
0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2691768, IEEE Transactions on Pattern Analysis and Machine Intelligence

MANUSCRIPT FOR REVIEW, 2015 1

Learning a Deep Model for Human Action
Recognition from Novel Viewpoints

Hossein Rahmani, Ajmal Mian and Mubarak Shah

Abstract—Recognizing human actions from unknown and unseen (novel) views is a challenging problem. We propose a Robust
Non-Linear Knowledge Transfer Model (R-NKTM) for human action recognition from novel views. The proposed R-NKTM is a
deep fully-connected neural network that transfers knowledge of human actions from any unknown view to a shared high-level
virtual view by finding a set of non-linear transformations that connects the views. The R-NKTM is learned from 2D projections
of dense trajectories of synthetic 3D human models fitted to real motion capture data and generalizes to real videos of human
actions. The strength of our technique is that we learn a single R-NKTM for all actions and all viewpoints for knowledge transfer
of any real human action video without the need for re-training or fine-tuning the model. Thus, R-NKTM can efficiently scale to
incorporate new action classes. R-NKTM is learned with dummy labels and does not require knowledge of the camera viewpoint
at any stage. Experiments on three benchmark cross-view human action datasets show that our method outperforms existing
state-of-the-art.

Index Terms—Cross-view, dense trajectories, view knowledge transfer.
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1 INTRODUCTION

Video based human action recognition has many applica-
tions in human-computer interaction, surveillance, video
indexing and retrieval. Actions or movements generate
varying patterns of spatio-temporal appearances in videos
that can be used as feature descriptors for action recog-
nition. Based on this observation, several visual repre-
sentations have been proposed for discriminative human
action recognition such as space-time pattern templates [1],
shape matching [2]–[4], spatio-temporal interest points [5]–
[10], and motion trajectories based representation [11]–
[14]. Especially, dense trajectory based methods [12]–[14]
have shown impressive results for action recognition by
tracking densely sampled points through optical flow fields.
While these methods are effective for action recognition
from a common viewpoint, their performance degrades
significantly under viewpoint changes. This is because
the same action appears different and results in different
trajectories when observed from different viewpoints.

A practical system must recognize human actions from
unknown and, more importantly, unseen viewpoints. One
approach for recognizing actions across different view-
points is to collect data from all possible views and train
a separate classifier for each case. This approach does not
scale well as it requires a large number of labelled samples
for each view. To overcome this problem, some techniques
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Fig. 1: Existing cross-view action recognition techniques [15]–
[23] connect two different views with a set of linear transfor-
mations that are unable to capture the non-linear manifolds on
which real actions lie. (a) Li and Zickler [23] construct cross-view
action descriptors by applying a set of linear transformations on
view-dependent descriptors. The transformations are obtained by
uniformly sampling a few points along the path connecting source
and target views. (b) Wang et al. [21] learn a separate linear
transformation for each body part using samples from training
views to interpolate unseen views. (c) Our proposed R-NKTM
learns a shared high-level space among all possible views. The
view-dependent action descriptors from both source and target
views are independently transferred to the shared space using a
sequence of non-linear transformations.

infer 3D scene structure and use geometric transformations
to achieve view invariance [3], [24]–[27]. These methods
often require robust joint estimation which is still an open
problem in real-world settings. Other methods focus on
view-invariant spatio-temporal features [28]–[32]. However,
the discriminative power of these methods is limited by
their inherent structure of view-invariant features [33].

Knowledge transfer-based methods [17]–[23], [34] have
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Fig. 2: Framework of the proposed R-NKTM learning algorithm. A realistic 3D human model (a) is fitted to a real mocap sequence
(b) to generate 3D action video (c) which is projected to plains viewed from n � 108 angles. Projection from only two viewpoints
are shown in (d). This results in n sequences of 2D pointclouds that are connected sequentially to construct synthetic trajectories
(red curves in (d)) which are used to learn a general codebook (e). A bag-of-features approach is used to build the dense trajectory
descriptors (f) from which a single R-NKTM (g) is learned. Note that instead of action labels, we use dummy labels where each 3D
video gets a different label. The R-NKTM is learned once only and generalizes to real videos for cross-view feature extraction.

recently become popular for cross-view action recognition.
These methods find a view independent latent space in
which features extracted from different views are directly
comparable. For instance, Li and Zickler [23] proposed
to construct virtual views between action descriptors from
source and target views. They assume that an action de-
scriptor transforms continuously between two viewpoints
and the virtual path connecting two views lies on a hyper-
sphere (see Fig. 1-(a)). Thus, [23] computes virtual views
as a sequence of linearly transformed descriptors obtained
by making a finite number of stops along the virtual path.
This method requires samples from both source and target
views during training to construct virtual views.

To relax the above constraint on training data, Wang
et al. [21] used a set of discrete views during training to
interpolate arbitrary unseen views at test time. They learned
a separate linear transformation between different views for
each human body part using a linear SVM solver as shown
in Fig. 1-(b), thereby limiting the scalability and increasing
the complexity of their approach.

Existing view knowledge transfer approaches are unable
to capture the non-linear manifolds where realistic action
videos generally lie, especially when actions are captured
from different views. This is because they only seek a set
of linear transformations to construct virtual views between
the descriptors of action videos captured from different
viewpoints. Furthermore, such methods are either not ap-
plicable or perform poorly when recognition is performed
on videos acquired from unknown and, more importantly,
unseen viewpoints.

In this paper, we propose a different approach to view
knowledge transfer that relaxes the assumptions on the
virtual path and the requirements on the training data.
We approach cross-view action recognition as a non-linear

knowledge transfer learning problem where knowledge
from multiple views is transferred to a shared compact
high-level space. Our approach consists of three phases.
Figure 2 shows an overview of the first phase where a Ro-
bust Non-linear Knowledge Transfer Model (R-NKTM) is
learned. The proposed R-NKTM is a deep fully-connected
network with weight decay and sparsity constraints, which
learns to transfer action video descriptors captured from
different viewpoints to a shared high-level representation.
The strongest point of our technique is that we learn a
single R-NKTM for mapping all action descriptors from
all camera viewpoints to a shared compact space. Note that
the labels used in Fig. 2 are dummy labels where every
sequence is given a unique label that does not correspond
to any specific action. For example, for a mocap dataset
S � tS1, S2, � � � , Syu consisting of y sequences in any
arbitrary order, every sequence Si is assigned a unique label
i which is a dummy label since some of the sequences
could belong to the same action performed differently. The
motivation for using dummy labels is to force R-NKTM
to learn view invariant features rather than features specific
to the mocap actions. Thus, action labels are not required
while R-NKTM learning or while transferring training
and test action descriptors to the shared high-level space
using the R-NKTM. The second phase is training, where
action descriptors from unknown views are passed through
the learned R-NKTM to construct their cross-view action
descriptors. Action labels of training data are now required
to train the subsequent classifier. In the test phase, view-
invariant descriptors of actions observed from unknown
and previously unseen views are constructed by forward
propagating their view dependent action descriptors through
the learned R-NKTM. Any classifier can be trained on the
cross-view action descriptors for classification in a view-
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invariant manner. We use a simple linear SVM classifier to
show the strength of the proposed R-NKTM.

