the new block B ends
up belonging to, we want B to help that chain to increase its
rank to catch up with the “longest” chain. Hence the node
generating B should directly set B’s next rank to be x, or
any value larger than9 x. (To prevent adversarial manipulation,
a careful implementation requiring an additional trailing

9Using a value larger than x will cause B’s chain to exceed the length of
the currently “longest” chain (in terms of rank). This is not a problem since
the other chains will catch up with B’s chain once a new honest block is
added to each of those chains. We do not need the chains to have exactly the
same length all the time.
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field is needed— see Section IV.) Finally, we always ensure
that B’s next rank is at least one larger than B’s rank,
regardless of x. This guarantees that the rank values of blocks
on one chain are always increasing.

In the example in Figure 2, from time t1 to t2, there are 3
new blocks (with tuples (1, 5), (5, 6), and (6, 7), respectively)
added to chain 0. For the first new block added (i.e., the block
with tuple (1, 5)), the value of x is 5, and hence the block’s
next rank is set to be 5. For the second new block (i.e.,
the block with tuple (5, 6)), the value of x is still 5, while
the rank of this block is already 5. Hence we set the block’s
next rank to 6.

Determining the total order. We can now establish a total
order among the blocks in the following way. Consider any
given honest node at any given time and its local view of
all the chains. Let yi be the next rank of the last partially-
confirmed block on chain i in this view. For example, at
time t4 in Figure 2, we have y0 = 5, y1 = 7 and y2 = 9.
Note that the position of a partially-confirmed block on its
respective chain will not change anymore, and hence all these
yi’s are “stable”. Let confirm bar ← minki=1 yi. Then, the
next partially-confirmed block on any chain must have a rank

no smaller than confirm bar. This means that the node
must have seen all partially-confirmed blocks whose rank is
smaller than confirm bar. Thus, it is safe (see Lemma 4)
to deem all partially-confirmed blocks whose rank is smaller
than confirm bar as fully-confirmed, and include them in

SCB. Finally, all the fully-confirmed blocks will be ordered
by increasing rank values, with tie-breaking favoring smaller
chain ids. As an example, in Figure 2, at time t4, we have
confirm bar being 5. Hence, the 9 partially-confirmed blocks
whose rank is below 5 become fully-confirmed.
Summary. By properly setting the rank values of all the
blocks, we ensure that the chains remain balanced in terms of
the rank’s of their respective last blocks. This is regardless of
how imbalanced the chains are in terms of the total number
of blocks, hence avoiding the earlier imbalance problem in
Section III-C.

IV. IMPLEMENTATION DETAILS

We call the Nakamoto consensus protocol (p, λ, T )-
Nakamoto, where the hash of a valid block needs to have
log2

1
p leading zeros, λ is the security parameter (i.e., the

length of the hash output), and T is the number of blocks
that we remove from the end of the chain in order to
obtain partially-confirmed blocks. We call the OHIE protocol
(k, p, λ, T )-OHIE, where λ and T are the same as above, and
where k is the number of chains in OHIE. In (k, p, λ, T )-OHIE,
the hash of a valid block should have log2

1
kp leading zeros.

For simplicity, the value of k is fixed in our current design of
OHIE—adjusting k on-the-fly could potentially be possible via
a view change mechanism, but we consider it as future work.
The value of T in OHIE can be readily adjusted on-the-fly by
individual nodes, without needing any coordination. Because
the security of OHIE inherits from the security of Nakamoto



1: d← log2(
1
kp

);
2: Vi ← {(genesis block of chain i, the attachment

for genesis block of chain i)}, for 0 ≤ i ≤
k − 1;

3: M ← Merkle tree of the hashes of the k
genesis blocks;

4: trailing← hash of genesis block of chain 0;
5:
6: OHIE() {
7: repeat forever {
8: ReceiveState();
9: Mining();

10: SendState();
11: }
12: }
13:
14: Mining() {
15: B.transactions← get transactions();
16: B.root ← root of Merkle tree M ;
17: B.trailing← trailing;
18: B.nonce← new nonce();
19: B̂.hash← hash(B);
20: if (B̂.hash has d leading zeroes) {
21: i ← last log2 k bits of B̂.hash;
22: B̂.leaf← leaf i of M ;
23: B̂.leaf proof←M .MerkleProof(i);
24: ProcessBlock(B, B̂);
25: }
26: }
27:
28: SendState() {
29: send Vi (0 ≤ i ≤ k − 1) to other nodes;
30: // In implementation, only need to send those

blocks not sent before.
31: }
32:
33: ReceiveState() {
34: foreach (B, B̂) ∈ received state do
35: ProcessBlock(B, B̂);
36: // A block B1 should be processed before B2,

if B̂2.leaf or B̂2.trailing points to B1.
37: }

38: ProcessBlock(B, B̂) {
39: // do some verifications
40: i ← last log2 k bits of B̂.hash;
41: verify that B̂.hash has d leading zeroes;
42: verify that hash(B) = B̂.hash;
43: verify that B̂.leaf is leaf i in the Merkle tree, based on B.root and

B̂.leaf proof;
44: verify that B̂.leaf = Â.hash for some block (A, Â) ∈ Vi;
45: verify that B.trailing = Ĉ.hash for some block (C, Ĉ) ∈ ∪k−1

j=0Vj ;
46: if (any of the above 5 verifications fail) then return;
47:
48: // compute rank and next rank values
49: B̂.rank← Â.next rank;
50: B̂.next rank← Ĉ.next rank;
51: if (B̂.next rank ≤ B̂.rank) then B̂.next rank← B̂.rank+ 1;
52:
53: // update local data structures
54: Vi ← Vi ∪ {(B, B̂)};
55: update trailing;
56: update Merkle tree M ;
57: }
58:
59: OutputSCB() {
60: // determine partially-confirmed blocks and confirm bar
61: for (i = 0; i < k; i++) {
62: Wi ← get longest path(Vi);
63: partiali ← blocks in Wi except the last T blocks;
64: (Bi, B̂i) ← the last block in partiali;
65: yi ← B̂i.next rank;
66: }
67: all partial ← ∪k−1

i=0 partiali;
68: confirm bar← mink−1

i=0 yi;
69:
70: // determine fully-confirmed blocks and SCB
71: L← ∅;
72: foreach (B, B̂) ∈ all partial {
73: if (B̂.rank < confirm bar) then L← L ∪ {(B, B̂)};
74: }
75: sort blocks in L by rank, tie-breaking favoring smaller chain id;
76: return L;
77: }

Fig. 3: Pseudo-code of the (k, p, λ, T )-OHIE protocol.

consensus, using different T values in OHIE has a similar
effect as in Nakamoto consensus. For example, a user can use
a larger T for a higher security level. To simplify discussion,
however, we consider some fixed T value.

