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Abstract—In this work, we propose a tracker that differs from most existing multi-target trackers in two major ways. Firstly, our tracker
does not rely on a pre-trained object detector to get the initial object hypotheses. Secondly, our tracker’s final output is the fine contours
of the targets rather than traditional bounding boxes. Therefore, our tracker simultaneously solves three main problems: detection, data
association and segmentation. This is especially important because the output of each of those three problems are highly correlated
and the solution of one can greatly help improve the others. The proposed algorithm consists of two main components: structured
learning and Lagrange dual decomposition. Our structured learning based tracker learns a model for each target and infers the best
locations of all targets simultaneously in a video clip. The inference of our structured learning is achieved through a new Target
Identity-aware Network Flow (TINF), where each node in the network encodes the probability of each target identity belonging to that
node. The probabilities are obtained by training target specific models using a global structured learning technique. This is followed by
proposed Lagrangian relaxation optimization to find the high quality solution to the network. This forms the first component of our
tracker. The second component is Lagrange dual decomposition, which combines the structured learning tracker with a segmentation
algorithm. For segmentation, multi-label Conditional Random Field (CRF) is applied to a superpixel based spatio-temporal graph in a
segment of video, in order to assign background or target labels to every superpixel. We show how the multi-label CRF is combined
with the structured learning tracker through our dual decomposition formulation. This leads to more accurate segmentation results and
also helps better resolve typical difficulties in multiple target tracking, such as occlusion handling, ID-switch and track drifting. The
experiments on diverse and challenging sequences show that our method achieves superior results compared to competitive
approaches for detection, multiple target tracking as well as segmentation.

Index Terms—Multiple target tracking, Object segmentation, Network flow, Lagrangian relaxation, Dual decomposition.

F

1 INTRODUCTION

Multi-target tracking is, undoubtedly, one of the fun-
damental problems in computer vision, with a variety of
applications ranging from surveillance to sport analysis and
medical image analysis. The goal of tracking is to detect
targets and associate them across sequence of frames. Tradi-
tionally, the output of the detection stage is a set of bounding
boxes corresponding to targets present in the video, where
each bounding box is assigned a target label. However,
the ultimate way of detecting a target is to localize it and
provide pixel wise segmentation, so that the fine contour of
a target can be achieved. This way each pixel is assigned a
target label.

Formulating tracking where each target pixel is assigned
a label, requires solving three major problems: detection,
data association and segmentation. Each of these problems
has their own line of research, which have been active for
decades in the computer vision community. Most existing
tracking methods limit themselves to bounding box level
target representation and mainly focus on improving ei-
ther the detection or the data association component of
the tracker. Though convenient, bounding boxes are coarse
approximations of targets. Moreover, since bounding boxes
usually include non-target pixels, the features extracted
from them could be contaminated by background pixels.
When these features are used as target representation in
tracking, they may cause drift, ID-switches and inaccurate
target localization. Therefore, the ultimate goal of tracking
should be to determine the pixel-wise localization of targets
instead of just coarse bounding boxes.

The focus of most previous multi-target tracking algo-

rithm is to improve the data association component of the
tracker. A majority of these algorithms assume the existence
of pre-trained object detector. Some of these methods heav-
ily rely on the results of the pre-trained detector [1], [2],
while some have more tolerance [3], [4], [5] toward miss-
detections and false detections that commonly happen when
using a pre-trained detector. One solution to address this
issue is to design trackers that internally train a detector for
each target, eliminating the need for a pre-trained detector.
However, there is only a handful of trackers that focus on
solving both detection and tracking in the context of multi-
target tracking [6], [7], [8], [9]. Due to the lack of a good
pre-trained object detector in several scenarios, e.g those
in which objects undergo heavy articulation and occlusion,
and also due to heavy correlation between performance of
a data association method and object detector, solving de-
tection and data association simultaneously is very natural.
An example to further motivate this approach is shown in
Fig. 1, where we show a scenario in which poor detection
propagates into data association and results in poor tracking
performance.

Another problem that is highly correlated with tracking
is video segmentation. Looking back at the literature, these
two problems are almost always considered as separate
problems. However, we argue that tracking and segmen-
tation are actually closely related and solving them should
help each other (See Fig. 2). On one hand, the object track,
which is a set of bounding boxes with one bounding box
in every frame, would provide strong high-level guidance
for the target/background segmentation task. Pixels within
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Fig. 1. Correlation between detection and tracking. (a) shows the tracking results of our proposed tracker (bottom row) and the method from [10]
(top row). A pre-trained object detector fails when objects go under heavy articulation. This error is propagated to the data association step, which
consequently cause failure in tracking. Differently, our proposed tracker is based on online discriminative learning and solves detection and global
data association simultaneously, thus handles articulated targets well. The same observation can be made from (b). Each row represents one of the
three identities in the scene. Each circle shows a corresponding match in a frame and the color represents the ID that is assigned to that detection.
As can be seen, the top row has a lot of fragmented tracks while the bottom row only contains three tracks corresponding to the three identities.

a target box are highly likely to be labelled as the target.
Conversely, the chance that pixels far away from the box
belonging to the target is quite low. On the other hand,
the object segmentation would separate object from other
objects and background, which will be useful for deter-
mining track locations in every frame. This will help in
resolving common issues in tracking. For example, during
occlusion, the bounding box based appearance score of the
occluded target is typically low, posing difficulty in tracking.
However, the pixel labels in the visible part of the target
would guide tracker to find the correct location of the target.
In addition, labels of pixels in target/background contain
information about target identities and locations, thus will
help in avoiding track drifting and ID-switches.