Our R-NKTM learning scheme is based on the obser-
vation that similar actions, when observed from different
viewpoints, still have a common structure that puts them
apart from other actions. Thus, it should be possible to sep-
arate action related features from viewpoint related features.
The main challenge is that these features cannot be linearly
separated. The second challenge comes from learning a
non-linear model itself, which requires a large amount
of training data. Our solution is to learn the R-NKTM
from 2D projections of action trajectories of synthetic 3D
human models fitted to real motion capture (mocap) data.
By projecting these 3D human models to different views,
we can generate a large corpus of synthetic trajectories to
learn the R-NKTM. We use k-means to generate a general
codebook for encoding the action trajectories. The same
codebook is used to encode dense trajectories extracted
from real action videos in the training and test phases.

In summary, the major contribution of our approach
is that we learn a single Robust Non-linear Knowledge
Transfer Model (R-NKTM), which can bring any action
observed from an unknown viewpoint to its compact high-
level representation. Moreover, our method encodes action
trajectories using a general codebook learned from synthetic
data and then uses the same codebook to encode action tra-
jectories of real videos. Thus, new action classes from real
videos can easily be added using the same learned NTKM
and codebook. Comparison with eight existing cross-view
action recognition methods on five benchmark datasets,
including the IXMAS [31], UWA3D Multiview Activity
II [35], Northwestern-UCLA Multiview Action3D [21],
Hollywood2 [38] and UCF Sports [36] datasets, shows that
our method is faster and achieves higher accuracy especially
when there are large viewpoint variations.

This paper is an extension of our prior work [37], where
we transfer a given action acquired from any viewpoint
to its canonical view. Knowledge of the canonical view is
required for NKTM learning in [37]. This is a problem
because the canonical view is not only action dependent,
it is ill-defined. For example, what would be the canonical
view of a person walking in a circle? Another limitation
of [37] is that cylinders were fitted to the mocap data to
approximate human limbs, head and torso. The trajectories
generated from such models do not accurately represent
human actions. In this paper, we extend our work by
removing both limitations. Firstly, we no longer require
identification of the canonical view for learning the new
R-NKTM and use dummy labels instead. Secondly, we
fit realistic 3D human models to the mocap data and
hence generate more accurate trajectories. Using 3D human
models also enables us to vary and model the human body
shape and size. Besides these extensions, we also perform
additional experiments on three more datasets namely, the
UWA3D Multiview Activity II [35], UCF Sports [36] and
Hollywood2 [38]. We denote our prior model [37] by
NKTM and the one proposed in this paper by R-NKTM.

2 RELATED WORK

The majority of existing literature [1]–[14], [39]–[42] deals
with action recognition from a common viewpoint. While
these approaches are quite successful in recognizing actions
captured from similar viewpoints, their performance drops
sharply as the viewpoint changes due to the inherent view
dependence of the features used by these methods. To tackle
this problem, geometry based methods have been proposed
for cross-view action recognition. Rao et al. [30] introduced
an action representation to capture the dramatic changes of
actions using view-invariant spatio-temporal curvature of
2D trajectories. This method uses a single point (e.g. hand
centroid) trajectory. Yilmaz and Shah [24] extended this
approach by tracking the 2D points on human contours.
Given the human contours for each frame of a video,
they generate an action volume by computing point corre-
spondences between consecutive contours. Maximum and
minimum curvatures on the spatio-temporal action volume
are used as view-invariant action descriptors. However,
these methods require robust interest points detection and
tracking, which are still challenging problems.

Instead of using geometry constraints, Junejo et al. [32]
proposed Self-Similarity Matrix that is constructed by com-
puting the pairwise similarity between any pair of frames.
Hankelet [28] represents actions with the dynamics of
short tracklets, and achieves cross-view action recognition
by finding the Hankelets that are invariant to viewpoint
changes. These methods perform poorly on videos acquired
from viewpoints that are significantly different from those
of the training videos [20], [37].

Recently, transfer learning approaches have been em-
ployed to address cross-view action recognition by explor-
ing some form of statistical connections between view-
dependent features extracted from different viewpoints. A
notable example of this category is the work of Farhadi
et al. [18], who employed Maximum Margin Clustering to
generate split-based features in the source view, then trained
a classifier to predict split-based features in the target view.
Liu et. al. [20] learned a cross-view bag of bilingual words
using the simultaneous multiview observations of the same
action. They represented the action videos by bilingual
words in both views. Zheng and Jiang [34] proposed to
build a transferable dictionary pair by forcing the videos of
the same action to have the same sparse coefficients across
different views. However, these methods require feature-
to-feature correspondence at the frame-level or video-level
during training, thereby limiting their applications.

Li and Zickler [23] assume that there is a smooth
virtual path connecting the source and target views. They
uniformly sample a finite number of points along this
virtual path and consider each point as a virtual view i.e. a
linear transformation function. Action descriptors from
both views are augmented into cross-view feature vectors,
by applying a finite sequence of linear transformations
to each descriptor. Recently, Zhang et al. [22] extended
this approach by applying an infinite sequence of linear
transformations. Although, these methods can operate in
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the absence of feature-to-feature correspondence between
source and target views, they still require the samples from
target view during training.

More recently, Wang et al. [21] proposed cross-
view action recognition by discovering discriminative
3D Poselets and learning the geometric relations
among different views. However, they learn a separate
transformation between different views using a linear SVM
solver. Thus, many linear transformations are learned for
mapping between different views. For action recognition
from unseen views, all learned transformations are used
for exhaustive matching and the results are combined with
an AND-OR Graph (AOG). This method also requires 3D
skeleton data for training, which is not always available.
Gupta et al. [15] proposed to find the best match for each
training video in large mocap sequences using a Non-linear
Circular Temporary Encoding method. The best matched
mocap sequence and its projections on different angles
are then used to generate more synthetic training data
making the process computationally expensive. Moreover,
the success of this approach depends on the availability
of a large mocap dataset which covers a wide range of
human actions [15], [16].
Deep Learning Models: Deep learning models [43]–[45]
can learn a hierarchy of features by constructing high-level
representations from low-level ones. Due to the impres-
sive results of such deep learning on handwritten digit
recognition [44], image classification [46] and object detec-
tion [47], several methods have been recently proposed to
learn deep models for video based action recognition. Ji et
al. [48] extended the deep 2D convolutional neural network
(CNN) to 3D where convolutions are performed on 3D
feature maps in spatial and temporal dimensions. Simonyan
and Zisserman [49] trained two CNNs, one for RGB images
and one for optical flow, to learn spatio-temporal features.
Gkioxari and Malik [50] extended this approach for action
localization. Donahue et al. [51] proposed an end-to-end
trainable recurrent convolutional network which processes
video frames with a CNN, whose outputs are passed
through a recurrent neural network. None of these methods
is designed for action recognition in videos acquired from
unseen views. Moreover, learning deep models for the task
of cross-view action recognition requires a large corpus of
training data acquired from multiple views which is typi-
cally unavailable and very expensive to acquire and label.
These limitations motivate us to propose a pipeline for
generating realistic synthetic training data and subsequently
learn a Robust Non-linear Knowledge Transfer Model (R-
NKTM) which can transfer action videos from any view
to a high level space, where actions can be matched in a
view-invariant way. Although learned from synthetic data,
the proposed R-NKTM is able to generalize to real action
videos and achieve state-of-the-art results.