Overview. Figure 3 gives the pseudo-code of OHIE, as run
by each node. In the main loop (Line 8 to 10) of OHIE, a
node receives messages from others, makes one attempt for
solving the PoW (i.e., makes one query to the random oracle
or hash function), and then sends out messages. The messages
contain OHIE blocks. Such a main loop is exactly the same
as in Nakamoto consensus [26], [40]. Note that the block
generation rate is significantly lower than the rate of queries
to the random oracle. Hence, most of the time, the main loop
will not have any new messages to receive/send. In an actual
implementation, such sending/receiving of messages can be

done in a separate thread.
The function OutputSCB() can be invoked whenever

needed. It produces the current SCB, by exactly following
the description in Section III-D.

Key data structures. Each OHIE node maintains sets V0

through Vk−1. Vi initially contains the genesis block for chain
i. During the execution, Vi is a tree of blocks, containing all
those blocks with a path to that genesis block. We use Wi to
denote the longest path (from the genesis block to some leaf)
on this tree. All blocks on Wi, except the last T blocks, are
partially-confirmed.

The Merkle tree M is constructed by using the hash of the
very last block on Wi (0 ≤ i ≤ k − 1) as the k leaves. Each
node further maintains a trailing variable, which is the hash
of the trailing block. The trailing block is the block with the



largest next rank value, among all blocks in ∪k−1
i=0 Vi. (Note

that the trailing block may or may not be in ∪k−1
i=0 Wi.) If there

are multiple such blocks, we let the trailing block be the one
with the smallest chain id. Both M and trailing should be
properly updated whenever the node receives new blocks.

Block generation/verification. A block B in OHIE consists
of some transactions, a fresh nonce, the Merkle root, and a
B.trailing field. All these fields are fed into the hash func-
tion, during mining. Section III-B explains why we include the
Merkle root. The following explains the B.trailing field.

As explained in Section III-D, regardless of which chain
the new block B ends up belonging to, we want B to help
that chain to increase its rank to catch up with the “longest
chain” (in terms of rank). To do so, all we need is to set B’s
next rank to be large enough. A naive design is to let the
creator of B directly set B’s next rank, based on its local
Vi’s. Such a design enables the adversary to pick the maximum
possible value10 for that field. Doing so exhausts the possible
values for next rank, since the next rank of blocks on a
given chain needs to keep increasing.

This is why in OHIE, each node maintains a trailing

variable (i.e., the hash of the trailing block11). The miner sets
B.trailing← trailing, and B.trailing (as part of B) is
fed into the hash function. When a node u receives a new block
B, the node will verify whether it has already seen some block
C whose hash equals B.trailing. If so, u sets next rank

of B to be the same as the next rank of C. Otherwise B
will not be accepted. Doing so prevents the earlier attack.

Note that the adversary can still lie, and claim some arbitrary
block as its trailing block. Theorem 1 in Section V, however,
will prove that this does not cause any problem. Intuitively,
by doing so, the adversary is simply refusing to help a chain
to grow its rank to catch up. But the next honest block on the
chain will enable the chain to grow its rank properly, and to
immediately catch up.

Block attachment. Some information about a block is not
available until after the block is successfully mined, and we
include such information in an attachment for the block. The
attachment for a block is always stored/disseminated together
with the block. We always use B̂ to denote an attachment
for a block B. (Note that B̂ is not fed into the hash function
when we compute the hash of B.) Specifically, let i be the last
log2 k bits in B’s hash. B̂ will include leaf i of the Merkle
tree, and the corresponding Merkle proof. For convenience, B̂
also contains the hash of B, in its B̂.hash field.

An attachment B̂ further contains a rank value and a
next rank value, for the block B. (The block B itself actually
does not have a rank or next rank field.) When a node
receives a new block B and its attachment B̂, the node
independently computes the proper values for B̂.rank and

10next rank must have a finite domain in actual implementation.
11Our trailing block is the block with the largest next rank in ∪k−1

i=0 Vi.
One could further require the trailing block to be in ∪k−1

i=0Wi. The security
guarantees of OHIE (in Section V) and our proofs also hold for such an
alternative design.

B̂.next rank based on its local information, and use those
values (Line 49 to 51 in Figure 3). Lemma 5 will prove that
except with an exponentially small probability (i.e., excluding
hash collisions and so on), for any block B, all honest nodes
will assign exactly the same value to B̂.rank (B̂.next rank).
Finally, a genesis block B always has B̂.rank = 0 and
B̂.next rank = 1.

V. SECURITY GUARANTEES OF OHIE

Our analysis results presented in this section hold under all
possible strategies of the adversary.

A. Overview of Guarantees

Formal framework. Our formal framework directly follows
several prior works (e.g., [26], [40]). All executions we con-
sider are of polynomial length with respect to the security
parameter λ. We model hash functions as random oracles. The
execution of the system comprises a sequence of ticks, where
a tick is the amount of time needed to do a single proof-of-
work query to the random oracle by an honest node. Hence
in each tick, each honest node does one such query, while
the adversary does up to fn such queries. We allow these fn
queries to be done sequentially, which only makes our results
stronger. Define ∆ (e.g., 2 × 1012) to be δ (e.g., 2 seconds)
divided by the duration of a tick (e.g., 10−12 second) — hence
a message sent by an honest node will be received by all other
honest nodes within ∆ ticks. A block is an honest block if it
is generated by some honest node, otherwise it is a malicious
block. For two sequences S1 and S2, S2 is a prefix of S1 iff
S1 is the concatenation of S2 and some sequence S3. Here S3

may be empty — hence S1 is also a prefix of itself. Finally,
recall from Section IV the definitions of (p, λ, T )-Nakamoto
and (k, p, λ, T )-OHIE.

Main theorem on OHIE. We will eventually prove the fol-
lowing:

Theorem 1. Consider any given constant f < 1
2 . Then there

exists some positive constant c such that for all p ≤ 1
c∆n

and all k ≥ 1, the (k, p, λ, T )-OHIE protocol satisfies all
the following properties, with probability at least 1 − k ·
exp(−Ω(λ))− k · exp(−Ω(T )):
• (growth) On any honest node, the length of each of the
k chains increases by at least T blocks every 2T

pn ticks.
• (quality) On any honest node and at any time, every T

consecutive blocks on any of the k chains contain at least
1−2f
1−f T honest blocks.

• (consistency) Consider the SCB S1 on any node u1 at
any time t1, and the SCB S2 on any node u2 at any time
t2.12 Then either S1 is a prefix of S2 or S2 is a prefix of
S1. Furthermore, if (u1 = u2 and t1 < t2) or (u1 6= u2

and t1 + ∆ < t2), then S1 is a prefix of S2.
• (quality-growth) For all integer γ ≥ 1, the following

property holds after the very first 2T
pn ticks of the execu-

tion: On any honest node, in every (γ+2)· 2Tpn +2∆ ticks,

12Here u1 (t1) may or may not equal u2 (t2).



at least γ · k · 1−2f
1−f T honest blocks are newly added to

SCB.

