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Abstract 

This paper presents an automatic system for fire 
detection in video sequences. There are many previous 
methods to detect fire, however, all except two use 
spectroscopy or particle sensors. The two that use visual 
information suffer from the inability to cope with a 
moving camera or a moving scene. One of these is not 
able to work on general data, such as movie sequences. 
The other is too simplistic and unrestrictive in 
determining what is consideredfire, so that it can be used 
reliably only in aircrafi dry bays. Our system uses color 
and motion information computed from video sequences 
to locate fire. This is done by first using an approach 
that is based upon creating a Gaussian-smoothed color 
histogram to determine the fire-colored pixels, and then 
using the temporal variation of pixels to determine which 
of these pixels are actually fire. Unlike the two previous 
vision-based methods for fire detection, our method is 
applicable to more areas because of its insensitivity to 
camera motion. Two specific applications not possible 
with previous algorithms are the recognition o f f re  in the 
presence of global camera motion or scene motion and 
the recognition of fire in movies for possible use in an 
automatic rating system. We show that our method works 
in a variety of conditions, and that it can automatically 
determine when it has insufficient information. 

1. Introduction 

Visual fire detection has the potential to be useful in 
conditions that conventional methods cannot be used - 
especially in the recognition of fire in movies. This could 
be useful in categorizing movies according to the level of 
violence. 

A vision-based approach also serves to supplement 
current methods. Particle sampling, temperature 
sampling, and air transparency testing are simple methods 
used most frequently today for fire detection. 
Unfortunately, these methods require a close proximity to 
the fire. In addition, these methods are not always 
reliable, as they do not always detect the combustion 

itself. Instead, they detect the byproducts of combustion, 
though these byproducts could be produced in other ways. 

Existing methods of visual fire detection rely almost 
exclusively upon spectral analysis using rare and usually 
costly spectroscopy equipment. This limits fire detection 
to those individuals who can afford the high price of the 
expensive sensors that are necessary to implement these 
methods. In addition, this approach is still vulnerable to 
false alarms caused by objects that are the same color as 
fire, especially the sun. 

There are two previous vision-based methods that 
seem promising [2][3]. However, both of these rely upon 
ideal conditions. In the first [2], camera initialization 
requires the manual creation of rectangles based upon the 
distance of portions of a scene from the camera. Because 
camera initialization is so difficult, the camera must also 
be stationary. 

The second method [3] is based upon strictly grayscale 
images. Though computationally inexpensive, this 
method only works where there is very little that may be 
mistaken for fire (in Aircraft dry bays, the locations of 
study in the second method, there is almost nothing else 
to find). Once again, the camera must be stationary for 
this method to work. 

The method described in our paper employs only color 
video input, does not require a stationary camera, and is 
designed to detect fire in nearly any environment. In 
addition, if it is available, it may be implemented more 
effectively through the use of spectral imagery, because 
the training method can use all available color 
information. 

In this technique, first, a color predicate is built using 
the method presented in sections 2.1 and 2.2. Based upon 
both the color properties, and the temporal variation of a 
small subset of images (section 3), a label is assigned to 
each pixel location indicating the inference that each pixel 
is a fife pixel (section 4). Based upon some conditions 
also presented in section 4, we can determine if this test 
will be reliable. The reason this is an effective 
combination is explained in section 5. If the test to find 
fire has been successful, an erode operation (section 6) is 
performed to remove spurious fire pixels. A region- 
growing algorithm designed to find fire regions not 
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Figure 1: Some training images and their manually created masks 

initially found follows this (section 7). An overall 
summary of the steps of this fire-finding algorithm is 
given in section 8. The results presented in section 9 show 
the effectiveness of this algorithm. Future work and 
conclusions follow in sections 10 and 11,  respectively. 
2.1. Color Detection 

An often-used technique to identify fire is by models 
generated through color spectroscopy. We did not use this 
approach because models may ignore slight irregularities 
not considered for the type of burning material. Instead, 
our system is based upon training using test data from 
which the fire has been isolated manually to create a color 
lookup table, usually known as a color predicate. This is 
accomplished using the skin detection algorithm 
described in [4], which employs the creation of a 
Gaussian-smoothed color histogram that has been 
thresholded. 

This adaptation allows for increased accuracy if 
training sequences are available for specific kinds of fires, 
while if training sequences are not available, it allows for 
a generic fire look-up table (assuming the user can create 
a generic, all-purpose f i e  probability table). 