3 PROPOSED APPROACH

The proposed approach comprises three main stages in-
cluding feature extraction, Robust Non-linear Knowledge

Transfer Model (R-NKTM) learning, and cross-view action
description. In the feature extraction stage, synthetic dense
trajectories are first generated by fitting 3D human models
to mocap sequences and projecting the resulting 3D videos
on 2D image planes corresponding to different viewpoints.
The 2D dense trajectories are then represented by bag-of-
features. In the model learning stage, a deep fully-connected
network, called R-NKTM, is learned such that it transfers
the view-dependent trajectory descriptors of the same action
observed from different viewpoints to a shared high-level
virtual view. In the third stage, the dense trajectory descrip-
tors of real action videos are passed through the learned R-
NKTM to construct cross-view action descriptors. Details
of each stage are given below.

3.1 Feature extraction

Dense trajectories have shown to be effective for action
recognition [12]–[15]. Our motivation for using dense tra-
jectories is that they can be easily extracted from conven-
tional videos as well as the 2D projections of synthetic 3D
videos generated from mocap data.

3.1.1 Dense trajectories from videos
To extract trajectories from videos, Wang et al. [12], [13]
proposed to sample dense points from each frame and
track them using displacement information from a dense
optical flow field. The shape of a trajectory encodes the
local motion pattern. Given a trajectory of length L, a
sequence S of displacement vectors ∆Pt � pPt�1�Ptq �
pxt�1 � xt, yt�1 � ytq is formed and normalized as:

S � p∆Pt, ...,∆Pt�L�1q°t�L�1
i�t }∆Pi}

. (1)

The descriptor S encodes the shape of the trajectory. To em-
bed appearance and motion information, a spatio-temporal
volume aligned with the trajectory is subdivided into a
spatio-temporal grid and Histogram of Oriented Gradient
(HOG), Histogram of Optical Flow (HOF) and Motion
Boundary Histogram (MBH) descriptors are computed in
each cell of the grid. The bag-of-features approach is then
employed to construct a histogram of visual word occur-
rences for each descriptor (trajectory shape, HOG, HOF,
MBH) separately. The final descriptor is a concatenation of
these four histograms. However, unlike [12], [13] we only
use the trajectory descriptors since their extraction using
multiple viewpoints and scales is computationally efficient
as shown in Section 3.1.2. The same process, on the other
hand, is computationally very expensive for the remaining
three descriptors i.e. HOG, HOF, and MBH. Moreover,
using trajectories only is also robust to changes in visual
appearance due to clothing and lighting conditions.

3.1.2 Dense trajectories from mocap sequences
Figure 2 gives an overview of the steps involved in
generating synthetic dense trajectories using different
human body shapes performing a large number of actions
rendered from numerous viewpoints. Details are below.
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3D human body models: There are different ways to
generate 3D human models. For example, Bogo et al. [52]
developed the FAUST dataset containing full 3D human
body scans of 10 individuals in 30 poses. However, the
skeleton data is not provided for these scans. Another
way to generate a 3D human model is to use the open
source MakeHuman software [53], which can synthesize
different realistic 3D human shapes in a predefined pose
and also provide the joints positions that can be used for
generating human models in different poses. We use this
technique for generating the 3D human models in our work.

Fitting 3D human models to mocap sequences: Several
approaches [54], [55] have been proposed in the literatures
to fit a 3D human model to the motion capture skeleton
data of a human subject. For instance, the SCAPE
method [55] learns pose and body-shape deformation
models from the training scans of different human bodies
in a few poses. Given a set of markers, SCAPE constructs
a full mesh which is consistent with the SCAPE models,
best matches with the given markers and maintains realistic
muscle deformations. This method takes approximately 3
minutes to generate each frame. Another example is the
MoSh method [54], which estimates an accurate 3D body
shape directly from the mocap skeleton without the use of
3D human scans. MoSh is also able to estimate soft-tissue
motions from mocap data and subsequently use them
to produce animations with subtlety and realism. MoSh
requires about 7 minutes to estimate a subject’s shape.
However, these methods are computationally expensive
to apply on a large corpus of mocap sequences. Thus,
we use the open source Blender package [56] to fit
3D human models to mocap data. Given a 3D human
model generated by the MakeHuman software and a
mocap sequence, Blender normalizes the mocap skeleton
data with respect to the skeleton data of the human
model and then fits the model to the normalized mocap
data. This process results in a synthetic but realistic full
3D human body video corresponding to a mocap sequence.

Projection from multiple viewpoints: We deploy a
total of 108 synthetic cameras (at distinct latitudes and
longitudes) on a sphere surrounding the subject performing
an action, as shown in Fig. 3. Given a perspective camera
and a frame of a synthetic full 3D human body sequence,
we deal with self-occlusions by removing points that
are not visible from the given camera viewpoint. First,
we perform back-face culling by removing 3D points
whose normals face away from the camera. Then, the
hidden point removal technique [57] is applied on the
remaining 3D points. This gives us a set of visible 3D
points corresponding to the given viewpoint. The visible
3D points are projected to the x�y plain using perspective
projection resulting in a 2D pointcloud. We repeat this
process for all 108 cameras and all frames of the synthetic
full 3D human body sequence, thereby, 108 sequences of
2D pointclouds are generated for each synthetic full 3D
human action sequence corresponding to a mocap sequence.

Dense trajectory extraction: Since we already have dense

Fig. 3: Virtual cameras are placed on the hemisphere looking
towards the center of the sphere to generate 108 virtual views.

correspondence between the 3D human models in each
pose, it is straight forward to extract trajectory features
from their projected sequence of 2D pointclouds by simply
connecting them in time over a fixed horizon of L frames.
A sequence S of normalized displacement vectors ∆Pt is
calculated for each point (1). We use the same L � 15
for both synthetic and real videos. We represent each video
(synthetic or real) by a set of motion trajectory descriptors.

We construct a codebook of size k � 2000 by clustering
the trajectory descriptors with k-means. Note that clustering
is performed only over the synthetic trajectory descriptors
to learn the codebook. Thus, unlike existing cross-view
action recognition techniques [15]–[17], [20], [23] the code-
book we learn does not use the trajectory descriptors of real
videos from IXMAS [31], UWA3DII [35] or Northwestern-
UCLA [21] datasets. We call this the general codebook.
We consider each cluster as a codeword that represents a
specific motion pattern shared by the trajectory descriptors
in that cluster. One codeword is assigned to each trajectory
descriptor based on the minimum Euclidean distance. The
resulting histograms of codeword occurrences are used as
trajectory descriptors. Real action videos are encoded with
the same codebook. Recall that unlike dense trajectory-
based methods [12], [13] which use HOF, HOG, and MBH
descriptors along with trajectories, our method only uses
trajectory descriptors.