Values of c, λ, and T . The value of c in Theorem 1 will
be exactly the same as the c in Theorem 2 next. If we want
the properties in Theorem 1 to hold with probability 1 − ε,
then both λ and T should be Θ(log 1

ε + log k). The value of ε
needed by a real application (e.g., a cryptocurrency system) is
typically orders of magnitude smaller than 1

k — hence λ and
T are usually just Θ(log 1

ε ).

Four properties. The growth and quality in Theorem 1
are about the individual component chains in OHIE. For
consistency, considering individual chains obviously is not
sufficient. Hence, Theorem 1 proves consistency13 for the
SCB, which is the final total order of the fully-confirmed
blocks. Theorem 1 also proves the quality-growth of SCB,
showing that SCB will incorporate more honest blocks at a
certain rate. Ultimately, consistency corresponds to the safety
of OHIE, while quality-growth captures the liveness of OHIE.

B. Existing Result as a Building Block

Our proof later will invoke the following theorem from [40]
on Nakamoto consensus.

Theorem 2. (Adapted from Corollary 3 in [40].) Consider
any given constant f < 1

2 . Then there exists some positive
constant c such that for all p ≤ 1

c∆n , the (p, λ, T )-Nakamoto
protocol satisfies all the following properties, with probability
at least 1− exp(−Ω(λ))− exp(−Ω(T )):
• (growth) On any honest node, the length of the chain

increases by at least T blocks every 2T
pn ticks.

• (quality) On any honest node and at any time, every T
consecutive blocks on the chain contain at least 1−2f

1−f T
honest blocks.

• (consistency) Let S1 (S2) be the sequence of blocks
on the chain on any node u1 (u2) at any time t1 (t2),
excluding the last T blocks on the chain. Then either S1

is a prefix of S2 or S2 is a prefix of S1.

Combing the growth and quality properties immediately leads
to quality-growth for (p, λ, T )-Nakamoto:
• (quality-growth) Let S be the sequence of blocks on

the chain on any given honest node, excluding the last T
blocks. Then after the very first 2T

pn ticks of the execution,
in every 2T

pn ticks, at least 1−2f
1−f T honest blocks are newly

added to S.

C. Proof for Theorem 1

Overview of proof for Theorem 1. Our first step is to obtain
a reduction from (p, λ, T )-Nakamoto to (k, p, λ, T )-OHIE.
Consider any given adversary A for (k, p, λ, T )-OHIE, and any
given chain i (0 ≤ i ≤ k− 1) in the execution of (k, p, λ, T )-
OHIE against A. Our reduction step will show that there exists

13Different prior works [17], [40] define consistency slightly differently.
Our definition here is either equivalent or stronger than those in the prior
works.

some adversary A′ for (p, λ, T )-Nakamoto with the following
property: Except some exponentially small probability and
after proper mapping from blocks in (k, p, λ, T )-OHIE to
blocks in (p, λ, T )-Nakamoto, the behavior of chain i in the
execution of (k, p, λ, T )-OHIE against A follows exactly the
same distribution as the behavior of the (single) chain in the
execution of (p, λ, T )-Nakamoto against A′. Such a reduction
implies that existing properties on (p, λ, T )-Nakamoto directly
carry over to each individual chain in (k, p, λ, T )-OHIE.

Our second step is to show that conditioned upon all the
existing properties (in Theorem 2) on (p, λ, T )-Nakamoto
holding for each individual chain in (k, p, λ, T )-OHIE, the
SCB generated in OHIE must satisfy the properties in The-
orem 1, except with some exponentially small probability.
The reasoning in this step will center around the rank and
next rank values of the blocks.
Formal concepts needed for reduction. Consider any (black-
box and potentially randomized) adversary A for OHIE. Define
EXEC(OHIE, k, p, λ, T,A) to be the random variable denoting
the joint states of all the honest nodes and the adversary
throughout (i.e., at every tick) the entire execution resulted
from running (k, p, λ, T )-OHIE againstA. Define random vari-
able Chainviewi(EXEC(OHIE, k, p, λ, T,A)) to be the joint
state of chain i on every honest node throughout this execution.
Recall that in OHIE, a node maintains k sets of blocks, V0

through Vk−1, and chain i corresponds to the longest path in
Vi. One could imagine that for each (u, t) pair, Chainviewi()
contains a component describing chain i on the honest node
u at tick t.

We similarly define EXEC(Nakamoto, p, λ, T,A′) for the
execution resulted from running (p, λ, T )-Nakamoto against
adversary A′. Also, we similarly define random variable
Chainview(EXEC(Nakamoto, p, λ, T,A′)) to be the joint state
of the (single) chain on every honest node throughout this
execution.

For two random variables X and Y over some finite
domain Z, define their variation distance to be ||X − Y || =
0.5

∑
z∈Z |Pr[X = z] − Pr[Y = z]|. If X and Y are both

parameterized by λ, we say that X(λ) is strongly statistically
close to Y (λ) iff ||X − Y || = exp(−Ω(λ)).
Our reduction lemma. The following is our reduction lemma:

Lemma 3. Consider any given i where 0 ≤ i ≤ k−1, and any
given adversary A for (k, p, λ, T )-OHIE. There exists some
adversary A′i for (p, λ, T )-Nakamoto such that the following
two random variables are strongly statistically close:
• Chainviewi(EXEC(OHIE, k, p, λ, T,A))
• στi (Chainview(EXEC(Nakamoto, p, λ, T,A′i))

Here τ is the randomness in EXEC(Nakamoto, p, λ, T,A′i).
The random variable στi (Chainview()) is the same as
Chainview(), except that we replace each block B′ in
Chainview() with another block στi (B′). The mapping στi ()
is some one-to-one mapping from each block B′ among all the
blocks on all the nodes in (p, λ, T )-Nakamoto to some block
στi (B′) on all the nodes in (k, p, λ, T )-OHIE. The mapping
στi () guarantees that i) B′ is an honest block iff στi (B′) is an



honest block, and ii) B′ extends from A′ iff στi (B′) extends
from στi (A′).

The crux of proving this lemma is to construct the adversary
A′i. In our proof, A′i simulates a certain execution of OHIE
against A. More precisely, A′i simulates all the OHIE nodes, as
well as the adversary A in a black-box fashion. The adversary
A′i simultaneously interacts with the (real) nodes running
(p, λ, T )-Nakamoto, while ensuring that the simulated OHIE
execution and the real Nakamoto execution are properly “cou-
pled”. Due to space limitations, we defer the complete proof of
this lemma to our extended technical report [46]. To be fully
rigorous, the complete proof needs additional formalism and
also needs to fully specify the (p, λ, T )-Nakamoto protocol by
pseudo-code.