This algorithm for color lookup may be summarized 
by the following steps: 

Create pairs of training images - each pair consists of 
a color image, and a Boolean mask, which specifies 
the locations that the target object occurs. For every 
pixel in each image that represents a color that is 
being searched for, there should be a “1” in the 
corresponding location in the Boolean mask, and a 
“0” for every background location. From our test, we 
found that using about ten training images from 

Gaussian distribution to the area in the color 
histogram centered at the color value that 
corresponds to the color of the individual pixel. 
Otherwise, if the value in the corresponding mask 
location is “0,” then subtract a smaller Gaussian 
distribution from the area in the color histogram 
centered at the color value that corresponds to the 
color of the individual pixel. For our work, the 
positive examples used a Gaussian with a=2, and the 
negative examples used a Gaussian with o=l. 

3) Threshold the Gaussian smoothed color histogram to 
the desired level, resulting in a function which we 
shall call Colorlookup, which, given an (R,G,B) 
triple, will return a Boolean value, indicating whether 
or not an input color is in the color predicate. 

2.2. Color in Video 

several of our data sets to be sufficient to construct an 
effective color predicate. Sample masks and images 

Figure 2: 
Translucent fire with a book behind it. 

are shown in figure 1. 
Fire is gaseous, and as a result, in addition to becoming Construct a color histogram as follows: for every 

pixel location in the image, if the value in the translucent, it may disperse enough to become 
corresponding mask is then add a undetectable, as in figure 2. This necessitates that we 
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average the fire color estimate over small windows of 
time. 

A simple way to compute the probability that a pixel is 
fire-colored over a sequence is by averaging over time the 
probability that such a pixel is fire. 
More precisely: 

n 

Colorlookup( 4 ( x ,  y ) )  
Co/orprob(x, y )  = '=' 
Color(x, y )  = Coforprob(x, y) > k,  
where Colorlookup is the Boolean color predicate 
produced by the algorithm in section 2.1, n is the number 
of images in a sequence subset, Pi is the i'* frame in a 
sequence subset. Pi(x,y) is the (R,G,B) triple found at 
location (x,y) in the it* image, and k1 is an experimentally 
determined constant. From our experimentation, we have 
determined that choosing n to be between 3 and 7 is 
sufficient. 

Coloprob is a probability (between zero and one) 
indicating how often fire color occurs in the image subset 
in each pixel location, while Color is a predicate that 
indicates whether or not fire is present at all. From 
experimentation, we determined that fire must be detected 
at least 1/5 of the time by color to indicate the presence of 
fire. For this reason, we set kl to 0.2. 

n 

3. Finding Temporal Variation 
Color alone is not enough to identify fire. There are 

many things that share the same color as fire that are not 
fire, such as a desert sun and red leaves. 

The key to distinguishing between the fire and the fire- 
colored objects is the nature of their motion. Between 
consecutive frames (at 30 frames per second), fire moves 
significantly (see figure 3). The flames in fire dance 
around, so any particular pixel will only see fire for a 
fraction of the time. 

For a sequence subset containing n images this 
temporal variation may be defined as: 

DIFFS ( x ,  y )  = i=2 
n - 1  

where Pi is the i I h  frame in a sequence of n images, and I is 
a function that given an (R,G,B) triple, returns the 
intensity (which is (R+G+B)/3 ). 

The highest possible temporal variation occurs in the 
case of flicker, that is, when a pixel is changing rapidly 
from one intensity value to another. This generally occurs 
only in the presence of fire. Motion of rigid bodies, in 
contrast, produces lower temporal variation.. 

By first correcting for the temporal variation of non- 
fire pixels, it is possible to determine if fire-colored pixels 
actually represent fire. This is done by: 

1) Deciding which pixels are fire candidates using 
Color. 

2 )  Finding the average change in intensity of all non- 
fire pixels 

3) Subtracting this average value from the value in 
DIFFS at each location. 

More precisely: 
First compute the following: 

p z F F s ( x ,  Y )  
nonfireDiffs = x.y.Co[or(x.y)=O 

C' 
x ,  y,Color( x. y )=O 

The lower summation represents the number of pixels 
in the image that are computed to be fire colored. 
After computing nonfireDigs, compute 0: 

Figure 4 shows the importance of the temporal variation 

o (x, y )  = DIFFS (x, y )  - nonj?reDvfs 
because now the algorithm correctly rejects the part of the 
scene that is fire-colored. 

Figure 4: 
The Sun in this image is fire colored. 
This is not detected as fire by our system 
because the sun has low temporal 
variation. 

Figure 3: 
Flames flickering in two consecutive images 
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4. Heuristic Analysis 
Since the test to find fire is directly dependent upon 

both color and temporal variation, i t  is best expressed by a 
simple conjunction: 

1 if Color(x, y )  and @x,y) > k ,  
0 otherwise 

Fire(x, y )  = 

where k2 is an experimentally determined constant. 
This is a binary measure of the temporal variation of 

the fire-colored pixels. There are several exceptions that 
indicate that merely computing the predicate Fire is not 
enough. The first of these occurs specifically in sunlight. 