3.2 Non-linear Knowledge Transfer Model
Besides the limitations of employing linear transforma-
tion functions between views, existing cross-view action
recognition methods [15], [18], [20]–[23] are either not
applicable to unseen views or require augmented training
samples which cover a wide range of human actions.
Moreover, these methods do not scale well to new data
and need to repeat the computationally expensive model
learning process when a new action class is to be added.
To simultaneously overcome these problems, we propose a
Robust Non-linear Knowledge Transfer Model (R-NKTM)
that learns to transfer the action trajectory descriptors from
all possible views to a shared compact high-level virtual
view. Our R-NKTM is learned using synthetic training data
and is able to generalize to real data without the need for
retraining or fine-tuning, thereby increasing its scalability.

As depicted in Fig. 4, our R-NKTM is a deep network,
consisting of Q fully-connected layers (where Q � 4)
followed by a softmax layer and ppqq units in the q-th
fully-connected layer where q � 1, 2, � � � , Q and pp1q �
2000, pp2q � 1000, pp3q � 500, pp4q � 2488. For a given
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Fig. 4: R-NKTM learns to find a shared high-level view and
the corresponding set of non-linear transformations connecting the
input views to it.

training sample xi
j P Rk, where xi

j is the j-th sample in i-
th view, the output of the first layer is hp1q � fpWp1qxij �
bp1qq P Rpp1q , where Wp1q P Rpp1q�k is a weight matrix
to be learned in the first layer, bp1q P Rpp1q is a bias
vector, and fp�q is a non-linear activation function which
is typically a ReLU (Rectified Linear Unit), sigmoid or
tangent hyperbolic function. The ReLU function, fpaq �
maxp0, aq, does not suffer from the gradient vanishing
problem like the sigmoid and tangent hyperbolic functions
do. Moreover, it has been shown that deep networks can be
trained efficiently using the ReLU function even without
the need for pre-training [58]. Finally, ReLU generates
sparse representations with true zeros that are suitable
for exploiting sparsity in the data, which is the case for
histogram of codeword occurrences [58]. Therefore, we use
ReLU as the activation function in our proposed model.
Similarly, the output of the qth layer hpqq is computed as :

hpqq � fpWpqqhpq�1q � bpqqq P Rppqq , (2)

where q � 2, 3, � � � , Q. Finally, the output of the last fully-
connected layer hpQq is passed through a softmax layer to
find the appropriate class label.

We use this structure to find a shared high-level space
among all possible views. Specifically, in our problem, the
inputs to the R-NKTM are synthetic trajectory descriptors
corresponding to mocap sequences over different views,
while the output is their dummy class labels. Since we
use the CMU mocap dataset [59] consisting of 2488 action
sequences, the last fully-connected layer has 2488 units
whose outputs are given to the softmax layer. The basic
idea of this R-NKTM is that regardless of the input view
of an unknown action (recall that we do not use the action
labels of the mocap sequences), we encourage the output
class label of the R-NKTM to be the same for all views of
the given action. We explain this idea in the following.

Assume that there is a set of sequential non-linear
transformations connecting two views. Thus, there are n
sets of transformations connecting n input views to a shared
virtual view. We refer to the intermediate transformations
as virtual views. Moreover, assume that the videos of the
same action observed from different viewpoints share the
same high-level feature representation. R-NKTM learns the
non-linear transformations to map any action observed from
any viewpoint to this shared high level space.

The learning of the proposed R-NKTM is carried
out by updating its parameters θK � tθW, θbu,
where θW � tWp1q,Wp2q, � � � ,WpQqu and θb �
tbp1q,bp2q, � � � ,bpQqu, for minimizing the following ob-
jective function over all samples of the input views:

E1pθK ;xi
j P Xq � 1

2nm

m̧

j�1

ņ

i�1

`pzj , gpxi
jqq, (3)

where n is the number of viewpoints, m is the number of
samples in the mocap dataset (for CMU mocap dataset [59]:
m � 2488), zj denotes class label of the j-th mocap
sequence i.e. zj � j and ` denotes softmax loss function.

Due to the high flexibility of the proposed R-NKTM
(e.g. number of units in each layer ppqq, θK), appropriate
settings in the configuration of the R-NKTM are needed to
ensure that it learns the underlying data structure. Since the
input data xi

j P Rpp0q , where pp0q � 2000, we discard the
redundant information in the high dimensional input data
by mapping it to a compact, high-level and low dimensional
representation. This operation is performed by 3 fully-
connected layers (hp1q,hp2q,hp3q) of the R-NKTM.

To avoid over-fitting and improve generalization of the
R-NKTM, we add weight decay Jw and sparsity Js regular-
ization terms to the training criterion i.e. the loss function
(3) [60], [61] as given in (4). Large weights cause highly
curved non-smooth mappings. Weight decay keeps the
weights small and hence the mappings smooth to reduce
over-fitting [62]. Weight decay is useful for unsticking
hidden units that have developed very large weights early in
the training and are either always firmly on or always firmly
off. Hidden units that are only rarely active are usually
easier to interpret than those that are active about half of the
time. However, a better way to allow such units to become
useful again is to use a sparsity target [61].

E2pθK ;xi
j P Xq � E1pθK ;xi

j P Xq � λwJw � λsJs, (4)

where λw and λs are the weight decay and sparsity pa-
rameters respectively. The Jw penalty tends to decrease the
magnitude of the weights θW � tW1,W2,W3u:

Jw �
Q̧

q�1

}Wpqq}2F , (5)

where }Wpqq}2F returns the Frobenius norm of the weight
matrix Wpqq of the q-th layer. Let

ρ̂
pqq
t � 1

M

ņ

i�1

mi̧

j�1

h
pqq
t pxi

jq , (6)
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Fig. 5: Visualization of R-NKTM layer outputs for four unseen mocap sequences. Each sequence gives 108 descriptors corresponding
to cameras placed at azimuth angles 00 to 3400 (200 step) and zenith angles 00, 100, 300, 500, 700, 900. The outputs of the R-NKTM
layers (source view xi

j and three virtual views hp1q, hp2q, hp3q) are visualized as images. The 108 rows in an image correspond to
108 viewpoints of the same action. The norm of correlation coefficient (Cn) is shown above each image where larger values indicate
higher similarity between the rows. Note that as the action descriptors progress through the R-NKTM layers, the similarity of the
same action observed from 108 viewpoints increases.

be the mean activation of the t-th unit of the q-th layer
(averaged over all the training samples xi

j P X). The Js
penalty forces ρ̂pqqt to be as close as possible to a sparsity
target ρ, and is defined in terms of the Kullback-Leibler
(KL) divergence between a Bernoulli random variable with
mean ρ̂pqqt and a Bernoulli random variable with mean ρ as

Js �
Q̧

q�1

¸

t

ρ log
ρ

ρ̂
pqq
t

� p1 � ρq log
1 � ρ

1 � ρ̂
pqq
t

. (7)

The reasons for using these two regularization terms
are twofold. Firstly, not all features are equally important.
Secondly, sparsity forces the R-NKTM to find a compact,
shared and high-level virtual view, hp3q, by selecting only
the most critical features. A dense representation may not
learn a good model because almost any change in the input
layer modifies most of the entries in the output layer.

