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Abstract

This paper presents a computationally efficient approach for temporal action detec-
tion in untrimmed videos that outperforms state-of-the-art methods by a large margin.
We exploit the temporal structure of actions by modeling an action as a sequence of
sub-actions. A novel and fully automatic sub-action discovery algorithm is proposed,
where the number of sub-actions for each action as well as their types are automatically
determined from the training videos. We find that the discovered sub-actions are seman-
tically meaningful. To localize an action, an objective function combining appearance,
duration and temporal structure of sub-actions is optimized as a shortest path problem
in a network flow formulation. A significant benefit of the proposed approach is that
it enables real-time action localization (40 fps) in untrimmed videos. We demonstrate
state-of-the-art results on THUMOS’14 and MEXaction2 datasets.

1 Introduction

Video action recognition continues to be a popular topic in computer vision. Although pre-
vious attempts have shown promising results, most are designed for clip-level classifica-
tion in manually trimmed datasets. However, in the real world, the majority of videos are
untrimmed, where an action of interest may occur only in a small part of a long video. The
challenge is to temporally localize an action of interest, while ignoring other irrelevant ac-
tions and the background. In this context, most of the methods designed for trimmed videos
will fail. In this paper, we address the problem of real-time temporal action localization,
which predicts the beginning and ending frames of an action in an untrimmed video, in a
computationally efficient manner.

In the proposed approach (Fig. 1), an action is modeled as a sequence of automatically
discovered, semantically meaningful sub-actions, whose number and duration can vary from
action to action. For instance, the “clean and jerk” action (left) is decomposed into three sub-
actions, corresponding to “lift”, “clean” and “jerk”, while the “long jump” (right) has two

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 R. HOU et al.: REAL-TIME TEMPORAL ACTION LOCALIZATION

(a)

Action Background

Sub-action 1 ...   Sub-action N

Background

Segments

(b)

Figure 1: (a) Automatically discovered sub-actions in diverse instances of two actions. The
number of sub-actions is automatically determined and they are found to be semantically
meaningful. Each row shows one example of “clean and jerk" and “long jump" actions from
diverse videos. (b) A typical untrimmed video consists of many background segments with
one or more actions. We group short segments from untrimmed video into sub-actions whose
temporal structure is exploited for temporal action localization.

sub-actions, that correspond to “approaching run” and “jump”. Note that our discovered sub-
actions are consistent across different instances that vary significantly in terms of viewpoint
and visual appearance.

Decomposing actions into characteristic sub-actions is a challenging task, due to signifi-
cant intra-class variability, such as variations in viewpoints, human poses and the execution
speed of the action. Therefore, most former approaches either rely on manual annotation of
sub-actions or fix the number of sub-actions per action. Manually defining and annotating
sub-actions is a subjective task and the quality of annotations depends on the judgment and
preference of the annotators. Also, manual annotation of sub-actions requires heavy labor. In
addition, actions contain different complexity levels; typically a few sub-actions are enough
to represent simple actions, while complex actions would need to be represented with more
sub-actions. Obviously, limiting the number of sub-actions to a fixed number for all actions
would limit their representation power. In our approach, the number of sub-actions as well as
the sub-actions themselves are learned from the training data automatically. Moreover, from
the experiments, we observe that the automatically discovered sub-actions are semantically
meaningful and they are consistent across different instances of an action.

Given the rate at which videos are generated, applications such as surveillance and video
retrieval demand computationally efficient approaches for action detection in untrimmed
video. Our proposed approach is designed with this in mind and can process 40 frames
per second (on commodity hardware) including all steps, i.e., feature extraction, sub-action
detection and action detection.

This paper makes the following contributions. 1) We propose a novel, fully automated
algorithm that discovers a discriminative sequence of sub-actions directly from data. The
discovered sub-actions are semantically meaningful. 2) We exploit the temporal structure of
actions by modeling an action as a sequence of sub-actions, which takes sub-action durations
and time between sub-actions into consideration. 3) The proposed approach is computation-
ally efficient and processes video in real-time. 4) We evaluate the proposed sub-action based
sequential model on large-scale temporal action localization task and show that the proposed
method achieves state-of-the-art results on THUMOS’14 and MEXaction2 datasets.



R. HOU et al.: REAL-TIME TEMPORAL ACTION LOCALIZATION 3

2 Related Work
The goal of spatio-temporal action localization is to localize actions in space and time si-
multaneously. Some researchers use segmentation based approaches to solve this prob-
lem [5, 17]. Another class of popular approaches is based on detection and tracking [23],
which use object detectors [6] or human detectors [2, 11, 26] to obtain candidate action
locations.