From individual chains to SCB. The following lemma (proof
in Appendix A) establishes the connection from the individual
chains in OHIE to the SCB in OHIE:

Lemma 4. If the three properties in Theorem 2 hold for each
of the k chains in (k, p, λ, T )-OHIE, then with probability
at least 1 − exp(−Ω(λ)), the SCB in OHIE satisfies the
consistency and quality-growth properties in Theorem 1.

Final proof. Using all the lemmas, we can now prove Theo-
rem 1:

Proof. (for Theorem 1) We set the constant c in Theorem 1 to
be the same as the c in Theorem 2. For any given i where 0 ≤
i ≤ k− 1, Lemma 3 and Theorem 2 tell us that for chain i in
(k, p, λ, T )-OHIE, with probability at least 1−exp(−Ω(λ))−
exp(−Ω(T ))−exp(−Ω(λ)), the three properties in Theorem 2
hold for that chain. Hence with probability at least 1 − k ·
exp(−Ω(λ))− k · exp(−Ω(T )), the properties in Theorem 2
hold for all k chains in (k, p, λ, T )-OHIE. The growth and
quality properties in Theorem 1 then directly follow. Applying
Lemma 4 further leads to the consistency and quality-growth
properties in Theorem 1.

D. Discussion and Comparison

Plug-in alternative results. Our analysis invokes the results in
[40]. The analysis in [40] is just one of the many works [17],
[18], [24], [26], [40] that analyze Nakamoto-style protocols.
A highlight of our proof on OHIE is that it invokes the ex-
isting guarantees on (p, λ, T )-Nakamoto as black-box. Hence
alternative results on (p, λ, T )-Nakamoto directly translates to
alternative results on OHIE.

Specifically, Theorem 2 (adopted from [40]) has the follow-
ing three quantitative measures:
• The value of c, where 1

c∆n is the upper limit on p.
• The value of x = 2T

pn ticks (i.e., the growth rate), which
is the time needed for the chain length to grow by T
blocks.

• The value of y = 1−2f
1−f T (i.e., the quality rate), which is

the number of honest blocks among every T consecutive
blocks on the chain.

Other analyses [17], [18], [24], [26] have obtained alternative
results on x and y values for (p, λ, T )-Nakamoto. They have
also derived various sufficient conditions14 for consistency in
(p, λ, T )-Nakamoto, which all ultimately translate to require-
ment on the value of c.

We can directly plug in alternative c, x, and y values
from alternative analyses on (p, λ, T )-Nakamoto to obtain
alternative results on OHIE. If we do so, then the value of
c in Theorem 1 will be exactly the same as the given c. The
consistency property in Theorem 1 will remain unchanged.
The remaining properties in Theorem 1 will become:
• (growth) The length of each of the k chains on each

honest node will increase by at least T blocks every x
ticks.

• (quality) On any honest node and at any time, every T
consecutive blocks on any of the k chains must contain
at least y honest blocks.

• (quality-growth) For all integer γ ≥ 1, after the very
first x ticks of the execution, on any honest node in every
(γ + 2) · x+ 2∆ ticks, at least γ · k · y honest blocks are
newly added to SCB.

Comparing with prior results. With the above discussion,
we can now easily compare Theorem 1 with any of the prior
results [17], [18], [24], [26], [40]. Consider the result from
any such prior analyses, with certain resulting c, x, and y
values. (This also implies that in that particular result, the rate
of quality-growth is y new honest blocks every x ticks.) Now
let us plug in such c, x, and y values into Theorem 1. Then
OHIE will provide exactly the same quantitative guarantees as
that prior result, in terms of the value of c, the growth rate,
and the quality rate. The only difference will be regarding
the quality-growth of SCB. Under the given x and y, for all
integer γ ≥ 1, in OHIE γ ·k ·y honest blocks are newly added
to the SCB every (γ+2)·x+2∆ ticks. Since 2∆ is dominated
by (γ+2) ·x, the average rate of honest blocks being added to
the SCB is about k ·y honest blocks every x ticks, in the long
term. Such a rate is k times of the rate of quality-growth in
the corresponding prior result. This also intuitively explains
why OHIE increases throughput by k times.15

Confirmation latency. Finally, Theorem 1 also indirectly
gives OHIE’s guarantee on transaction confirmation latency
(also called wait-time in [17], [40]): Assume that we want
the properties in Theorem 1 to hold with 1 − ε probability,
and let us invoke the theorem with p = Θ( 1

c∆n ). By quality-
growth, at least one honest block is newly added to SCB
within Θ(T∆) = Θ((log 1

ε + log k)∆) ticks. Now if a
transaction is injected into all honest nodes continuously for
Θ((log 1

ε + log k)∆) ticks, this transaction must be included
in the SCB after those ticks. Hence, the confirmation latency
is simply Θ((log 1

ε + log k)∆) ticks. As explained earlier,

14For example, the sufficient condition derived in [40] is that
α(1− 2(∆ + 1)α) ≥ (1 + η)β for some positive constant η.

15Of course, k cannot be unbounded. In practice, increasing k beyond a
certain point will cause a non-trivial increase in ∆, when the system starts to
saturate the network bandwidth. Our experiments later will quantify this.



this usually becomes Θ(∆ log 1
ε ) in practical settings. Such

a confirmation latency is the same as in [17], [40], and is
fundamental in all Nakamoto-style protocols: Each new block
takes Θ(∆) ticks, and Θ(log 1

ε ) new blocks are needed for the
“confidence” to reach 1− ε.

VI. EXPERIMENTAL EVALUATION

Methodology. We have implemented a prototype of OHIE in
C++, with total around 4,700 lines of code. We use Amazon’s
EC2 virtual machines (or EC2 instances) for evaluation. We
rent m4.2xlarge instances in 14 cities around the globe16,
with each instance having 8 cores and 1Gbps bandwidth.
The one-way latency between two random EC2 instances
is about 90-140ms, which is consistent with AlgoRand’s
experiments [20] and with measurements in Bitcoin and
Ethereum [19]. To avoid excessive monetary expenses on EC2,
we run two sets of experiments. Our macro experiments run
12, 000 to 50, 000 OHIE nodes on up to 1, 000 EC2 instances
to evaluate the end performance of OHIE, while our micro
experiments run 1, 000 OHIE nodes on 20 EC2 instances to
determine OHIE internal parameters.

In all experiments, the OHIE nodes form a P2P overlay by
each node connecting to 8 randomly selected peers, and per-
node bandwidth is up to 20Mbps, since we run 50 nodes per
EC2 instance. This setup is the same as in the experiments
of AlgoRand [20] and Conflux [32]. All results reported are
averaged over 5 runs, each lasting until measurements stabilize
in that run.