Our goal is to solve the optimization problem
E2pθK ;xi

j P Xq in (4) as a function of θW and θb.
Therefore, we use stochastic gradient descent through back-
propagation to minimize this function over all training
samples in the mocap data xi

j P X.
Figure 5 visualizes the output features of the learned R-

NKTM layers for four mocap actions that were not used
during learning. In each case, a 3D human model was fitted
to the mocap sequence and projected from 108 viewpoints.
Dense trajectories of each view were computed to get 108
descriptors which were then individually passed through
the learned R-NKTM. Figure 5 shows the outputs of each
layer as an image. As expected, the outputs of the shared
virtual view hp3q are very similar for all 108 views. Note
that we drop the outputs of the last fully-connected hp4q

and softmax layers because they are the 2048 class scores
which correspond to dummy labels.

3.3 Cross-View Action Description

So far we have learned an R-NKTM whose input is a
synthetic trajectory descriptor corresponding to a mocap
sequence fitted with a 3D human model observed from
any arbitrary view. The output of the model is the class

label which is the same for all views of the sequence.
While the appearance of synthetic data is different from
real data, the dense trajectories extracted from synthetic
and real videos are similar. Therefore, our model is learned
from dense trajectories only and is able to extract view-
invariant features from the dense trajectories of real data.

Figure 6 shows an overview of the proposed method for
extracting cross-view action descriptors from real videos.
Given a real human action video, the view-dependent
descriptor x is constructed by extracting dense trajectories
from multiple spatial scales of the given video and then
building the histogram of codeword occurrences using the
learned general codebook as discussed in Section 3.1.
Recall that the R-NKTM learns to find a shared high-
level virtual view, hp3q, and the intermediate virtual views,
hp1q,hp2q, connecting the input view and the shared vir-
tual view. This means that we have a set of non-linear
transformation functions which transfer the view-dependent
action trajectory descriptor x from an unknown view to the
shared high-level virtual view. Recall that we remove the
last fully-connected hp4q and softmax layers because these
layers correspond to dummy labels which do not provide
any useful information for representing real videos.

The output of the shared virtual view hp3q alone is
not sufficient for view invariant representation. Figure 5
shows that the first and the intermediate layers also encode
important features shared between the same actions and
this shared information is especially large between nearby
viewpoints. Thus, the cross-view action descriptor is con-
structed by concatenating the transformed features into a
long feature vector

�
x,hp1q,hp2q,hp3q

�
. This new descriptor

implicitly incorporates the non-linear changes from the
unknown input view to the shared high-level virtual view.

To perform cross-view action recognition on any real
video, we extract its dense trajectories, code them with
the general codebook and then pass it through the learned
R-NKTM. The view-invariant features from R-NKTM are
then used to train a linear SVM classifier. The use of
dense trajectories, which are common between the synthetic
and real videos, and training the classifier with real videos
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Fig. 6: Extracting cross-view action descriptors from real videos. The view-dependent dense trajectory descriptor x is extracted from
a training or test video and forward propagated through the learned R-NKTM for transfer to the shared high-level virtual view by
performing a set of non-linear transformations. The outputs of these transformation functions tx,hp1q,hp2q,hp3qu are concatenated to
form a cross-view action descriptor.

bridge the gap between synthetic data used for R-NKTM
learning and real data used for testing. For a given sample
at test time (i.e. samples from target view), we extract its
cross-view features in exactly the same way and feed it to
the trained SVM classifier to find its label.

4 EXPERIMENTS

We evaluate our proposed method on five benchmark
datasets including the INRIA Xmas Motion Acquisi-
tion Sequences (IXMAS) [31], UWA3D Multiview Activ-
ity3DII (UWA3DII) [35], Northwestern-UCLA Multiview
Action3D (N-UCLA) [21], Hollywood2 [38] and UCF
Sports [36]. We compare our performance to the state-
of-the-art action recognition methods including Dense Tra-
jectories (DT) [13], Hankelets [28], Discriminative Virtual
Views (DVV) [23], Continuous Virtual Path (CVP) [22],
Non-linear Circulant Temporal Encoding (nCTE) [15],
AND-OR Graph (AOG) [21], Long-term Recurrent Con-
volutional Network (LRCN) [51], Action Tubes [50], 3D
CNN C3D [48], and Two-stream CNN [49].

We report action recognition results of our method for
unseen and unknown views i.e. unlike DVV [23] and
CVP [22] we assume that no videos, labels or corre-
spondences from the target view are available at training
time. More importantly, unlike existing techniques [15],
[21]–[23], [50], [51] we learn our R-NKTM and build
the codebook using only synthetic motion trajectories gen-
erated from mocap sequences. Therefore, the R-NKTM
and the codebook are general and can be used for cross-
view action recognition on any action video without the
need for retraining or fine-tuning. More precisely, we use
the same R-NKTM learned from synthetic data on all
datasets without fine-tuning the R-NKTM. In contrast,
nCTE [15], DVV [23], CVP [22] and AOG [21] need to
learn different models to transfer knowledge across views
for different datasets. C3D [48], Two-stream CNN [49],
Action Tubes [50] and LRCN [51] require to fine-tune a
pre-trained model for each action video dataset.

In addition to the accuracy of our method, we report the
recognition accuracy of the NKTM proposed in our prior
work [37] which learned to transfer actions observed from
unknown viewpoints to their canonical view.

Fig. 7: Sample frames from the IXMAS [31] dataset.

4.1 Implementation Details

For a fair comparison, we pass the dense trajectory
descriptors, instead of spatio-temporal interest point
descriptors, to DVV [23] and CVP [22]. Moreover, we
use 10 virtual views, each with a 30-dimensional features.
The baseline results are obtained using publicly available
implementations of [13], [15], [23], [28], [48]–[51] or
from the original papers. We fine-tuned the C3D [48]
and Two-stream CNNs [49] models each time on the
training partition of the respective datasets. We used the
MatConvNet toolbox [63] for implementing the proposed
R-NKTM.

Dense Trajectories Extraction: To generate synthetic
dense trajectory descriptors from multiple viewpoints,
we use the CMU Motion Capture dataset [59], which
contains over 2600 mocap sequences of different subjects
performing a variety of daily-life actions. We remove
the short sequences containing less than 15 frames
since dense trajectories require L � 15 minimum
frames. The remaining 2488 mocap sequences are used
for generating synthetic training data to learn the R-
NKTM. Each sequence is treated as a different action
and given a unique dummy label. We can generate as
many different views from the 3D videos as we desire.
Using azimuthal angle φ P Φ � t00 : 200 : 3400u, and
zenith angle θ P Θ � t00, 100, 300, 500, 700, 900u, we
generate (n � 108) camera viewpoints and project the 3D
videos. Dense trajectories are then extracted from the 2D
projections and clustered into k � 2000 clusters using
k-means to make the general codebook. From real videos,
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TABLE 1: Accuracy (%) comparison with state-of-the-art methods under 20 combinations of source (training) and target (test) views
on the IXMAS [31] dataset. Each column corresponds to one source|target view pair. The last column shows the average accuracy.
The best result of each pair is shown in bold. AOG [21] cannot be applied to this dataset because the 3D joint positions are not
provided. Note that DVV and CVP require samples from the target view which are not required by our method.