Different from the above approaches, we aim to solve temporal action localization in
untrimmed and unconstrained videos. Almost all approaches for spatio-temporal action lo-
calization employ trimmed videos. However, untrimmed videos for temporal action localiza-
tion are much longer and unconstrained, posing significant challenges. Therefore, solving
this problem requires us not only to discriminate between actions but also to distinguish
actions from the background (which is taken from the same scene).

When only video-level labels are available, weakly supervised learning based approach
can be used. Lai et al. [9] use multiple instance learning to select the key concepts in
untrimmed videos and localize actions temporally. Sun et al. [18] use web images as a prior
to improve detection performance. However, as large scale action datasets with temporal
annotation, such as THUMOS’14 [7], are introduced, researchers have explored approaches
based on learning directly from temporally annotated datasets. Wang et al. [22] combine
the improved dense trajectories (iDTF) [20, 27] as motion features and frame-level CNN as
appearance features together. Karaman et al. [8] utilize Fisher encoded iDTF with saliency
based pooling. Oneata et al. [13, 14] fuse motion, visual and audio features to train clas-
sifiers and use the classification scores as a contextual feature to help localization. Shou
et al. [16] propose a loss function considering temporal overlap and learn segment-based
3D ConvNets for localization. Yeung et al. [24] train a recurrent neural network to predict
the temporal bounds of actions. Heilbron et al. [3] propose temporal proposal to locate the
actions temporally. However, none of the above mentioned approaches model the temporal
structure of an action by a sequence of sub-actions. Gaidon et al. [1] propose to model action
as a sequence of atomic action units (actoms). However, their approach relies on manually
annotated actoms. In contrast, the sub-actions in our approach are automatically discovered.
According to [4, 25], data-driven concepts or sub-actions or actoms mainly have two ad-
vantages over manually defined concepts. First, a large number of data-driven concepts can
be determined as far as they are different in the corresponding feature space, since they do
not necessarily have to be semantically different. Second, manually defined concepts need
extra knowledge from sophisticated human raters and they must be carefully designed to
maximize their usage.

Several works have aimed to automatically discover mid-level representations. Tang et
al. [19] propose to treat states of temporal segments as latent variables and model durations
of states as well as transitions between states using variable-duration HMM. Lan et al. [10]
automatically discover mid-level action elements by clustering spatio-temporal segments and
represent videos by a hierarchy of mid-level action elements. However, our approach differs
from them in several key respects. First, the sub-actions discovered by our approach are
consistent across different instances of an action and they are semantically meaningful. By
contrast, videos of an action may consist of different sets of sub-actions and the sub-actions
may not have clear semantic meanings in [10, 19]. Second, the number of sub-actions in
our method is automatically discovered, while [19] manually defines the number of states.
Third, the distances between sub-actions are taken into consideration in our approach. Thus
our model allows temporal overlap or gap between sub-actions, which is more flexible and
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robust in realistic videos. In contrast, no overlap or gap between states is allowed in [19].
Last, we address temporal action localization problem while [10] attacks the easier whole-
clip action recognition problem.

3 Proposed Approach

Temporal action localization can be formulated as a classification problem where the goal
is to assign action labels to each frame, and determine the beginning and ending frames of
an action in untrimmed videos. Traditionally, an action has been represented by a single
model, which is simple and efficient, nevertheless it is not robust to intra-class variation (in
particular in context of untrimmed videos), leading to unsatisfactory performance.

An important fact about actions is that they are usually composed of multiple semantic
sub-actions (Fig. 1(b)). While the sub-actions may vary in appearance and duration (e.g.,
the length of the “approach” run in the “long jump” action), a given action nearly always
consists of the same set of sub-actions in a consistent order. Thus, we choose to model an
action as a series of sequential sub-actions and train a separate classifier for each sub-action.

An important issue, in context of modeling an action using sub-actions, is how to deter-
mine the number of sub-actions for each action. One obvious solution is to manually identify
a set of sub-actions for each action and generate training sets by annotating each sub-action
in every video; that would be a daunting task. Instead, we propose an automatic method
to discover sub-actions for each action. Our approach for discovering sub-actions consists
of three main steps. First, temporal segments of all training videos of an action are clus-
tered into different parts. Second, similar parts are merged to obtain candidate sub-actions.
Finally, boundaries between candidate sub-actions are adjusted to obtain final sub-actions.
Sub-actions discovered in this way are consistent and semantically meaningful (Fig. 1(a)).