In this paper, we propose to combine detection, data
association and segmentation in one framework. The key
idea to couple these three tasks is the high correlation
between them. As discussed above, poor detection results in
poor data association, therefore pixel level segmentation can
help further improve tracking. At the heart of our tracker
lies a Lagrange dual decomposition that combines an online
discriminative tracker with segmentation. Our tracker is a
new online discriminate learning tracker that solves detec-
tion and data association simultaneously. This online tracker
is later combined with a segmentation method through
Lagrange dual decomposition. In each iteration, the two
subproblems of online tracking and segmentation are solved
independently with the Lagrange variables serving as a
connection between them.

For the tracking subproblem in dual decomposition,
we propose an algorithm based on online discriminative
learning, which solves detection and global data association
simultaneously by integrating a new global data association
technique into the inference of a structured learning tracker.
Despite other online trackers which are temporally local,
our tracker provides the tracks across a segment of a video.
The input to our tracker, in every frame, is densely sam-
pled candidate windows instead of sparse detections. This
allows our tracker to impose temporal consistency between
the frames and correct poor detections (mostly caused by
occlusion or severe pose change), thus avoiding error prop-
agation. We propose to perform the inference through a new
Target Identity-aware Network Flow graph (TINF), which is

a variant of multi-commodity flow graph [11].
For the segmentation subproblem, a foreground Gaus-

sian Mixture Model (GMM) is constructed for each target
along with one universal background GMM. These GMMs
are used to compute target/background confidence maps.
For a segment of video (a few frames), a superpixel based
spatio-temporal graph is built and multi-label CRF is ap-
plied to the graph to obtain target/background labeling.

The tracking and segmentation subproblems are coupled
through dual decomposition. We introduce a new coupling
energy term, which penalizes background labels inside tar-
get bounding boxes as well as foreground labels outside
target bounding boxes. Iterative optimization is applied to
solve the problem. In each iteration, Lagrange variables
are updated based on the inconsistency between tracking
and segmentation results. The algorithm converges when
tracking and segmentation results are consistent.

In the earlier version of this paper [12], we introduced
the online discriminative learning component of Lagrange
dual decomposition. This submission further extends [12]
by combining segmentation and online discriminative learn-
ing tracking through dual decomposition. To summarize,
this paper makes following important contributions. First,
we propose a novel framework which combines multiple
target tracking and segmentation in one energy function.
The two tasks benefit from each other, thus leading to
both better tracking and better segmentation results (See
Fig. 2). The unified energy function is optimized effectively
using dual decomposition. Second, to solve the tracking
subproblem, we present a new multiple object tracking
method which combines discriminative learning and global
data association. We introduce a new Target Identity-aware
Network Flow (TINF) and efficiently optimize it through La-
grangian relaxation. Our soft-spatial constraint replaces the
ad-hoc non-maximum suppression step of object detection
methods and further improves the results. Finally, the pro-
posed approach is able to track multiple targets in terms of
finer segments (regions) supported by corresponding target
pixels rather than coarse bounding boxes, and achieve better
or comparable results for both tracking and segmentation
than state-of-art on challenging sequences.

The reminder of this paper is organized as follows. Sec-
tion 2 describes the work most related to this paper. Section
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Initial segmentation results Initial tracking results Final segmentation results Final tracking results

Initial segmentation results Initial tracking results Final segmentation results Final tracking results

Fig. 2. Two examples of the tracking and segmentation tasks benefiting from each other (zoomed in views are shown). First row: By applying
pure segmentation, the upper body of target 9 is mislabelled as target 15 due to similar color. But the tracking part is able to track target 9
correctly. After dual decomposition, the whole body of target 9 is labelled correctly and more accurate box is obtained for target 9. Second row:
Without incorporating segmentation, the track for target 13 drifts to target 1. However, the segmentation results for target 13 are correct using pure
segmentation. After dual decomposition, target 13 is tracked successfully and the segmentation results for target 1 are also improved. Combining
the two subproblems lead to both better tracking and better segmentation results.

3.1 introduces the proposed multiple target tracking method
based on a new target identity-aware network. Section 3.2
presents the approach used for target segmentation. In
Section 3.3, the proposed novel framework, which combines
multiple target tracking (Section 3.1) and segmentation (Sec-
tion 3.2) through dual decomposition, is presented. The
experimental results on diverse and challenging datasets are
shown in Section 4. Finally, Section 5 concludes the paper.

2 RELATED WORK

2.1 Multiple target tracking

Most approaches for multiple target tracking (MOT) follow
tracking-by-detection framework. First, a pre-trained object
detector is applied to find a set of candidate locations for
targets. Then these candidates are fed into a data association
mechanism to form tracks. A majority of previous work
on MOT focuses on designing data association techniques
which can be divided into two groups of local and global
techniques. Local data association methods [1], [13], [14],
[15] are temporally local, which means they consider only
a few frames while solving the association problem. Whilst
most techniques in this class of methods are computation-
ally inexpensive, their use of two frames makes them prone
to ID-switches and other difficulties in tracking such as
occlusions, pose changes and camera motion.