Source|Target 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean

DT [13] 93.9 64.2 81.8 27.6 87.6 66.4 75.2 22.4 70.0 83.0 73.9 53.3 75.5 77.0 67.0 34.8 42.1 25.8 63.3 48.8 61.7
Hankelets [28] 83.7 59.2 57.4 33.6 84.3 61.6 62.8 26.9 62.5 65.2 72.0 60.1 57.1 61.5 71.0 31.2 39.6 32.8 68.1 37.4 56.4
DVV [23] 72.4 13.3 53.0 28.8 64.9 27.9 53.6 21.8 36.4 40.6 41.8 37.3 58.2 58.5 24.2 22.4 30.6 24.9 27.9 24.6 38.2
CVP [22] 78.5 19.5 60.4 33.4 67.9 29.8 55.5 27.0 41.0 44.9 47.0 41.0 64.3 62.2 24.3 26.1 34.9 28.2 29.8 27.6 42.2
nCTE [15] 94.8 69.1 83.9 39.1 90.6 79.7 79.1 30.6 72.1 86.1 77.3 62.7 82.4 79.7 70.9 37.9 48.8 40.9 70.3 49.4 67.4
LRCN [51] 66.7 63.6 39.4 16.7 60.6 51.5 36.4 16.7 63.3 27.3 50.0 30.3 45.5 47.9 42.1 15.2 14.8 13.6 18.2 13.9 36.7
Action Tubes [50] 68.5 65.2 24.2 17.0 65.8 57.6 45.5 13.3 63.6 32.7 57.0 26.1 44.2 35.5 63.9 14.5 17.0 14.8 22.1 12.7 38.1
C3D [48] 93.9 65.2 83.9 33.6 90.6 72.0 77.3 22.1 71.0 83.7 78.5 49.4 83.7 77.3 68.5 33.6 39.1 26.1 68.1 39.1 62.8
Two-stream [49] 72.1 71.5 41.0 24.6 63.9 58.5 40.9 22.1 65.8 33.6 55.5 30.6 48.8 53.0 49.4 26.1 16.7 24.6 24.6 27.6 42.5

NKTM 92.7 84.2 83.9 44.2 95.5 77.6 86.1 40.9 82.4 79.4 85.8 71.5 82.4 80.9 82.7 44.2 57.1 48.5 78.8 51.2 72.5
R-NKTM 92.7 80.3 83.9 55.2 95.5 80.6 86.4 47.0 82.7 83.6 83.6 75.5 85.8 85.2 84.9 44.2 56.0 53.0 79.0 52.4 74.1

we extract dense trajectories using the method by Wang
et al. [13]. We take the length of each trajectory L � 15
for both mocap and video sequences. As recommended
by [13], we use 8 spatial scales spaced by a factor of
1{?2 and the dense sampling step size 5 for video samples.

R-NKTM Architecture: There are different recommen-
dations for exploring hyper-parameters (e.g. weight decay,
sparsity target, number of units in each layer and number of
layers) of deep networks such as manual search, automatic
search and combinations of both [60]. In our learning
process, we use multi-resolution search. The idea is to
test some values from a larger parameter range, select a
few best configurations and then test again with smaller
steps around these values. To optimize the number of R-
NKTM layers, we tested networks with increasing number
of layers [64] and stopped where the performance peaked
on our validation data. The hidden layer sizes varied
in the intervals r500, 4000s, the weight decay parameter
varied between 0.00001 and 0.01, the learning rates varied
between 0.0001 and 0.1. We used a momentum of 0.9,
weight decay λw � 0.0005, sparsity parameter λs � 0.5,
and sparsity target ρ � 0.05.

4.2 IXMAS Dataset
This dataset [31] consists of synchronized videos observed
from 5 different views including four side views and a
top view. It contains 11 daily-life actions including check
watch, cross arms, scratch head, sit down, get up, turn
around, walk, wave, punch, kick, and pick up. Each action
was performed three times by 10 subjects. Figure 7 shows
examples from this dataset.

We follow the same evaluation protocol as in [15], [23],
[28] and verify our algorithm on all possible pairwise
view combinations. In each experiment, we use all videos
from one camera as training samples and then evaluate
the recognition accuracy on the video samples from the 4
remaining cameras. Comparison of the recognition accuracy
for 20 possible combinations of training and test cameras
is shown in Table 1.

R-NKTM achieves better recognition accuracy than the
NKTM [37], which requires to define a same canonical
view for all actions. Moreover, the proposed R-NKTM

outperforms the state-of-the-art methods on most view pairs
and achieves 74.1% average recognition accuracy, that is
about 7% higher than the nearest competitor nCTE [15].
Note that our R-NKTM can perform much better (about
10% on average) than the nearest competitor nCTE [15],
when camera 4 is considered as either source or target
view (see Table 2). As shown in Fig. 7, camera 4 captured
videos from the top view, so the appearance of these videos
is completely different from the videos captured from the
side views (i.e. camera 0 to 3). Hence, we believe that the
recognition results on camera 4 are the most important for
evaluating cross-view action recognition. Moreover, some
actions such as check watch, cross arms, and scratch head
are not available in the mocap dataset. However, our R-
NKTM achieves 66.7% average accuracy on these three
actions which is about 11% higher than nCTE [15]. This
demonstrates that the proposed R-NKTM is able to transfer
knowledge across views without requiring all action classes
in the learning phase.

Among the knowledge transfer based methods, DVV [23]
and CVP [22] did not perform well. The deep learning
based methods such as LRCN [51] and Action Tubes [50]
achieve low accuracy because they were originally pro-
posed for action recognition from a common viewpoint.
DT [13] achieves a high overall recognition accuracy be-
cause the motion trajectories of action videos captured from
the side views are similar. However, its average accuracy
when camera 4 is considered as either source or target view,
is over 18% lower than our proposed method.

Figure 8 compares the class specific action recognition
accuracies of our proposed R-NKTM with NKTM [37].
R-NKTM achieves higher accuracies for all action classes
excluding check watch. This demonstrates the effectiveness
of our new architecture for cross-view action recognition.

4.3 UWA3D Multiview Activity II Dataset
This dataset [35] consists of a variety of daily-life human
actions performed by 10 subjects with different scales. It
includes 30 action classes: one hand waving, one hand
Punching, two hand waving, two hand punching, sitting
down, standing up, vibrating, falling down, holding chest,
holding head, holding back, walking, irregular walking,
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Fig. 8: Per class recognition accuracy of our proposed R-NKTM
and NKTM [37] on the IXMAS [31] dataset.

TABLE 2: Average accuracies (%) on the IXMAS [31] dataset
e.g. C0 is the average accuracy when camera 0 is used for training
or testing. R-NKTM gives the maximum improvement for the
most challenging case, Camera 4 (top view).