Assume a video v is composed of temporal segments of fixed length. Each temporal
segment i ∈ v, is represented by a Fisher vector xi ∈ Rd computed over the features, which
is used as an input to our model. Let n denotes the number of actions and ml the number
of sub-actions for action l (l ∈ {1, . . . ,n}). And let a n dimensional one-hot vector gi ∈ Rn

denotes the action labels for segment i. If segment i does not belong to action l then gi(l)=
0. Otherwise, segment i contains sub-action gi(l) of action l.

4 Discovering Sub-actions

Our key assumption is that all the video clips of an action l share the same sequence of
ml sub-actions. The goal is to design an approach that can automatically find the appropri-
ate number of sub-actions for each action in an unsupervised manner. Sub-actions should
correspond to different semantic parts and be consistent in videos clips of the same action.
Moreover, the sub-actions in an action should occur in a specific order.

4.1 Clustering Segments Into Parts

Since the number of sub-actions in an action is unknown, we first cluster segments in each
video of an action l into kl parts (we use kl equal to half of the number of segments in the
shortest training video of action l) to serve as candidate sub-actions. These candidate sub-
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Figure 2: An example of segmenting “high jump” action into several sub-actions. (a) Rows
represent different length videos of the same action. Temporal segments within a video are
represented by key frames. The number on the top of a frame represents the ground truth
index of sub-action in the action. In this action there are two sub-actions. (b) In the first
step, all segments of each video of an action are clustered into kl (in this case 3) sequential
parts, which are shown by borders of different colors (blue, green and red). However, as
can be seen that the first sub-action is broken into two parts. (c) In the second step, we use
hierarchical agglomerative clustering to merge similar parts. Then the first two parts in (b)
are merged. However, in the first clip, one segment is incorrectly merged with the first part.
(d) Shows the partitioning results after adjustment. The partitions are updated iteratively.

actions are updated and adjusted later to select the most discriminative sub-actions. Below,
we describe the procedure of clustering segments into parts.

For each video, we want to find kl tight clusters of segments such that the distance of
each segment in a cluster from the cluster center is minimized. Let cp = 1

|p| ∑
|p|−1
i=0 xbp+i

be the center of cluster p, where xbp+i is a feature vector of segment bp + i, bp + i(i ∈
{0,1,2, ..., |p|−1}) represents all the segments in cluster p and bp is the first segment which
belongs to cluster p. Let γbp+i,p be a binary variable, which is 1 if segment bp + i is assigned
to cluster p, otherwise it is 0. Since we cluster temporal segments, which have sequen-
tial order, we cannot arbitrarily cluster segments using a standard approach like K-means.
Therefore, we define an objective function that imposes a sequential order on the cluster as
follows:

L = ∑
p

|p|−1

∑
i=0

γbp+i,p||xbp+i− cp||2, where bp + i ∈ p and bp + |p|= bp+1. (1)

The objective function represents the sum of the squares of the Euclidean distances of each
segment to the center of its assigned cluster. Our goal is to find values for γbp+i,p so as to
minimize L. We also need to determine cluster centers cp. This problem is solved using an
expectation maximization (EM) like algorithm. In the expectation step, we keep cp fixed,
and only update γbp+i,p for segments which are at the part boundaries. In the maximization
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step, we minimize L with respect to cp, keeping γbp+i,p fixed. This two-stage optimization
is then repeated until convergence. Note that exploiting the sequential ordering constraint
enables the proposed method to be more computationally efficient than naive EM clustering.

4.2 Updating Sub-actions
After clustering, segments in an video are divided into sequential parts, which are candidate
sub-actions. However, these candidates may not be sufficiently good to be directly used in
our model. There are two main issues. First, sub-actions may be split into multiple parts
(Fig. 2a), requiring them to be merged. Second, the partitioning results may be inconsistent
over different videos of an action (Fig. 2b). To remove inconsistencies, sub-action labels for
some of the segments should be adjusted.

Both of the above issues can be effectively solved by a set of linear SVM classifiers. An
SVM classifier is trained between each two adjacent candidate sub-actions, where segments
belonging to one candidate sub-action are taken as positive samples and segments belonging
to the adjacent candidate sub-action are treated as negative samples. The SVMs try to dis-
tinguish adjacent candidate sub-actions. The discriminant function of an SVM classifier is
y = sign(w · x+ b), where w,b are learned parameters, y is predicted sub-action label and x
is the feature vector of a segment.