To better deal with above problems, global data asso-
ciation techniques have recently received a lot of atten-
tions. In global association methods, the number of frames
during data association is increased [3], [16], [17]. Recent
approaches have formulated the data association as a net-
work flow problem and its variations [2], [4], [18], [19],
[20]. Despite popularity of these methods, their perfor-
mance heavily depend on object detector outputs, which are
usually poor when dealing with occlusion and articulated
objects. Recent approaches have focused on improving the

performance of the generic object detector [15] or designing
a better data association techniques [2], [21] to improve
tracking. Shu et al. in [15] proposed an extension to de-
formable part-based human detector [22], which can handle
occlusion up to a scale. Additionally some recent work
have directly used the dense detection output, before the
non-maximum suppression, as the input to their tracking
algorithm [23], [24], [25]. This is mostly to overcome the
limitations of pre-trained detectors and non-maximum sup-
pression algorithms when targets are occluding each other
or are too close to each other. An alternative method to
overcome the drawbacks of object detector when dealing
with articulated objects or arbitrary objects (when a good
pre-trained detector does not exist) is online learning of
the object classifier [26], [27], [28]. Online discriminative
learning approaches allow training target specific classifiers
for a given sequence using different features including
video specific features like color histogram. Moreover, these
classifiers can adapt themselves as the appearance of targets
change, which is not the case in pre-trained object detector.

Online discriminative learning methods have been used
extensively for tracking deformable objects in the context
of single object tracking. However, its extension to multiple
objects remains relatively unexplored and is limited to only
few works. The work of Zhang and Maaten [29] is probably
the first attempt to apply online discriminative learning
in tracking multiple objects. In [29], the spatial constraint
among the targets is modeled during tracking. It is shown
that the tracker performs well when the structure among
the objects remains the same (or changes very slowly).
However, this is only applicable to very limited scenarios
and it will perform poorly in others, specially when the
targets are moving independently.

Multi-commodity network flows have been used re-
cently for multi-target tracking [20], [30], [31], [32]. In the
earlier version of this work [12], we show that multi-



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2849374, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

commodity network flows can be used in an inner loop of
structured learning. Additionally the network design in our
work is different from [20], [30], where our network includes
the target identities by considering more than one node per
candidate location and each node encodes the probability
of assigning one of the target identities to that candidate
location. Moreover, the network consists of multiple source
and sink nodes, where each pair accounts for entry and exit
of one target. Also, we show that a high-quality solution
to the network can be found through Lagrange relaxation
of some of the hard constraints, which is more efficient than
Integer Program (IP) or Linear Program (LP) solutions. Thus
we do not need to prune the graph as in [20], [30].

2.2 Object Segmentation in Video
Video object segmentation [33], [34], [35] aims to segment
foreground pixels belonging to the object from the back-
ground in every frame. Video Object segmentation has been
used in combination with single object tracking in [36],
[37], [38]. However, the videos which are typically used in
this work contain only one or two main moving objects.
Different from these approaches, we solve video object seg-
mentation along with multiple target tracking. The goal is
to segment multiple interacting targets and preserve targets’
identities at the same time. Authors in [39], [40], [41] track
contours of targets using a level-set framework. Chen et al.
[42] formulate tracking as constrained sequential labeling of
supervoxels and obtain tracking results with object segmen-
tation. In contrast, we propose an energy function coupling
the tracking and segmentation subproblems, which is solved
using dual decomposition by taking advantage of synergies
between them. Milan et al. [43] propose a CRF model to
jointly optimize over tracking and segmentation. First, a
large number of trajectory hypotheses are generated by
two trackers ( [2] and [44]) using human detection results.
Then they assign detections and superpixels to trajectory
hypotheses. However, our approach does not rely on human
detection or other trackers.

2.3 Dual Decomposition
Dual decomposition is a general and powerful technique
widely used in optimization. It solves a problem by de-
composing the original problem into multiple subproblems,
solving the subproblems separately and then merging the
solutions to solve the overall problem. Wu et al. [45] propose
to incorporate both object detection and data association in a
single objective function to avoid error propagation. The ob-
jective function is optimized by dual decomposition. Wang
and Koller [46] construct a unified model over human poses
as well as pixel-wise foreground/background segmentation
and optimize the energy function using dual decomposition.
To the best of our knowledge, we are the first ones to utilize
dual decomposition to solve the multiple target tracking and
segmentation problems.

3 PROPOSED APPROACH

Two main components of our framework are an online
discriminative learning based tracker and a GMM-based
spatial temporal video segmentation algorithm. These two

components collaborate through a Lagrange dual decompo-
sition to help improve performance of each task of detection,
data association or segmentation. In the next subsection, we
first explain the online tracker and then give details for each
of its components. In the following subsection, we present
the spatial temporal segmentation algorithm used in our
approach. Finally, in the last subsection we show how dual
decomposition is used to combine the above two modules.

3.1 Online Discriminative Learning Tracker
Our online discriminative learning tracker starts by training
a model for each of the objects through structured learning
(section 3.1.1). The tracker is provided the initial bounding
boxes for the objects entering the scene in the first few
frames (from annotation or using an object detector). During
learning, the most violated constraints are found by search-
ing for a set of tracks that minimize the cost function of our
target identity-aware network flow. Later, the same network
is used to find the best tracks in the next temporal span
(segment) of a sequence (section 3.1.2). The new tracks are
later used to update the model through passive aggressive
algorithm [47].