A. Choosing Block Size and Block Interval in OHIE

We first use micro experiments to measure the block prop-
agation delay (BPD) for a single block (with no parallel
propagations) to reach 99% of the nodes. We consider differ-
ent bandwidth configurations where the per-node bandwidth
ranges from 8Mbps to 20Mbps. We observe that the BPD
for 20 KB blocks is about 1.7-1.9 seconds, across all our
bandwidth configurations. Similar BPD values are observed
for block sizes ranging from 10 KB to 64 KB.

We further observe that such BPD does not significantly
increase as the network size increases: Even in our macro
experiments with 50, 000 nodes, the BPD values are still only
about 3.2 seconds for 10-20 KB blocks. This is consistent
with theoretical expectations about random graphs,17 and the
fact that BPD is proportional to the average number of hops
between two nodes.

Smaller blocks enable better decentralization, but also incur
more protocol overheads. Taking all factors into account, we
choose a block size of 20 KB for OHIE. We then set p to
correspond to a block interval of about 10 seconds on each
chain. Based on Section V and results in [40], a block interval
of 5× BPD is sufficient to tolerate f = 0.43.

16This is the maximal number of cities with such instances.
17In random Erdos-Renyi graphs, roughly speaking, the average number of

hops between two nodes increases only logarithmically with the number of
nodes.
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Fig. 4: BDP under different per-node bandwidth configurations
(8-20Mbps). [left]: BPD vs. number of blocks propagated in
parallel per second. The BPD for a single block (non-parallel
case) is plotted as x-axis value of 0. [right]: BPD vs. fraction
of raw bandwidth utilized by parallel block propagation.

B. Efficient Parallel Propagation of Blocks

At the network level, a key difference between OHIE and
other high-throughput protocols (e.g., Algorand [20]) is that
with its large number of parallel chains, OHIE propagates a
large number of small blocks in parallel. In contrast, protocols
such as Algorand usually propagate a single large block (e.g.,
of 1 MB).

Now for OHIE, the critical empirical question is whether
propagating many parallel blocks will have significant negative
impact on BPD, as compared to propagating a single such
block. We use micro experiments to answer this critical ques-
tion. Figure 4(left) plots the BPD for 20 KB blocks (results for
block sizes ranging from 10-64KB are similar and not shown),
as a function of number of parallel block propagations. For
example, “40 parallel blocks/sec” means that we inject 40
new blocks (of size 20 KB each) into the network per second.
The figure shows that under 20Mbps raw bandwidth, even
60 parallel blocks per second will not cause any substantial
increase in BPD.

Figure 4(right) presents the same results from a different
perspective — it plots how BPD changes as the fraction of raw
bandwidth used by the parallel block propagation increases.
It shows that, consistently under all our bandwidth config-
urations, parallel block propagation can effectively utilize a
rather significant fraction (about 50%) of the raw bandwidth,
without significant negative impact on BPD. This simple yet
important finding lays the empirical foundation for parallel
chain designs. In particular, we can hope OHIE to eventually
achieve a throughput approaching a significant fraction of
the raw network bandwidth, by using a sufficient number of
parallel chains.

C. End-to-end Performance of OHIE

We finally use macro experiments to evaluate the end-
to-end performance of OHIE, in terms of its throughput,
decentralization factor, and confirmation latency. By default,
all our results will be from running 12, 000 nodes on 1000 EC2
instances, with different per-node bandwidth configurations (8-
20Mbps). We have also experimented with 50, 000 nodes on
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Fig. 5: OHIE’s throughput, decentralization factor, and confirmation latency.

1000 EC2 instance, with 20Mbps per-node bandwidth. Those
results are within 1% of the results under the corresponding
experiment with 12, 000 node, and we do not report those
separately.

We always use 20 KB blocks, with block interval being
10 seconds on each chain, as determined in Section VI-A.
We choose k according to the available bandwidth, such that
k × block size/block interval ≈ 0.5 × available bandwidth.
Specifically, for 8Mbps, 12Mbps, 16Mbps, and 20Mbps per-
node available bandwidth, we use k = 250, 370, 500, and
620, respectively. Since these k values are not powers of 2,
we do not use the last log2 k bits of the block hash to decide
which chain a block belongs to. Instead, let x be the last 48
bits of the block hash, and we assign the block to chain i
where i = x mod k. Assuming the hash function is a random
oracle, doing so will assign each block to a uniformly random
chain, except some negligible probability.18 Finally, to be able
to run multiple nodes on each EC2 instance, we do not have
the nodes solve PoW puzzles. Instead, each node produces
(“mines”) a new block after some exponentially distributed
time that corresponds to the mining difficulty.
Throughput. Figure 5a shows that the throughput of OHIE
indeed scales up roughly linearly with the available bandwidth.
In fact, the throughput of OHIE always reaches a rather
significant fraction (about 50%) of the raw available network
bandwidth of the system. Under 20Mbps available bandwidth,
the throughput of OHIE is about 9.68Mbps, or about 2, 420
transactions per second (assuming 500-byte average transac-
tion size as in Bitcoin). As a quick comparison, OHIE achieves
about 550% of the throughput of AlgoRand [20] under similar
available bandwidth. Compared to Conflux under 20Mbps
available bandwidth [32], the throughput of OHIE is about
150% of the throughput of Conflux. This suggests that while
explicitly focusing on simplicity, OHIE still retains the high
throughput property of modern blockchain designs.
Decentralization factor. Another advantage of OHIE is its
decentralization factor, in terms of the number of distinct

18This is not exactly uniformly random since the range of x is not an exact
multiple of k. But the impact is negligible.

confirmed blocks per second. Figure 5b shows that the decen-
tralization factor of OHIE increases linearly with the available
bandwidth. This is expected since the number of parallel
blocks (or chains) increases with the available bandwidth. In
particular, OHIE achieves a decentralization factor of about
61.8 under 20Mbps available bandwidth. This is at least about
20x higher than those reported in experiments on previous per-
missionless protocols, among which Omniledger [28] reported
the best decentralization factor of about 3.1 (i.e., 25 blocks in
8.1 seconds).

Confirmation latency. Let T be the number of blocks that
we remove from the end of the chain in order to obtain
partially-confirmed blocks in each individual chain in OHIE.
For example, Bitcoin and Ethereum use T = 6 and T = 10
to 15, respectively. For comparable security, our analysis in
Section V suggests using a T that is Θ(log k) larger. Given
that our k is no larger than 214, we use T = 20 to 30 in
OHIE. Note that T has impact only on confirmation latency,
and has no impact on the throughput or decentralization factor
of OHIE.

Figure 5c plots the average time for a block to become
partially-confirmed and fully-confirmed on all nodes, under
20Mbps bandwidth configuration. It shows that a block takes
about 1-5 minutes to become partially-confirmed, and then
about another 2-4 minutes to become fully-confirmed. As
a reference point, the confirmation latencies in Bitcoin and
Ethereum are presently 60 and 3 minutes, respectively.