Merging similar candidate sub-actions together. We use hierarchical agglomerative
clustering to merge similar candidate sub-actions. The distance metric used in the clustering
is the SVM margin obtained from the above learned SVM. The SVM margin is determined
by its primal form 1

‖w‖ . This process is repeated iteratively by merging candidate sub-actions
with the smallest distance until no distance is lower than the threshold (0.9). After merging,
action l has ml sub-actions.

Optimizing sub-actions. In order to ensure that sub-actions are consistent among all
videos of an action, we use an iterative procedure to adjust sub-action partitions by alter-
nating between the following two steps. 1) Fix sub-action labels y, train an SVM (w,b) for
every pair of adjacent sub-actions. 2) Given the learned SVMs (w,b), update the sub-action
labels y of the two segments at the boundary of each adjacent sub-action pairs.

The procedure converges when no sub-action labels are updated, which usually takes 3–4
iterations. In each iteration, only segments at the boundary of adjacent sub-actions pair are
tested with the current SVMs and their sub-action labels may be updated. The sub-action
labels for all the other segments are kept the same, making the procedure efficient.

5 Sub-Action Detectors
After obtaining the final sub-action partitions for all training videos, a set of sub-action
classifiers Tz(·)(1 ≤ z ≤ ml) is trained separately for each action l. In order to recognize
and temporally localize actions in the untrimmed testing videos, we first detect sub-action
candidates and then combine these sub-action detections to localize actions.

For a sub-action z of action l, we collect all the segments {i|gi(l) = z} as positive sam-
ples to train a SVM model. We perform Platt Scaling for the decision values to obtain the
probability that the given segment is present in the sub-action z. The model Tz(·) gives us
probability of the sub-action in a segment. However, localizing actions only based on this
prediction value can be suboptimal. Some false negative segments may break an action in-
stance into multiple instances, leading to inaccurate localization. To reduce the number of
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false alarms, we take the duration of actions into consideration as well. In most cases, the
majority of instances of the same action have similar durations. For instance, the “jump”
action usually finishes within 1 second, while “clean and jerk” always takes several seconds.
We assume the duration d of a sub-action follows a Gaussian distribution Φ(d)∼N (µ,σ).

Combining the prediction and duration scores together, sub-action z’s confidence value
with duration d can be expressed as in Eq. 2. The confidence score is computed as the
product of classifier prediction and duration score. The prediction score of a duration is the
average of SVM probability output from all the segments within that duration.

Pz(d) =
1
|d|∑i∈d

Tz(xi) ·Φz(d). (2)

Assume, we have s segments in a video for which we already have computed sub-action
scores. Our aim is to determine starting and ending segment of a sub-action in this video.
We compute an s× s upper triangular detection scores matrix. The column and row indices
of the matrix represent the candidate starting and ending segment, respectively. For each
starting and ending segment pair that represents a candidate duration, the sub-action score is
computed using Eq. 2. Then, using dynamic programming we optimally determine begin-
ning and ending segments for the sub-action.

6 Detecting Actions
Our approach represents each action by a sequence of sub-actions. We enforce that the
sub-actions of an action must occur in a sequential order, but two adjacent sub-actions may
have some temporal overlap or gap between them. We assume the time between adjacent
sub-actions follows a Gaussian probability density function Ψ(·)∼N (µ,σ). This function
penalizes sub-action combinations with a wrong order or those that have a greater gap than
desired. The parameters µ and σ of Ψ(·) are learned from the validation set.

Given an unclipped video of unknown action, we first segment it into equal length seg-
ments. We then apply all sub-action detectors, and corresponding to each sub-action detector
we get a sequence of detection scores. Now the aim becomes selecting optimal combinations
of sub-action detections to detect an action, by considering both sub-action scores and dis-
tance between sub-actions. This inference is formulated as a network flow problem. We
build a flow graph as shown in Fig. 3. The start and end time of each sub-action detection d
are represented as two vertical bars, which are connected by an observation edge with cost
−P(d) (Eq. 2). Let d and d′ be two adjacent sub-action detections. They are connected by
an transition edge with cost −Ψ(d,d′). The objective function is

min
f
(−∑

d
P(d) fd −∑

d,d′
Ψ(d,d′) fd,d′), s.t. fd , fd,d′ ∈ {0,1} and ∑

d′
fd,d′ = fd = ∑

d′
fd′,d , (3)