3.1.1 Target-specific Model
Given a set of τ training images, X =

{
x1,x2, ...,xτ

}
⊂ X ,

along with labels (target identities) Y ={
y1
1,y

1
2, ...,y

1
K , ...,y

τ
K−1,y

τ
K

}
⊂ Y , where ytk, defines

the bounding box location of object k in frame t, the target
models are obtained through structured learning [48]. The
aim of learning is to find a prediction function f : X 7→ Y ,
which directly predicts the locations of all the objects in a
set of frames. The task of structured learning is to learn a
prediction function of the form

fw(X) = arg max
Y ∈Y

τ∑
t=1

K∑
k=1

wT
k φ(xt,ytk), (1)

where w = {w1,w2, ...,wK} is the concatenation of the
models for all the K objects. φ(xt,ytk) is the joint feature
map which represents the feature extracted at location ytk
in frame t. The optimal parameter vector w∗ is obtained by
solving the following optimization problem:

min
w

1

2
‖w‖2 + Cξ s.t. ξ ≥ 0

τ∑
t=1

K∑
k=1

wT
k

(
φ(xt,ytk)− φ(xt, ȳtk)

)
≥ ∆(Y, Ȳ )− ξ

∀Ȳ ∈ Y \ Y.

(2)

The loss function is defined based on the intersection-over-
union overlap between ground truth Y and prediction Ȳ :

∆(Y, Ȳ ) =
1

τ

τ∑
t=1

K∑
k=1

(1− (ytk ∩ ȳtk)). (3)

Due to exponential number of possible combinations of
bounding boxes in Y , exhaustive verification of constraint in
2 is not feasible. However [48], [49] showed that high quality
solution can be obtained in a polynomial time by using
only the most-violated constraints, i.e a set of bounding boxes
that maximize the sum of scores and loss functions. Once
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the model parameters are learned (w), we use the same
inference that we use for finding the most-violated constraints
to find the best set of tracks for all the K objects in next
segment of the video.

3.1.2 Finding Tracks

Given the model parameters, w, and densely overlapping
bounding boxes in each frame, the goal is to find a sequence
of candidate windows, called a track, for each object which
maximizes the score in Eq. 1. This maximization requires
searching over exponentially many configurations. We pro-
pose to formulate the inference as a global data association,
which helps reducing the search space by enforcing some
temporal consistency across the candidates in consecutive
frames. Recently, such global data association has been for-
mulated using network flow [2], [18], for which there exists
an exact solution. In order to be able to use such networks
as inference of our structured learning, the solution to the
network needs to maximize the score function in Eq. 1. This
requires the nodes in the graph to encode the probability of
the target identity assignment using the learned parameters
wk. This is not possible through traditional network flow
methods.

We propose a new network called Identity-Aware net-
work, which is shown in Fig. 3. The black circles repre-
sent all possible candidate locations in each frame (densely
sampled across the entire frame). Each candidate location is
represented with a pair of nodes that are linked through K
observation edges; one observation edge for each identity. This
is different from traditional network flow, in which only
one observation edge connects a pair of nodes. Another major
difference between our network from traditional network
flow is that, our network has K sources and K sinks, each
belonging to one object. The rest of the network is similar
to that of traditional network flow. Transition edges that
connect nodes from different frames, represent a potential
move of an object from one location to the other and there
is a transition cost associated with that. There is an edge
between the start/sink node and every other node in the
graph, which takes care of persons entering/leaving the
scene. (For simplicity we only show some of the entry/exit
edges).

The flow is a binary indicator which is 1, when a node
is part of a track and 0 otherwise. A unit of flow is pushed
through each source and the tracks for all the objects are
found by minimizing the cost assigned to the flows. In
addition, we show later that by setting the upper bound of
flows passing through observation edges of one bounding box,
we ensure that at most one track will claim one candidate
location. In the following we will first present formulation
of the problem as a Lagrangian relaxation optimization and
later we will introduce our spatial constraint, which replaces
the greedy non-maximum suppression in object detectors.

3.1.3 Target Identity-aware Network Flow

First we need to build our graph G(V,E). For every can-
didate window in frame t, we consider a pair of nodes
which are linked through K different observation edges, each
belonging to one identity. For every node vp, in frame t and
vq in frame t + 1, there has to be a transition edge between

Frame 1 Frame 2 Frame 3

Entry/Exit Edges Observation Edges Transition Edges

Fig. 3. Shows the network used in our inference for three identities. Each
identity is shown with a unique color. The flow entering each node can
take only one of the three observation edges depending on which source
(identity) it belong to. The constraint in Eq. 8 ensures that one candidate
can belong to only one track, so the tracks will not overlap.

the two if vq belongs to the neighborhood, Nσ(vtp) of vp.
Neighborhood of the node vp is defined as

vt+1
q ∈ Nσ(vtp)⇔

∥∥vtp − vt+1
q

∥∥
2
≤ σ,

we consider a neighboring area within σ distance of node
vp that connects two candidate windows in two consecu-
tive frames. In addition, we have source/sink edges which
connect all the candidate windows to the source and sink
nodes.

Different edges in our graph are assigned costs that
take into account different characteristics of objects during
tracking. Each pair of nodes which represents a candidate
window will be assigned K different costs defined by the
K target-specific models. Considering wk to be the linear
weights learned for the kth object, the cost assigned to kth

observation edge representing the candidate location ytp in
frame t is computed as follow:

ckmn = −wT
k φ(xt,ytp).