Sunlight may reflect randomly, causing new light 
sources to appear and disappear. For that reason, there 
are often some pixels in an image containing the sun that 
have temporal variation high enough to be recognized as 
fire. Such sequences, which contain a high number of 
fire-colored pixels, but which have a low number of fast 
moving fire-colored pixels must usually be set into a “fire 
unlikely/undetectable” class. Specifically, this means 
counting the number of pixels in that are “1” in the 
predicate Fire and comparing it to total number of fire- 
colored pixels (i.e. those that are “1” in Color). If the 
number of fire colored pixels is less than some threshold, 
then we say that there is no fire in the sequence at all. For 
our tests, this threshold was 10 pixels. If the number of 
pixels detected as fire is greater than this threshold, but 
the ratio of pixels that are “1” in Fire to fire-colored 
pixels is low, then the sequence must be placed into the 
“fire unlikely/undetectable” class. For our tests, no more 
than one out of every thousand fire-colored pixels is 
found to be in the predicate Fire, then the sequence subset 
is not put into the “fire unlikely/undetectable” class. 

There is one other case that contains fire that this 
method is unable to detect: if a sequence is recorded close 
enough to a fire, the fire may fully saturate the images 
with light, keeping the camera from observing changes or 
even colors other than white. Therefore, if contrast is 
very low and intensity is very high, as in figure 5,  
sequences are put into a “fire likelyhndetectable” class. 

I arc 

Figure 5: Fire LikeIyNndetectable 

5. Independence of Color and Motion 
It is possible that color and motion information could 

result in the same information so that knowing one is the 
same as knowing the other. In order to determine the 
correlation, we took a random sampling of 81,000 points 
from video data used in our experiments. For each point, 
we stored 

1. The value of DIFFS 
2. The value of COLOR 
We then computed p h e  correlation coefficient: 

P =  
c (Xi - Y, MY, - P y )  

( n .  oxoy) 
where x, is the i” sample taken from Color, yi is the i‘’ 
sample taken from DIFFS, n is the size of the sample, p I 

andp yare the sample means of Color and Diffs, and G~ 

and cry are the sample variances taken from Color and 
Diffs, respectively. The correlation we measured by this 
method was .072, indicating that these two cues are 
independent. 

6. Dealing with Reflection: 
One of the largest problems in the detection of fire is 

the reflection of fire upon the objects near the fire. 
However, barring surfaces with high reflectivity, such as 

Before Erosion Fire Detected. 
Figure 6: Reflection on ground detected at lower left. 
In this and all examples, the detected location of fire 
is outlined in white. 

mirrors, reflections tend to be incomplete. An erode 
operation can eliminate most of the reflection in an image. 

For our study, the following erode operation worked 
the best: examine the eight-neighbors of each pixel. 
Remove all pixels from Fire that have less than five eight- 
neighbors. Figure 6 shows the results of this stage. 

7. Region Growing 
The output from the erosion stage will contain only 

the most likely fire candidates; to have avoided false 
positives thus far, our conservative strategy will not have 
detected all of the fire in a sequence subset. Thus, this is 
not an accurate measure of the total quantity of fire in the 
sequence subset. For one thing, some of the fire in a 
sequence will not appear to be moving because it is right 
in the center of the f ie .  Hence, in order to find the rest of 
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the flame, it  is necessary to grow regions by examining 
color alone. 

To find the total quantity of fire pixels in the 
sequence subset, the following region growing algorithm 
is applied: 

1 .  Create a new Boolean image, Fire’ and a variable, 
dist. Then set 
Fire’ ( x , y ) t  Fire(x,y), and set dist t 0 
For all pixels in Fire that are eight-neighbors of 
pixels (x’,y’) such that Fire(x’,y’)=I, test the 
following: 
if Colorprob(x,y) >(k3+dist) set Fire’ ( x , y ) t  I 

Fire(x, y& Ere’ (x, y )  

2. 

3. 
4 .  d i s c  &+k4 
5 .  Loop to step 2. 

Where dist is a threshold that begins at zero and is 
incremented and both k3 and k4 are experimentally 
determined constants. In our experiments, we used 0.1 
and 0.025 for k3 and k4, respectively. Recall that 
Colorprob is the probability lookup table described in 
section 2.2. This method is applied until there is no 
change from one step to the next (i.e., when no steps have 
any effect on Fire). 