where fdd′ represents the flow from detection d to d′. The first constraint enforces that flow
is either 1 or 0. A sub-action detection d is selected if fd = 1 and its adjacent sub-action
detection d′ is also selected if fd,d′ = 1. Each sub-action detection can be selected to obtain
an action detection only once. The second constraint ensures that the incoming flow to a node
is equal to its outgoing flow. The shortest path problem is solved efficiently using dynamic
programming, similar as in [15] which finds high-quality approximate solutions to min-cost
flow problem for multiple objects tracking. A selected shortest path represents a valid action
detection, whose sub-action scores and distance scores between sub-actions are optimal. We
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… …

Groundtruth: Clean And Jerk

Sub-action
detections:

Pull (-0.93) 

Pull (-0.91)

Pull (-0.88) 

Clean (-0.79) 

Clean (-0.77) 

Clean (-0.81) 

Jerk (-0.86) 

Jerk (-0.87) 

Jerk (-0.83) 

Figure 3: An example of network flow with three sub-actions. The groundtruth is shown by
a blue line. The observation edges are denoted as solid lines, and the transition edges are
expressed as dashed lines. The green lines represent the selected optimal path. Since the
optimal path considers both sub-action scores and distance scores between sub-actions, the
locally optimal detection of sub-action ‘jerk’ with lowest cost is correctly ignored.

keep solving the shortest path problem until the cost of the obtained path is higher than a
threshold, which is learned from the validation set. Every time a shortest path is selected, its
corresponding sub-action detections are removed from the graph.

7 Experimental Results

We evaluate our method on THUMOS’14 and Mexaction2 datasets. We use the Improved
Dense Trajectory Features (iDTF) [20] as low-level features, which consist of four descrip-
tors: histogram-of-gradients (HOG), histogram-of-flow (HOF), motion-based histograms
(MBH) and trajectories. In the experiments, we use the first 3 descriptors with late fusion.
We generate a 256-bin GMM and build a Fisher vector representation for both datasets.

THUMOS’14. The temporal action detection task of THUMOS’14 [7] consists of 20
classes of sports actions. We use both train and validation sets for training sub-action mod-
els, and fix the length of segments to 0.3s. The thresholds and parameters for Gaussian
distributions are learned by a ten-fold cross-validation process. We follow the detection
measurement protocol specified in the THUMOS’14 temporal action localization challenge.

We present direct comparisons against top performers on the THUMOS’14 challenge
leader board [14, 21], which use the same low-level features. Moreover, we also compare
our results with two recent deep learning based approaches [16, 24].

For the set of THUMOS’14 classes, the number of sub-actions discovered by our ap-
proach is as follows: two actions (Clean & Jerk and High Jump) consist of 3 sub-actions,
15 actions are divided into 2 sub-actions, and 3 actions only contain one sub-action (we call
these singleton actions). The mAP (Mean Average Precision) is reported with different in-
tersection over union (IOU) thresholds, α . The results are shown in Table 1. As is clear from
these results, our approach significantly outperforms the other approaches.

We also conduct two ablative experiments. In the first experiment, we skip the optimiza-
tion of part partitioning step (Section 4.2), and assign sub-actions labels for each segments
based on the merging results (Section 4.1). The mAPs of this model, denoted as Ours (w/o
opt), are consistently worse than those from our complete system, verifying the effectiveness
of our part partition optimization step.

In the second experiment, we assume that all actions are composed of only a sub-action
(singleton actions). We see that the ablative singleton model, denoted as Ours (Singleton),
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α = 0.5 α = 0.3 α = 0.1
Wang et al. [22] 8.3 14.0 18.2
Oneata et al. [14] 14.4 27.0 36.6
Yeung et al. [24] 17.1 36.0 48.9
Shou et al. [16] 18.8 - -
Yuan et al. [28] 18.8 30.8 40.9
Ours 22.0 43.7 51.3
Ours (w/o opt.) 20.4 36.1 49.5
Ours (Singleton) 19.3 33.3 48.2

Table 1: Temporal action localization results on THUMOS’14. mAP is reported for different
intersection-over-union thresholds α .

performs worse than our proposed approach. This validates our hypothesis that sub-action
discovery improves action localization.