For a conservative T = 30, we have done further exper-
iments confirming (not plotted in Figure 5c) that the partial
and full confirmation latencies remain stable under various
bandwidth configurations from 8Mbps to 20Mbps. Putting it
another way, the latency does not deteriorate as the throughput
of OHIE increases.

VII. RELATED WORK

OHIE uses PoW under the same permissionless model as
Nakamoto consensus. There have been works in alternative
models, such as using Proof-of-Stake [7], [8], [20], [25] or
assuming a permissioned setting [11], [16], [38]. PoW-based



permissionless blockchain protocols have largely followed two
paradigms: The first based on extensions to Nakamoto con-
sensus, and the second based on utilizing classical byzantine
agreement (BA). We discuss these two categories one by one.

Nakamoto consensus. Existing deployments of Nakamoto
consensus (e.g., Bitcoin) and its variant the GHOST pro-
tocol [44] (e.g., Ethereum) achieve only about 5KByte/s
throughput. Bitcoin-NG is a variant of Nakamoto consensus,
where many micro-blocks are proposed by the same proposer,
after the proposer is chosen by a key block [13]. This helps to
significantly improve throughput without comprising security,
but at the same time, still has limited decentralization: A single
block proposer is responsible for generating all (micro) blocks
for an extended period of time (i.e., 10 minutes), inviting
censorship attacks and DoS attacks. In comparison, OHIE
achieves superior decentralization — in our experiments, in
each second, up to about 60 different proposers propose blocks
concurrently.

Scaling Nakamoto consensus. Phantom [45] and Conflux [32]
have attempted to scale Nakamoto consensus, by having blocks
reference more than one previous blocks. Section I has already
discussed these two works.

Chainweb [35], [42] is another attempt to scale Nakamoto
consensus, by maintaining k parallel chains. Unlike OHIE,
Chainweb does not have any mechanism to prevent the adver-
sary from focusing entirely on one of the k chains. Chainweb’s
original analysis [35], [42] only considers a few specific attack
strategies [40], instead of all possible adversaries. Fitzi et
al. [15] have shown that an adversary focusing on a specific
chain can cause the confirmation latency in Chainweb to
increase quadratically in k. In contrast, OHIE does not suffer
from such a problem. Furthermore, different from OHIE where
the rank values balance all the chains, Chainweb requires
synchronous growth of all chains, needing to periodically
stall fast-growing chains. Kiffer et al. [26] have provided a
further analysis of Chainweb, which does not support the high-
throughput claim by Chainweb. In their analysis, a natural
form of Chainweb is “bounded by the same throughput as
Nakamoto protocol for the same consistency guarantee” [26].

Concurrent with and independent of this work, there are
two online non-refereed technical reports [5], [15] proposing a
similar approach to composing multiple parallel chains. While
their high-level designs share similarities with ours, in their
designs, one of the k parallel chains is designated as a special
chain, and blocks on the other chains are related to blocks on
that special chain [5], [15]. In OHIE, all k chains are equal
and symmetric. More importantly, these two concurrent and
independent works [5], [15] do not have any implementation
details or experimental evaluation, while we have a prototype
implementation as well as large-scale evaluation on Amazon
EC2. In particular, our large-scale experiments confirm that
propagating many parallel blocks does not negatively impact
block propagation delay, which lays the empirical foundation
for parallel chain designs.

Finally, Spectre [43] confirms blocks without guaranteeing a

total order, while the inclusive protocol [31] includes as many
non-conflicting transactions as possible. These works provide
weaker consistency notions than OHIE, which guarantees a
total order. These weaker notions may suffice for cryptocur-
rency payments, but for smart contracts, total ordering is key
in resolving state conflicts [29], [30] and in building towards
higher abstractions of consistency [3], [12], [28].
Blockchain protocols relying on byzantine agreement.
Some PoW-based permissionless blockchain protocols [2],
[12], [27], [28], [33], [41], [47] build upon classical byzantine
agreement (BA) protocols. BA protocols require a committee
of pre-agreed identities among which the BA protocol can run.
Such a committee can either be established using Nakamoto
consensus itself or using previous rounds of BA.

Different from OHIE and other Nakamoto-style protocols,
which can tolerate any constant f < 1

2 , BA-based blockchain
protocols [2], [20], [27], [33], [41], [47] all require f < 1

3 . A
key bottleneck in BA-based designs, as acknowledged in prior
works, is that of establishing (or replenishing) committees
with 200-2000 identities each. This large committee size is
necessary to ensure the requisite resilience f . The latency of
replenishing committees can be between in tens of seconds [2],
[20], minutes [33], [47], or hours [28]. After committees are
established and when there are no attacks, BA protocols tend
to have smaller confirmation latencies [20], [27], [47] than
Nakamoto-style protocols. Finally, we point out that classical
BA protocols, such as PBFT [9], can be considerably more
complex to implement and verify, as compared to Nakamoto
consensus.
Sharding designs. A subset of the BA-based blockchain
protocols employ sharding [28], [33], [47], where many par-
allel shards process blocks in parallel. This helps to improve
decentralization and throughput, at the cost of additional
complexity. But due to the overheads associated with each
shard, these protocols [28], [33], [47] typically use a small
number of shards (no more than 25). The best decentralization
was achieved in [28], with about 25 blocks proposed every 8
seconds. In comparison, OHIE does not involve pre-assigning
nodes to its k chains, and can easily use as large a k as needed.
The decentralization factor of OHIE in our experiments (i.e.,
about 600 blocks every 10 seconds) is about 20x higher than
the sharding designs.

VIII. CONCLUSION

We present OHIE, a permissionless proof-of-work
blockchain protocol that composes parallel instances
of Nakamoto consensus securely. OHIE has a simple
implementation and a modular safety and liveness proof. It
achieves linear scaling with available bandwidth and at least
about 20x better decentralization over prior works.
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APPENDIX

A. Proof for Lemma 4

Lemma 4 directly follows from Lemma 6 and Lemma 7,
which we will state and prove next. To prove Lemma 6 and
Lemma 7, we will need Lemma 5. Lemma 5 shows that
except some exponentially small probability, given a block B
and regardless of whether B is an honest block or malicious
block, the value of B̂ (and in particular, the value of B̂.rank



/ B̂.next rank) must be the same on all honest nodes.
This avoids the need of reasoning about potentially different
B̂.rank (B̂.next rank) values on different honest nodes. In
the following, we will state and prove Lemma 5 through 7,
one by one.

Lemma 5. Consider the execution of (k, p, λ, T )-OHIE
against any given adversary A. With probability at least
1 − exp(−Ω(λ)), there will never be two honest nodes u1

and u2 adding (B1, B̂1) and (B2, B̂2) to their local set of
blocks, respectively, such that B1 = B2 and B̂1 6= B̂2.