Method C0 C1 C2 C3 C4

DT [13] 67.8 66.4 67.6 66.8 39.8
Hankelets [28] 59.7 59.9 65.0 56.3 41.2
DVV [23] 44.7 45.6 31.2 42.0 27.3
CVP [22] 50.0 49.3 34.7 45.9 31.0
nCTE [15] 72.6 72.7 73.5 70.1 47.5
LRCN [51] 46.3 40.1 43.3 36.3 17.4
Action Tubes [50] 45.7 41.7 48.5 37.2 17.2
C3D [48] 70.1 67.9 69.6 67.7 38.9
Two-stream [49] 50.6 46.1 48.7 42.8 24.6

NKTM 77.8 75.2 80.3 74.7 54.6
R-NKTM 78.4 78.0 80.7 75.8 57.8

lying down, turning around, drinking, phone answering,
bending, jumping jack, running, picking up, putting down,
kicking, jumping, dancing, moping floor, sneezing, sitting
down (chair), squatting, and coughing. Each subject per-
formed 30 actions 4 times. Each time the action was
captured from a different viewpoint (front, top, left and
right side views). Video acquisition from multiple views
was not synchronous thus there are variations in the actions
besides viewpoints. This dataset is challenging because
of varying viewpoints, self-occlusion and high similarity
among actions. For instance, action drinking and phone
answering have very similar motion, but the location of
hand in these two actions is slightly different. Also, actions
like holding head and holding back have self-occlusion.
Moreover, in the top view, the lower part of the body was
not properly captured because of occlusion. Figure 9 shows
four sample actions observed from 4 viewpoints.

We follow [35] and use the samples from two views as
training data, and the samples from the remaining views
as test data. Table 3 summarizes our results. The proposed
R-NKTM significantly outperforms NKTM [37] and the
state-of-the-art methods on all view pairs. The overall
accuracy of the view knowledge transfer based methods
such as DVV [23] and CVP [22] is low because motion

Fig. 9: Sample frames from the UWA3DII [35].

and appearance of many actions look very similar across
view changes.

Interestingly, our method achieves 67.5% average recog-
nition accuracy which is about 8% higher than than the
nearest competitor nCTE [15], when view 4 is considered
as the test view. As shown in Fig. 9, view 4 is the top view
which is challenging because the lower part of the subject’s
body was not fully captured by the camera.

Figure 10 compares the class specific action recognition
accuracies of R-NKTM and NKTM [37]. The proposed
R-NKTM achieves better recognition accuracy on most
action classes. The easiest action to identify is jumping
jack, with an average accuracy of 95.4% and the hardest
is phone answering with an average accuracy of 33.3%.
These results are not surprising, since jumping jack is one
of the activities with the most discriminative trajectories
while phone answering is confused with drinking because
the motion of these actions is very similar.

Notice that for many actions in the UWA3D Multiview
ActivityII dataset such as holding chest, holding head,
holding back, sneezing and coughing, there are no similar
actions in the CMU mocap dataset. However, our method
still achieves high recognition accuracies for these actions.
This demonstrates the effectiveness and generalization abil-
ity of our proposed model for representing human actions
from unseen and unknown views in a view-invariant space.

4.4 N-UCLA Multiview Action3D Dataset
This dataset [21] contains RGB, depth and skeleton data
captured simultaneously by 3 Kinect cameras. The dataset
consists of 10 action categories including pick up with one
hand, pick up with two hands, drop trash, walk around,
sit down, stand up, donning, doffing, throw, and carry.
Each action was performed by 10 subjects from 1 to 6
times. Fig. 11 shows some examples. This dataset is very
challenging because the subjects performed some walking
within most actions and the motion of some actions such
as carry and walk around are very similar. Moreover, most
activities involve human-object interactions.

We follow [21] and use the samples from the first
two cameras for training and samples from the remaining
camera for testing. The comparison of the recognition
accuracy is shown in Table 4. The proposed R-NKTM
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TABLE 3: Comparison of action recognition accuracy (%) on the UWA3D Multiview ActivityII dataset. Each time two views are
used for training and the remaining ones are individually used for testing. Our method achieves the best performance in all cases.

Sources|Target t1, 2u|3 t1, 2u|4 t1, 3u|2 t1, 3u|4 t1, 4u|2 t1, 4u|3 t2, 3u|1 t2, 3u|4 t2, 4u|1 t2, 4u|3 t3, 4u|1 t3, 4u|2 Mean

DT [13] 57.1 59.9 54.1 60.6 61.2 60.8 71 59.5 68.4 51.1 69.5 51.5 60.4
Hankelets [28] 46.0 51.5 50.2 59.8 41.9 48.1 66.6 51.3 61.3 38.4 57.8 48.9 51.8
DVV [23] 35.4 33.1 30.3 40.0 31.7 30.9 30.0 36.2 31.1 32.5 40.6 32.0 33.7
CVP [22] 36.0 34.7 35.0 43.5 33.9 35.2 40.4 36.3 36.3 38.0 40.6 37.7 37.3
nCTE [15] 55.6 60.6 56.7 62.5 61.9 60.4 69.9 56.1 70.3 54.9 71.7 54.1 61.2
LRCN [51] 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3
Action Tubes [50] 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0
C3D [48] 59.5 59.6 56.6 64.0 59.5 60.8 71.7 60.0 69.5 53.5 67.1 50.4 61.0
Two-stream [49] 63.0 47.1 55.8 60.6 53.4 54.2 66.0 50.9 65.3 55.5 68.0 51.9 57.6

NKTM 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5
R-NKTM 64.9 67.7 61.2 68.4 64.9 70.1 73.6 66.5 73.6 60.8 75.5 61.2 67.4

Fig. 10: Per class recognition accuracy of the proposed R-NKTM and NKTM [37] on the UWA3D Multiview ActivityII [35] dataset.

Fig. 11: Sample frames from Northwestern-UCLA Multiview
Action3D dataset [21]. Each column shows a different action.

again outperforms the NKTM [37] and achieves the highest
recognition accuracy.

Figure 12 compares the per action class recognition
accuracy of our proposed R-NKTM and NKTM [37].
Our method achieves higher accuracy than NKTM [37]
for most action classes. Note that a search for some
actions such as donning, doffing and drop trash returns
no results on the CMU mocap dataset [59] used to learn
our R-NKTM. However, our method still achieves 76.8%
average recognition accuracy on these three actions which
is about 10% higher than nCTE [15]. Moreover, walk
around and carry have maximum confusion with each
other because the motion of these actions are very similar.
4.5 Other Datasets
While the focus of the proposed approach is on action
recognition from unknown and unseen views, we also

TABLE 4: Accuracy (%) on the N-UCLA Multiview dataset [21].
DVV and CVP use samples from the target view. AOG requires
the joint positions of training samples. Our method neither re-
quires target view samples nor joint positions.

Method Accuracy Method Accuracy

DT [13] 72.7 Hankelets [28] 45.2
DVV [23] 58.5 CVP [22] 60.6
nCTE [15] 68.6 AOG [21] 73.3
LRCN [51] 64.7 Action Tubes [50] 61.5

NKTM 75.8 R-NKTM 78.1

Fig. 12: Per class recognition accuracy of the proposed R-NKTM
and NKTM [37] on the N-UCLA Action3D dataset [21].
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TABLE 5: Comparison of action recognition accuracy on the
UCF Sports and Hollywood2 datasets.