Transition edges which connect the nodes in consecutive
frames are assigned costs, which incorporate both appear-
ance and motion direction. The cost of a transition edge
(ckmn) which connects two candidate windows ytp and yt+1

q

in two consecutive frames is computed as:

ckmn = −α1H(φc(x
t,ytp), φc(x

t+1,yt+1
q ))−α2

VpqV
k
ref

‖Vpq‖
∥∥∥V kref∥∥∥ ,

(4)
where H(φc(x

t,ytp), φc(x
t+1,yt+1

q )) is the histogram inter-
section between the color histograms extracted from the

location ytp and yt+1
q .

VpqV
k
ref

‖Vpq‖‖V k
ref‖

is the cosine similarity

between the reference velocity vector V kref for the kth object1

and the velocity vector between the two candidate windows
Vpq . Once the graph G(V,E) is constructed, our aim is to
find a set of K flows (tracks) by pushing a unit of flow
through each source node. The flow fkm,n, is found by
minimizing the following cost function:

Etrack(F ) =
K∑
k=1

∑
(m,n)∈E

ckmnf
k
mn. (5)

The flow passing through these edges need to satisfy
some constraints to ensure that it can actually represent a

1. Average velocity vector for the kth identity in previous batch.
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track in a real world. The set of constraints that we define in
our graph are as follow:

∑
n

fkmn −
∑
n

fknm =

 1 if m = sk
−1 if m = tk

0 otherwise
(6)

fkmn ∈ {0, 1} ∀(m,n) ∈ E and 1 ≤ k ≤ K (7)

K∑
k=1

fkmn ≤ 1 (8)

The constraint in Eq. 6 is the supply/demand constraint,
enforcing the sum of flows arriving at one node to be equal
to the sum of flows leaving that node. Constraint in Eq. 8 is
the bundle constraint, ensuring that the tracks of different
identities will not share a node by setting the upper bound
of sum of flows passing through each node to be one.

One can formulate Eq. 5 as an Integer Program (IP).
Since IP is NP-Complete, in practice, the problem can be
relaxed to Linear Program (LP) in which the solution can
be found in polynomial time. However, our experiments
show that without pruning steps like the one in [20], [30],
which reduces the number of candidate windows, it is
intractable to find a solution for a large number of people
in a long temporal span (one should note that the input to
our tracker is dense candidate windows sampled from the
entire frame). Instead, we propose a Lagrange relaxation
solution to this problem. We show that after relaxing the
hard constraints, the problem in each iteration, reduces to
finding the best track for each target separately. The global
solution to this can be found in linear time through dynamic
programming. Moreover, our iterative optimization allows
us to incorporate spatial constraint which further improves
the tracking results.

3.1.4 Lagrange Relaxation Solution to TINF
The key idea of Lagrange relaxation is relaxing the hard
constraints and moving them into the objective function,
in order to generate a simpler approximation. We start by
relaxing the bundle constraints in Eq. 8, where we intro-
duce the non-negative Lagrange multiplier λmn, a vector of
Lagrange multipliers that has the same dimension as the
number of edges in the graph. After relaxing the bundle
constraint the new objective function becomes:

Etrack(F ) =
K∑
k=1

∑
(m,n)∈E

ckmnf
k
mn+

∑
(m,n)∈E

λmn(
K∑
k=1

fkmn−1),

(9)
Subject to constraints in Eq. 6 and Eq. 7.

The second term in Eq. 9 is a constant for any given
choice of Lagrange multipliers, therefore we can ignore
it. The new objective function has a cost of ckmn + λmn,
associated with every flow variable fkmn. Since none of the
constraints in this problem contains the flow variables for
more than one of the identities, we can decompose the
problem into separate minimum cost flow problem for each
identity. Since only one unit of flow is pushed through
each source, the solution to a minimum cost flow can be
found optimally through dynamic programming in O(N).

Thus the complexity of our optimization in each iteration
is O(KN), where K is the number of targets and N is
the number of frames in the temporal span. Consequently,
to apply the sub-gradient optimization to this problem, we
alternate between the following two steps:

• For a fixed value of Lagrange multipliers we solve
the minimum cost flow for each identity separately
considering the cost coefficients ckmn + λmn .

• Update the Lagrange multipliers according to Eq. 10.

λq+1
mn =

[
λqmn + θq(

K∑
k=1

fkmn − 1)

]+
, (10)

where λq is the Lagrange multipliers at iteration q, θq is
the step size defining how far we would like to move from
current solution and [α]

+
= max(0, α).

3.1.5 Spatial Constraint

One major difference between our tracker and other data
association based trackers is that, the input to our tracker is
dense candidate windows instead of human detection out-
put. When pedestrians with similar appearance and motion
are walking next to each other, it is very likely to have
ID-Switches in tracking results. Also when a pedestrian
becomes partially occluded, the track for that person tend
to pick candidates that highly overlap with other nearby
pedestrians. This issue is addressed by non-maximum sup-
pression in human detection [22] or by using other tech-
niques like the one in [29], where the objects are forced
to maintain the spatial configurations between consecutive
frames. Instead, we introduce a soft-spatial constraint which
penalizes the tracks that highly overlap. Our spatial con-
straint can be easily integrated into our iterative optimiza-
tion. Similar to our Lagrange multipliers, we introduce a
new set of variables that penalizes the cost of observation
edges that highly overlap. Now the cost associated to each
observation edge becomes ckmn + λmn + ρmn. ρ is a vector
which has the same dimension as the number of observation
edges in the graph. It is initialized with a zero vector in the
first iteration and is updated according to Eq. 11.