Proof. Define bad1 to be the event that the execution
(of (k, p, λ, T )-OHIE against A) contains some invocations
hash(x1) and hash(x2) such that x1 6= x2 and hash(x1) =
hash(x2). Given that we model the hash function as a random
oracle, and given that the length of the execution is poly(λ),
we have Pr[bad1] = exp(−Ω(λ)).

Next define bad2 to be the event that the execution (of
(k, p, λ, T )-OHIE against A) contains some invocation of
hash() that belongs to one of the following two categories:

• For some B, some honest node invokes hash(B) at
Line 42 of Figure 3 and the verification at that line
succeeds (i.e., hash(B) indeed equals B̂.hash), despite
that hash(B) has never been previous invoked (by either
some honest node or the adversary) in the execution.

• Some honest node invokes hash() at Line 43 of Fig-
ure 3 and the Merkle verification at that line succeeds,
despite the following: Let hash(x1), hash(x2), . . . ,
hash(xlog2 k) be the log2 k hash invocations done by
the honest node during the successful Merkle verification.
There exists some xi (1 ≤ i ≤ log2 k) such that hash(xi)
has never been previously invoked (by either some honest
node or the adversary) in the execution.

Again given that we model the hash function as a random
oracle, and given that the length of the execution is poly(λ),
one can easily verify that Pr[bad2] = exp(−Ω(λ)).

A simple union bound then shows that with probability at
least 1 − exp(−Ω(λ)), neither bad1 nor bad2 happens. It
now suffices to prove that conditioned upon neither of the bad
events happening, if B1 = B2, then we must have B̂1 = B̂2.
An attachment consists of five fields, namely, hash, leaf,
leaf proof, rank, and next rank. We will reason about
these one by one.

Since B1 = B2, and since (B1, B̂1) and (B2, B̂2) have
been accepted by u1 and u2 respectively, we trivially have
B̂1.hash = B̂2.hash. We next prove B̂1.leaf = B̂2.leaf and
B̂1.leaf proof = B̂2.leaf proof. Since u1 has verified the
Merkle proof before accepting (B1, B̂1), u1 must have invoked
hash(x) for some x of length 2λ, with the return value of
such invocation being B1.root. Since bad1 and bad2 do not
happen, such an x must be unique. Let x0|x1 ← x, where x0

and x1 are both of length λ. Following this process for log2 k
steps (we are effectively tracing down the Merkle tree), we
will find a unique x⊥ value, which corresponds to leave i of
the Merkle tree, with i being the last log2 k bits of B̂1.hash.

Since bad1 and bad2 do not happen, in order for (B1, B̂1) to
pass the verification by u1, we must have B̂1.leaf = x⊥. By
the same argument and since B1.root = B2.root, we must
also have B̂2.leaf = x⊥. Hence we conclude B̂1.leaf =
B̂2.leaf. A similar argument shows that B̂1.leaf proof =
B̂2.leaf proof as well.

Next we move on to the rank and next rank fields. Let
A1 be any block on u1 such that Â1.hash = x⊥, where x⊥ is
obtained as above. Similarly define A2. Since bad1 and bad2

do not happen, we must have A1 = A2. Next, let C1 be any
block on u1 such that Ĉ1.hash = B1.trailing, and let C2

be any block on u2 such that Ĉ2.hash = B2.trailing =
B1.trailing. Similarly, we must also have C1 = C2.

Consider the DAG G1 consisting of all the blocks on u1 as
vertices, where for each block B1, there is an edge to B1

from the corresponding A1, and another edge to B1 from
the corresponding C1. We do a topological sort of all the
vertices in G1, and assume that B1 is the jth block in the
topological sort. (Note that j is based on B1 and G1, and
has nothing to do with B2.) We will do an induction on j to
show that for all B1 = B2, we have B̂1.rank = B̂2.rank and
B̂1.next rank = B̂2.next rank.

The induction basis for j from 1 to k trivially holds (these
are the k genesis blocks). Now assume that the previous
claim holds for all j < j1, and we prove the claim for
j = j1. Since B1 is the j1-th block in the topological sort, the
position of A1 and C1 in the topological sort must be before
j1. Furthermore, we have shown earlier that A1 = A2 and
C1 = C2. We can thus invoke the inductive hypothesis on A1

and C1, which shows that Â1.next rank = Â2.next rank

and Ĉ1.next rank = Ĉ2.next rank. By Line 49 in Figure 3,
B̂1.rank is set to be the same as Â1.next rank, while
B̂2.rank is set to be the same as Â2.next rank. Hence
we have B̂1.rank = B̂2.rank. A similar argument shows
B̂1.next rank = B̂2.next rank.

Lemma 6. If the three properties in Theorem 2 hold for each
of the k chains in (k, p, λ, T )-OHIE, then with probability at
least 1− exp(−Ω(λ)), (k, p, λ, T )-OHIE satisfies the consis-
tency property in Theorem 1.

Proof. Lemma 5 shows that with probability at least 1 −
exp(−Ω(λ)), there will never be two honest nodes adding
(B1, B̂1) and (B2, B̂2) to their respective local set of blocks,
such that B1 = B2 and B̂1 6= B̂2. This means that for each
block B accepted by an honest node, its rank and next rank

on this honest node will be the same as the corresponding
values on all other honest nodes. Hence we can directly refer
to the rank and next rank of a block B, and no longer
need to consider the values of B̂.rank and B̂.next rank

on individual nodes. All our following discussion will be
conditioned on this.

The following restates the consistency property in Theo-
rem 1, which we need to prove:
• (consistency) Consider the SCB S1 on any node u1 at

any time t1, and the SCB S2 on any node u2 at any time



t2.19 Then either S1 is a prefix of S2 or S2 is a prefix of
S1. Furthermore, if (u1 = u2 and t1 < t2) or (u1 6= u2

and t1 + ∆ < t2), then S1 is a prefix of S2.
Let the view of node u1 at time t1 be Ψ1, and the view of

node u2 at time t2 be Ψ2. Let x1 and x2 be the confirm bar

in Ψ1 and Ψ2, respectively. Without loss of generality, assume
x1 ≤ x2. Let S1 and S2 be the SCB in Ψ1 and Ψ2,
respectively. The next will prove that S1 is a prefix of S2.
In the proof, we will sometimes use set operations over S1

and S2. For example, S1 ∩ S2 refers to the set of common
blocks in S1 and S2.

Let F1(i) be the sequence of partially-confirmed blocks on
chain i in Ψ1. Let G1(i) be the prefix of F1(i) such that G1(i)
contains all blocks in F1(i) whose rank is smaller than x1.
Similarly define F2(i) and G2(i), where G2(i) contains those
blocks in F2(i) whose rank is smaller than x2. We first prove
the following two claims:
• For all i where 0 ≤ i ≤ k − 1, G1(i) is a prefix of
G2(i). To prove this claim, note that by the consistency
property in Theorem 2, either F1(i) is a prefix of F2(i)
or F2(i) is a prefix of F1(i). If F1(i) is a prefix of F2(i),
then together with the fact that x1 ≤ x2, it is obvious
that G1(i) is a prefix of G2(i). If F2(i) is a prefix of
F1(i), let x3 be the rank of the last block in F2(i). This
also means that the next rank of that block is at least
x3 + 1. By our design of confirm bar, we know that
x2 ≤ x3 + 1. In turn, we have x1 ≤ x2 ≤ x3 + 1. Hence
G1(i) must also be a prefix of G2(i).