Mexaction2. This is a two actions dataset: “BullChargeCape” and “HorseRiding”. This
data set has three parts. The first part is INA videos, which were collected from TV shows.
The videos in this part are untrimmed and split into train, validation and test sets. The
second part is from Youtube videos, and the third part is from UCF101 Horse Riding clips.
Moreover, the clips in the last two parts are trimmed and are only used for training. We use
the train set for training sub-action detectors. The length of segments is fixed as 0.1s. The
validation set is used for learning the parameters for Gaussian models and thresholds for
action detectors.

We present the comparison against baseline, which uses Bag of Visual Words DTF fea-
tures, and Shou et al. [16]’s reported results. We use the same metric as in [16], which report
the mAP with IOU threshold α = 0.4. Since both actions are hard to be divided into sub-
actions, we get one sub-action for them (they are singleton actions). Our sub-action based
approach achieves huge improvement for “BullCharge-Cape” and slightly better result for
“HorseRiding” (Table 2). In this experiment, we did not use the distance term.

Baseline [12] Shou et al. [16] Ours
BullCharge 0.3 11.6 26.2
HorseRiding 3.1 3.1 3.8
mAP 1.7 7.4 15.0

Table 2: Average precision on MEXaction2 dataset

7.1 Analysis of Our Results
Table 1 shows results from the ablation experiments, i.e. Ours (w/o opt) and Ours (Single-
ton), in order to verify the contributions of different components of our method. We observe:

1. When α changes from 0.5 to 0.3 in Table 1, our approach outperforms other methods
at all the overlap thresholds. The mAP increases greatly at high IOU and reaches
43.7% at α = 0.3, demonstrating that we always have greater IOU with ground truth.

2. Our sub-action based model consistently outperforms the singleton model for tempo-
ral action detection (Tables 1, 2). However, when IOU threshold decreases to 0.1,
singleton model shows less difference (48.2% vs. 51.3%), while when α = 0.3 the
difference is 10% (Table 1), showing the benefits of modeling sub-actions.
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First sub-action
Second sub-action

First sub-action
Redundant sub.
Second sub-action

First sub-action
Second sub-action

(a) (b) (c)

0:12 0:14 0:16 0:18 0:20 0:22 0:24 0:26 0:28
(d)

Figure 4: An example showing the sub-action classifier scores for different segments using
different steps of our method. (a) Results after clustering segments into parts (Section 4.1).
(b) Results obtained after merging similar parts. (c) Results of our full approach using all
steps. (d) Example frames at different time stamps. Note that the two highly overlapped
parts in (a) are correctly merged in (b) The more subtle but equally important change occurs
from (b) to (c) where the sub-action partitions are changed so as to accentuate the difference
between the blue and red peaks to reduce the area under the intersection interval at 0:22
where partition inconsistency could occur in (b).

3. Without the merging of similar parts, the first sub-action is divided into two redundant
parts. As shown in Fig. 4a, the two-part model generates similar scores for the seg-
ments. Training separate models for these redundant sub-actions would be wasteful.

4. Comparing plots in Fig. 4b with plots in Fig. 4c, we appreciate the importance of
part optimization (Section 4.2), which adjusts boundaries to accentuate the difference
between discovered sub-actions.

5. Our approach outperforms other methods by a large margin when an action can be
clearly divided into sub-actions (e.g., cliff diving, javelin throw and long jump). When
the sub-actions are hard to determine, our algorithm is still competitive (e.g., billiards).

6. Finally, our approach performs less well on short duration actions (golf swing) or
actions that resist decomposition into sub-actions (frisbee catch). When the duration
of an action varies widely (horse riding), the duration term may hurt performance.

Runtime Analysis. The proposed approach is very efficient, particularly for long videos.
Compared to sliding window based methods, for each segment we only compute the low-
level features once. Compared to CNN-based methods, we train much faster. For the MEX-
action2 experiments, during sub-action discovery, clustering segments takes 121s and up-
dating sub-actions takes 87s. The total time for sub-action training is 1686s. The improved
DTF feature extraction and Fisher Vector computation in our implementation is optimized
by avoiding the unnecessary string-float conversions. Using dynamic programming and our
optimized feature extraction and Fisher Vector computation, our temporal action detection
system can process videos at 40 fps.

8 Conclusion
We present a real-time system for temporal action detection in untrimmed videos that learns
discriminative and semantically meaningful sub-actions. Both the number of sub-actions for
each action and the sub-actions themselves are discovered automatically. We demonstrate
state-of-the-art localization performance on standard action datasets. Since the proposed
method is agnostic to the type of low-level features, a natural extension would be to integrate
the sub-action detection framework with deep learning.
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