ρq+1
mn =

[
ρqmn + θq[(ytm ∩ ytn)− 0.5]+ exp((ytm∩y

t
n)−0.5)/2

]+
,

(11)
where ytm∩ytn is the overlap between neighboring bounding
boxes in the same frame. ρmn penalizes the observation
node which is associated with the cost cmn. One should
note that the spatial constraint only penalizes the bounding
boxes that overlap more than 50% and the penalty increases
exponentially as the overlap increases. After adding the
spatial constraint the cost of the nodes are updated at each
iteration according to the following:

cq+1,k
mn = ckmn + λq+1

mn + ρq+1
mn . (12)

We observe that penalizing both nodes that highly over-
lap, sometimes lead to inaccurate bounding boxes for one
of the tracks. Therefore, we only penalize the observation
nodes of the track that have lower score according to the
score function in Eq. 1.
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(a) (b) (c) (d) (e) (f)

Fig. 4. An illustration of target/background confidence maps and segmentation results. (a) A new frame (part of the frame is shown for clarity). (b)
Background confidence map. Red represents higher confidence value while blue represents lower value. (c) and (d) show confidence maps for the
target on the left and the target on the right respectively. (e) Superpixels in the part of the frame. (f) The final segmentation results after applying
CRF to the superpixel based spatio-temporal graph. Red and blue masks represent foreground pixels for the two targets respectively.

3.2 Spatiotemporal Segmentation

Segmentation aims to find foreground pixels correspond-
ing to each target, so that precise object contour can be
determined, instead of typical bounding box representa-
tion. In this section, we describe the procedure to get
foreground/background segmentation for all targets in a
segment of video.

We determine the segmentation mask of target k in its
first frame automatically from its initial box ȳk. GrabCut
algorithm [50] is applied to target k’s small surrounding
region, by initializing pixels within box ȳk as foreground
while pixels outside box ȳk as background. GrabCut starts
from this initial segmentation and iteratively refines fore-
ground/background boundary. Then based on the fore-
ground pixels obtained by GrabCut, we build a pixel-level
foreground GMM model wfg(k) for target k. In addition,
a background image, obtained by averaging frames in the
video, is used to build a universal background GMM model
wbg .CIELAB color space is used. A foreground confidence
map Sfg(k) for target k and a background confidence map
Sbg are computed by applying wfg(k) and wbg to every pixel
in a new frame respectively. An example is shown in Fig. 4.

Given K targets in the scene, the goal of segmentation
is to assign one of K + 1 labels (K targets or background)
to every pixel. Inspired by [43], the segmentation problem
in upcoming frames is solved by multi-label CRF. Since
superpixels naturally preserve the boundary of objects and
are computationally efficient for processing, we build a
superpixel based spatio-temporal graph. Simple Linear It-
erative Clustering (SLIC) [51] is employed to generate N
superpixels in every frame. There are two types of edges in
the graph: spatial edges, εS , and temporal edges, εT . Spatial
edges connect all neighboring superpixels in a frame. Two
superpixels sm and sn are considered as spatial neighbors if
they share an edge in image space. Temporal edges connect
all neighboring superpixels in two consecutive frames. Su-
perpixels sm and sn are considered as temporal neighbors if
at least 1/3 of the pixels in sm move to sn in the next frame
as predicted by optical flow. Temporal edges help preserve
segmentation consistency across frames.

With the spatio-temporal graph, the multi-label Condi-
tional Random Field (CRF) energy function is defined as

Eseg(Z) =
∑
sm

Q(sm, zsm) + β1
∑

(sm,sn)∈εS

D(sm, sn)

+ β2
∑

(sm,sn)∈εT

D(sm, sn),
(13)

where Z denotes the target/background labeling of all
superpixels in a segment of video. zsm is the labeling of
superpixel sm. zsm = k if sm is labelled as target k and
zsm = 0 if sm is labelled as background. The energy function
is optimized using graph cuts with α-expansion [52].

The unary term Q(sm, zsm) in Eq. 13 is the cost of
labeling superpixel sm:

Q(sm, zsm) =

{
−log(Sfg(k)(sm)), if zsm = k
−log(Sbg(sm)), if zsm = 0

(14)

Here Sfg(k)(sm) represents the probability that superpixel
sm belonging to target k. It is computed as the average
confidence value of Sfg(k) over all pixels in sm. Sbg(sm)
denotes the probability that superpixel sm belongs to the
background.

The pairwise terms in Eq. 13 incorporate pairwise con-
straints by combining color similarity and the mean flow di-
rection similarity between two neighboring superpixels. The
pairwise potential D(sm, sn) between two spatial/temporal
neighboring superpixels sm and sn is defined as

D(sm, sn) =1(zsm 6= zsn) ·Dc(sm, sn) ·Df (sm, sn),

Dc(sm, sn) =
1

1 + ‖LAB(sm)− LAB(sn)‖
,

Df (sm, sn) =
VsmVsn

‖Vsm‖ ‖Vsn‖
,

(15)

where 1(·) is the one-zero indicator function. LAB(sm) is
the average LAB color of superpixel sm and Dc(sm, sn)
defines the color similarity between superpixels sm and sn.
Vsm denotes the mean optical flow of superpixel sm and
Df (sm, sn) is the direction similarity between the mean
flows of superpixels sm and sn.