• For all i where 0 ≤ i ≤ k− 1 and all block B ∈ G2(i) \
G1(i), B’s rank must be no smaller than x1. We prove
this claim via a contradiction and assume that B’s rank

is smaller than x1. Together with the fact that B is in
G2(i) \ G1(i), we know that B is in F2(i) but not in
F1(i). Hence F2(i) cannot be a prefix of F1(i). Then by
the consistency property in Theorem 2, F1(i) must be a
prefix of F2(i). Let x4 be the rank of the last block D
in F1(i). Since F1(i) is a prefix of F2(i), both D and B
must be in F2(i), and D must be before B in F2(i). Since
the blocks in F2(i) must have increasing rank values, we
know that D’s rank must be smaller than B’s. Hence
we have x4 = D’s rank < B’s rank ≤ x1 − 1, or more
concisely, x4 < x1 − 1. On the other hand, since D’s
rank is x4, its next rank must be at least x4+1. By our
design of confirm bar in Ψ1, we know that x1 ≤ x4+1
and hence x4 ≥ x1 − 1. This yields a contradiction.

Now we can use the above two claims to prove that S1 is
a prefix of S2. S1 consists of all the blocks in G1(0) through
G1(k−1), while S2 consists of all the blocks in G2(0) through
G2(k−1). Since G1(i) is a prefix of G2(i) for all i, we know
that S1 ⊆ S2. For all blocks in S1 (which is the same as
S2∩S1), the sequence S1 orders them in exactly the same way
as the sequence S2. For all block B ∈ S2 \ S1, by the second
claim above, we know that B’s rank must be no smaller than
x1. Hence in the sequence S2, all blocks in S2 \ S1 must be

19Here u1 (t1) may or may not equal u2 (t2).

ordered after all the blocks in S2 ∩ S1 (whose rank must be
smaller than x1). This completes our proof that S1 is a prefix
of S2.

Finally, if u1 = u2 and t1 < t2, then since confirm bar

on a node never decreases over time, we must have x1 ≤ x2.
Similarly, if u1 6= u2 and t1 + ∆ < t2, then by time t2,
node u2 must have seen all blocks seen by u1 at time t1. By
the consistency property in Theorem 2, all partially-confirmed
blocks on u1 at time t1 must also be partially-confirmed on
u2 at time t2. Thus we must also have x1 ≤ x2. Putting
everything together, if (u1 = u2 and t1 < t2) or (u1 6= u2 and
t1 + ∆ < t2), then S1 must be a prefix of S2.

Lemma 7. If the three properties in Theorem 2 hold for each
of the k chains in (k, p, λ, T )-OHIE, then with probability at
least 1− exp(−Ω(λ)), (k, p, λ, T )-OHIE satisfies the quality-
growth property in Theorem 1.

Proof. Same as the reasoning in the beginning of the proof
for Lemma 6, we first invoke Lemma 5 to show that with
probability at least 1− exp(−Ω(λ)), there will never be two
honest nodes adding (B1, B̂1) and (B2, B̂2) to their respective
local set of blocks, such that B1 = B2 and B̂1 6= B̂2. All our
following discussion will be conditioned on this, and we will
be able to directly refer to the rank and next rank of a block
B.

The following restates the quality-growth property in The-
orem 1, which we need to prove:
• (quality-growth) For all integer γ ≥ 1, the following

property holds after the very first 2T
pn ticks of the exe-

cution: On any honest node, in every (γ + 2) · 2T
pn + 2∆

ticks, at least γ ·k · 1−2f
1−f T honest blocks are newly added

to SCB.
Consider any given honest node u, and any given time t0

(in terms of ticks from the beginning of the execution), where
t0 is after the very first 2T

pn ticks of the execution. By the
growth property in Theorem 2, at time t0, the length of every
chain in (k, p, λ, T )-OHIE must be at least T . By the growth
property and the quality property in Theorem 2, we know
that from time t0 to time t1 = t0 + γ · 2T

pn on node u, every
chain in (k, p, λ, T )-OHIE has at least γ · 1−2f

1−f T honest blocks
becoming newly partially-confirmed. Let αi denote the set of
such newly partially-confirmed honest blocks on chain i (for
0 ≤ i ≤ k − 1). We have |αi| ≥ γ · 1−2f

1−f T for all i, and
| ∪k−1

i=0 αi| ≥ γ · k · 1−2f
1−f T . To prove the lemma, it suffices

to show that by time t4 = t0 + (γ + 2) · 2T
pn + 2∆ on node

u, all blocks in αi will have become fully-confirmed for all
0 ≤ i ≤ k − 1. Without loss of generality, we only need to
prove for α0.

Let x be the largest next rank among all the blocks in α0.
By definition of such x, the rank value of every block in α0

must be smaller than x. Let y be the length of chain 0 on node
u at time t1. By time t2 = t1 + ∆, all honest nodes will have
received all blocks in α0. Furthermore, the length of chain 0
on all honest nodes at time t2 must be at least y. Together with
the consistency property in Theorem 2, we know that all the



blocks in α0 must be partially-confirmed on all honest nodes
by time t2. Thus starting from t2, whenever an honest node
(including node u) mines a block, by the design of OHIE, the
next rank of the new honest block will be at least x. We
will invoke this important property later.

Next let us come back to the honest node u, and consider
any one of the chains. From time t3 = t2 + ∆ to time
t4 = t3+ 4T

pn on node u, by the growth property in Theorem 2,
the length of this chain must have increased by at least 2T
blocks. The first T blocks among all these blocks must have
been partially-confirmed on node u at time t4. By the quality
property in Theorem 2, these first T blocks must contain at
least 1−2f

1−f T honest blocks. For T ≥ 1−f
1−2f , these first T blocks

must contain at least one honest block B that is partially-
confirmed. Since B is first seen by u no earlier than t3, we
know that this honest block B must have been generated
(either by u or by some other honest node) no earlier than
t2. By our earlier argument, the next rank of B must be at
least x.

Finally, note that we actually have one such B on every
chain on node u at time t4. This means that on node u at time
t4, the confirm bar is at least x. We earlier showed that for
all blocks in α0, their rank values must all be smaller than
x. Hence such a confirm bar enables all blocks in α0 to
become fully-confirmed on node u at time t4. Observe that
t4 = t0 + (γ + 2) · 2T

pn + 2∆, and we are done.