Dataset Method Only traj. Combined

UCF Sports DT [13] 75.2 88.2
R-NKTM(DT) 76.7 90.0

iDT [14] 78.9 92.3
R-NKTM(iDT) 82.8 93.8

Hollywood2 DT [13] 47.7 58.3
R-NKTM 49.8 59.4
iDT [14] 51.1 62.2

R-NKTM(iDT) 53.3 63.0

evaluate its performance for recognizing actions from pre-
viously seen views to have a baseline and to show that our
method performs equally good when the viewpoint of the
test action is not novel. The evaluation is performed on
the UCF Sports dataset [36] containing videos from sports
broadcasts in a wide range of scenes. As recommended
in [36], we use the Leave-One-Out (LOO) cross-validation
scheme. We compare our proposed method to Dense
Trajectories (DT) [13] and improved Dense Trajectories
(iDT) [14] which are most relevant to our work. Table 5
shows the accuracy of our method in two settings i.e. R-
NKTM (DT) where we pass the dense trajectory descriptors
through R-NKTM and RNKTM (iDT) where we pass the
iDT descriptors through the same R-NKTM. Using only
trajectory descriptors, our method achieves 1.5% and 3.9%
higher accuracy than DT [13] and iDT [14]. However,
combining HOG, HOF, and MBH descriptors with the
trajectory descriptors significantly increases the recognition
accuracy of of DT [13] and iDT [14] by 13% and 13.4%,
respectively. Similarly, adding these features to our cross-
view action descriptor significantly improves the accuracy
of our method in both settings.

Table 5 also shows the mean average precision of the
R-NKTM in both settings on the Hollywood2 dataset [38].
Using only cross-view trajectory descriptors, our method
achieves 2.1% and 2.2% higher accuracy than DT [13]
and iDT [14] respectively. Combining the appearance de-
scriptors with our cross-view trajectory descriptor further
increases the accuracy.

Interestingly, combining the view dependent HOG, HOF
and MBH descriptors with our cross-view descriptor also
improves the accuracy for the multiview case especially
when the difference between the viewpoints is not large.
Table 6 shows comparative results of combined descrip-
tors and the cross-view trajectory only descriptors on the
IXMAS dataset. The accuracy of most source|target com-
binations from side views have improved after combining
the features. This is because the appearance of these views
is quite similar.
4.6 Effects of Concatenating Virtual Views
We evaluate the intermediate performance of our cross-
view descriptor by sequentially adding the virtual views.
Figure 13(a)-(e) shows the recognition accuracy on IXMAS
dataset for all possible source|target view pairs. For most
source|target view pairs, the accuracy increases as more vir-
tual views (starting from the first layer of the R-NKTM) are
added to the cross-view action descriptor. The maximum

TABLE 7: Computation time (in minutes) including feature
extraction on the N-UCLA dataset [21]. Train+1 is the time
required to add a new action class after training with 9 classes.
Testing time is for classifying 429 action videos.

Method Train+1 Testing
AOG [21] 780 240
nCTE [15] 19 12
R-NKTM 0.52 12

incremental gain is obtained when camera 4 (top view) is
used as training or test view. The minimum gain is for 0|1
view pair because the viewpoints of these cameras are very
similar. Thus the raw trajectory descriptors already achieve
high accuracy. On the other hand as shown in Fig. 13(f)-(i),
starting from the last layer of the proposed R-NKTM, the
recognition accuracy also increases as more intermediate
layer are added to the cross-view action descriptor. Notice
that the minimum incremental gain is obtained when cam-
era 4 is used as training or test view which demonstrates
that the shared high-level (last fully connected) layer is
more robust to viewpoints changes compared to the other
layers. Fig. 14 shows that for all source|target view pairs
of UWA3DII dataset, the recognition accuracy increases by
adding virtual views to the descriptor.

4.7 Computation Time
Our technique outperforms the current cross-view action
recognition methods on the IXMAS [31], UWA3DII [35]
and N-UCLA [21] datasets by transferring knowledge
across views using the same R-NKTM learned without su-
pervision (without real action labels). Therefore, compared
to existing cross-view action recognition techniques, the
proposed R-NKTM is more general and can be used in on-
line action recognition systems. More precisely, the cost of
adding a new action class using our approach in an on-
line system is equal to SVM training. On the other hand,
this situation is computationally expensive for most existing
techniques especially for our nearest competitors [15], [21]
as shown in Table 7. For instance nCTE [15] requires to
perform computationally expensive spatio-temporal match-
ing for each video sample of the new action class. Similarly,
AOG [21] needs to retrain the AND/OR structure and
tune its parameters. Table 7 compares the computational
complexity of the proposed method with AOG [21] and
nCTE [15]. Compared to AOG [21] and nCTE [15], the
training time of the proposed method for adding a new
action class is negligible. Thus, it can be used in an on-line
system. Moreover, the test time of the proposed method is
much faster than AOG [21] and comparable to nCTE [15].
However, nCTE [15] requires 30GB memory to store the
augmented samples whereas our model requires 57MB
memory to store the learned R-NKTM and the general
codebook.

5 CONCLUSION

We presented an algorithm for unsupervised learning of a
Robust Non-linear Knowledge Transfer Model (R-NKTM)
for cross-view action recognition. We call it unsupervised
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TABLE 6: Effects of combining HOG, HOF, MBH with our proposed cross-view descriptor on the IXMAS [31] dataset
Source|Target 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean
R-NKTM (Traj. only) 92.7 80.3 83.9 55.2 95.5 80.6 86.4 47.0 82.7 83.6 83.6 75.5 85.8 85.2 84.9 44.2 56.0 53.0 79.0 52.4 74.1
R-NKTM (all) 96.7 80.3 89.1 51.5 96.7 80.9 88.5 43.3 79.7 87.9 84.8 73.9 86.1 87.9 87.9 43.3 54.5 50.3 84.2 52.4 75.0

Fig. 13: IXMAS dataset: Effects of adding features from different layers ((a)-(e) starting from the first layer and (f)-(j) starting from
the last layer of R-NKTM) to the cross-view action descriptor e.g. 1 � 2 � 3 means that the descriptor is built by concatenating
features from the source view, virtual view 1 and virtual view 2 as shown in Fig. 4.

Fig. 14: UWA3DII dataset: Effects of adding features from different layers to the cross-view action descriptor

because the labels used to learn the R-NKTM are just
dummy labels and do not correspond to actions that we
want to recognize. The proposed R-NKTM is scalable as
it needs to be trained only once using synthetic data and
generalizes well to real data. We presented a pipeline for
generating a large corpus of synthetic training data required
for deep learning. The proposed method generates realistic
3D videos by fitting 3D human models to real motion
capture data. The 3D videos are projected on 2D plains
corresponding to a large number of viewing directions and
their dense trajectories are calculated. Using this approach,
the dense trajectories are realistic and easy to compute
since the correspondence between the 3D human poses is
known a priori. A general codebook is learned from these
trajectories using k-means and then used to represent the
synthetic trajectories for R-NKTM learning as well as the
trajectories extracted from real videos during training and
testing. The major strength of the proposed R-NKTM is
that a single model is learned to transform any action from
any viewpoint to its respective high level representation.
Moreover, action labels or knowledge of the viewing angles
are not required for R-NKTM learning or R-NKTM based
representation of real video data. To represent actions in
real video sequences, their dense trajectories are coded with
the general codebook and forward propagated through the
R-NKTM. A simple linear SVM classifier was used to
show the strength of our model. Experiments on bench-
mark multiview datasets show that the proposed approach
outperforms existing state-of-the-art.
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