8. Algorithm for Fire Detection 
The steps in the algorithm are the following: 

Manually select fire from images and create a color 
predicate using the algorithm in [4] and summarized in 
section 2.1. Create a function that, given an (R,G,B) 
triple, returns a real number. Call this Colorlookup. 

For n consecutive images, calculate DIFFS, 
Cololprob, and Color 

Color( x,  y )  = CoZorprob( x ,  y ) > k, 
n 

zColorLookup(6 ( x ,  y ) )  

n 
Colorprob(x, y )  = ’=’ 

where Colorlookup is the predicate created in step #I 
and kl is an experimentally determined constant. 

Determine the motion of the part of the image that is 
not fire, and compute from each value in sigma. 
First calculate: 

x ,  y,Co[or( x ,  y )=0 

and then calculate: 
o (x, y )  = DIFFS (x, y )  - nonfireDvfs 

where the summation is over the (x,y) such that 
Color(x,y)<kl, and k, is an experimentally determined 
constant. 

4. Create a fire Boolean image, 

1 if color(x, y )  and ofx,y) > k, 
0 otherwise 

Fire(x, y )  = 

where k2 is an experimentally determined constant. 

5. Classify sequence as “fire likely/undetectable” if the 
average intensity is above some experimentally 
determined value, k3. 

6.a. Calculate the the total number of 1’s in Color. Call 
this number Numjire. 

b. Calculate the the total number of 1’s in Fire. Call 
this number Foundfire. 

c. Calculate FoundjireDVumfire. If this value is less 
than some experimentally determined constant, k5 
classify the sequence as “fire unlikelyhndetectable.” 

7. Examine the eight-neighbors (the eight adjacent pixels) 
of each pixel. Remove all pixels from Fire that have 
less than five eight-neighbors that are 1 .  

8.a. Create a new Boolean image, Fire’ and a variable, 
dist and set 
Fire’ (x, y )  t Fire(x, y).  d i s t t  0 

b. For all pixels in Fire that are eight neighbors of 
pixels such that Fire(x,y)=l, if 
Colorprob(x, y)>(kj+dist) 
Fire’ (x, y )  = I 

c. F i r e  Fire’ 
d. disc &t+k4 
e. Loop to step b. 

where dist is a constant that begins at zero and is 
incremented, k3 and k4 are experimentally determined 
constants. 
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Sequence I Length 
Movie1 (598 
Movie2 
Movie3 
Movie4 
Movie5 
Movie6 
Movie7 
Movie8 
Movie9 

45 
251 
44 
36 
85 
284 
35 
41 

Frames wRre False + 
442 2 
45 0 
251 0 
44 0 
36 0 
0 0 
248 0 
35 0 
41 0 

False - 
14 
0 
48 
44 
0 
0 
16 
4 
3 

Description 
A buming building 
Fire in a fireplace 
Big Candles 
Small candles 
Police Car with Fire Behind it 
A setting sun 
Fire in a forest 
Fire in background 
Homemade recording 

Figure 7: A subset of the images tested. All measurement are in number of frames 

9. Experimental Results: 

Figure 8: The sun is not recognized, even with 
global motion. 

This method has been effective for a large variety of 
conditions (see figure 7). False alarms, such as video of 
the sun moving (see figure 8) are not detected by this 
method because in all realistic sequences, the rate of 
global motion is almost always much less than the 
expected speed of the fire. 

Lighting conditions also have no effect upon the 
system; it has been able to detect fire in a large variety of 
fire images, as in figure 9. 

Certain types of fires, such as candles, blow torches, 
and lighters, are completely controlled, and always bum 
exactly the same way without flickering (see figure IO). 
Unfortunately, the algorithm fails for these cases because 
of the lack of temporal variation. However, these cases 
are not usually important to recognize because controlled 
fires are not dangerous. 

10. Future Work 
The next step in the development of this algorithm 

would be error reduction. There are three equations stated 
in this algorithm that have constants that must be 
determined experimentally. Employing training to 
determine these values could reduce the error in this 
method. Because of the low computational demand 
necessary for this algorithm, it is also possible to use it as 
part of a robust, real-time system for fire detection. 
Another direction would be to distinguish between 
different types of fires. Finally, predicting fire’s path in 
video would be interesting for fire prevention. 

Figure 9: Very bright image and very dark 
image; detection occurs in both cases. 

~~ 

Figure 10: Detecting a match 
detecting based mostly upon color. 

candles means 

11. Conclusion 
This paper has presented a robust system for detecting 

fire in color video sequences. This algorithm employs 
information gained through both color and temporal 
variation to detect fire. We have shown a variety of 
conditions in which fire can be detected, and a way to 
determine when it cannot. Through these tests, this 
method has shown promise for detecting fire in real world 
situations, and in movies. 
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