3.3 Dual Decomposition

As discussed previously, the two tasks: online discrimina-
tive tracker (Sec. 3.1) and spatial temporal target segmen-
tation (Sec. 3.2) are highly correlated. To take advantage of
synergies between them, dual decomposition is employed to
couple these two tasks. We aim at minimizing the following
energy function:

min
F,Z

E(F,Z) = min
F,Z

(Etrack(F ) + Ecouple(F,Z) + Eseg(Z)),

(16)
where Etrack(F ) and Eseg(Z) are defined as in Eq. 5 and
Eq. 13 respectively. F denotes the set of bounding boxes
found by the tracking procedure in Sec. 3.1 and Z denotes



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2849374, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Iteration number
0 10 20 30 40 50 60 70 80

N
u
m
b
er

o
f
d
is
a
g
re
em

en
ts

0

5

10

15

20

25

30

35

40

45

50

overlap thr = 0.8

overlap thr = 1

(a)

Iteration number
0 10 20 30 40 50 60 70 80

M
O
T
A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

overlap thr = 0.8

overlap thr = 1

(b)

Iteration number
0 10 20 30 40 50 60 70 80

IO
U

0

5

10

15

20

25

30

35

40

45

50

overlap thr = 0.8

overlap thr = 1

(c)

Fig. 5. Number of Disagreements, MOTA and IOU as function of number of iterations. The curves are generated based on a 10-frame segment in
TUD-Crossing with 5 persons in the scene. (a) The number of disagreements between tracking and segmentation solutions drops over iterations.
The algorithm converges when the two solutions are consistent. (b) The MOTA increases over iterations and reaches the best value at convergence.
(c) The IOU (metric detailed in Sec. 4.2.2) increases over iterations. Since the segmentation annotations are available in every 10 frame, IOU is
evaluated on the one frame in the 10-frame segment which has segmentation annotations.

target/background segmentation obtained in Sec. 3.2. The
coupling term contains both bounding boxes and segmen-
tation information:

Ecouple(F,Z) =
∑
k,m

(1(m ∈ fk, zm 6= k)θmfk

+ 1(m /∈ fk, zm = k)ϕmfk).

(17)

This energy introduces penalties for background labels in-
side target bounding boxes as well as foreground labels
outside target bounding boxes. k denotes a target and m
denotes a pixel. The first term penalizes pixels that are
not labelled as target k, but are in target k’s tracking
boxes. fk denotes the bounding boxes for target k, and
1(m ∈ fk, zm 6= k) represents pixels in fk which are not
labelled as target k. Since a target’s bounding box is highly
likely to include some non-target pixels near the border of
box, but not at the center of box, the resulting penalty is
weighted by a human shape prior θfk . Thus, background
pixels at the center of box induce higher penalty while those
close to the border of box result in lower penalty. The same
human shape prior θ is used as in [43]. The second term
penalizes pixels that are labelled as target k but are outside
target k’s boxes. 1(m /∈ fk, zm = k) represents pixels
outside fk which are labelled as target k. The corresponding
penalty is weighted by ϕfk , which has a zero weight within
fk and uniform non-zero weight outside fk.

By introducing an equality constraint, Eq. 16 can be
rewritten as

min
F 0,F 1,Z

E(F 0, F 1, Z) = min
F 0,F 1,Z

(Etrack(F 0) + Ecouple(F
1, Z)

+ Eseg(Z))

s.t. F 0 = F 1.
(18)

Now, the energy function is separable. We form the
Lagrangian dual form of the above problem by introducing
Lagrange multipliers λ′

L(λ′) = min
F 0,F 1,Z

(Etrack(F 0) + Ecouple(F
1, Z) + Eseg(Z)

+ λ′(F 0 − F 1)),

= min
F 0

(Etrack(F 0) + λ′F 0) + min
F 1,Z

(Ecouple(F
1, Z)

+ Eseg(Z)− λ′F 1).
(19)

Here λ′ has the same dimension as F 0 and F 1.
Eq. 19 can be further decomposed into two independent

subproblems:

g(λ′) = min
F 0

(Etrack(F 0) + λ′F 0), (20)

h(λ′) = min
F 1,Z

(Ecouple(F
1, Z) + Eseg(Z)− λ′F 1). (21)

The first subproblem (Eq. 20) is equivalent to a set of
network flow problems, thus g(λ′) can be solved efficiently
using dynamic programming. The second subproblem (Eq.
21) involves both tracking boxes and segmentation. When
F 1 is fixed, Ecouple(F 1, Z) becomes a unary term on Z, thus
h(λ′) can be solved by graph-cut. When Z is fixed, h(λ′) can
be optimized by evaluating all candidate boxes. So a two-
step procedure is employed to optimize h(λ′).

We use a sub-gradient method to optimize the La-
grangian dual problem. The algorithm works by repeating
the following steps:

1) Get F 0 by solving the tracking subproblem g(λ′)
(Eq. 20).

2) Get F 1 by solving the segmentation subproblem
h(λ′) (Eq. 21).

3) Stop if F 0 = F 1.
4) Otherwise, update dual variable λ′ by λ′ ← λ′ +

αp(F
0−F 1), where αp is the step size in iteration p

and is computed as αp = 1/(10 + p).

In each iteration, we check the consistency between solu-
tions of the two subproblems. The dual variable λ′ changes,
based on the inconsistent parts among F 0 and F 1, thus
adjusting F 0 and F 1 accordingly to make them to be more
and more consistent. Suppose in some iteration, boxes fk
are selected for target k by the tracking subproblem, but the
segmentation subproblem selects another set of boxes. Then
the corresponding element in λ′ will increase, such that
the penalty of selection of fk by the tracking subproblem
would increase and the penalty of selection of fk by the
segmentation subproblem would decrease. When F 0 and
F 1 achieve agreement, λ′ will not change and the optimal
solution is found.

The spatial constraint described in Section 3.1.5 replaces
the non-maximum suppression step in object detection
methods and penalizes tracks that highly overlap. When
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two bounding boxes are highly overlapping, it adds cost
to both observation nodes that are involved or the one with
lower detection score. In some cases, this scheme leads to
inaccurate tracks since it would push both tracks away,
no matter if any of the tracks are actually correct or the
detection score may not be very accurate. However, we can
now utilize the segmentation results to make better decision
on the spatial constraint. Assume that from the tracking
results in iteration p− 1, a box yk is selected for target k. If
the overlap between yk and any box in other tracks is larger
than 50%, and no pixel in yk is labelled as target k from the
segmentation results, there is a large chance that box yk does
not correspond to target k. Thus the cost of the observation
node corresponding to yk is updated as in Eq. 12. In this
way, box yk will introduce larger penalty and be less likely
selected in tracking in iteration p. However, if there are
pixels in yk labelled as target k, then the observation node
corresponding to yk will not be penalized, no matter if it has
a large overlap with other boxes. Note that the segmentation
results are considered along with the tracking results, so the
spatial constraint introduces penalty only if a box is too close
to another box and is not supported by the segmentation
results. This happens when two targets are close to each
other, and the track of one target incorrectly jumps to the
other target. On the contrary, when one target is occluded
by another target, even though their boxes are close, they
both have supporting pixels from the segmentation results,
therefore spatial constraint is not applicable.

Due to the dense and overlapping candidate boxes used
in our approach, we observe it is not necessary to have F 0

and F 1 to be exactly the same for convergence. In most
cases, the results in early iterations are already good enough,
though some boxes found by the two subproblems may
shift a little. In our experiments, boxes returned by the
two subproblems are considered consistent if their overlap
is larger than 0.8 and the corresponding element in λ′

would not be updated. This greatly reduces the number of
iterations to solve the Lagrangian dual problem, with almost
no performance loss. As shown in Fig. 5a, when overlap
threshold of 0.8 is used, the number of disagreements drops
more quickly compared to that case when overlap threshold
is 1. The number of iterations to solve the Lagrangian dual
problem is reduced by more than three times. Meanwhile,
the performance remains almost the same as illustrated
in Fig. 5b and 5c. Coupling tracking and segmentation
lead to both better tracking and better segmentation results
as demonstrated in experiments. It can also be observed
in Fig. 5 that both MOTA and IOU are increasing over
iterations. On one hand, the object tracks provide strong
high-level guidance for target/background segmentation.
On the other hand, segmentation helps resolve typical dif-
ficulties encountered in multiple target tracking in a couple
of ways. First, in traditional tracking-by-detection approach,
the tracking results highly depend on the detection perfor-
mance. Miss-detections are common especially when there
is occlusion. So special scheme, such as dummy nodes in
network flow, needs to be designed in order to handle them.
However, our approach does not rely on pre-trained object
detector. We assume densely sampled candidate boxes in-
stead of sparse detection boxes, so the tracker is able to infer
temporal consistency between frames naturally. In addition,

when target gets occluded, its visible part is segmented
correctly even though its overall appearance score may be
low. The segmentation results guide tracker to find correct
box for the target. Second, the segmentation result provides
more information about target location and target identity.
Therefore, it helps tracker avoid drifting and ID-switch.

4 EXPERIMENTS

In our evaluation, we focus on tracking humans, due to
its importance. We evaluate our proposed TINF tracker
and the approach that couples multiple target tracking and
segmentation on a set of standard multiple target tracking
sequences. Along with tracking, we also provide both seg-
mentation and detection results on a few sequences.

4.1 Experimental Setup
To initialize the target, similar to [29], [53], we use manual
annotation. We annotate four initial bounding boxes for
each object entering the scene. We also report results where
targets are initialized automatically using a pre-trained ob-
ject detector. For manual annotation, the target is initialized
only once and there is no re-initialization of targets. We use
histogram-of-oriented gradient [54] and color histogram [55]
as our features. We found the combination of both features
to be important. HOG captures the edge information of
target and is helpful in detecting target from the back-
ground, while color histogram is a video specific feature and
helps in distinguishing different targets from each other. The
sequence is divided into segments of 20 frames each. At the
end of each temporal span we check if a track is valid or
not by comparing its appearance score from structural SVM
(wT

k φ(xt,ytk)) with a pre-defined threshold. If the track is
valid then it is used to update the model. When a target is
close to the scene border and its velocity is towards outside
of the scene, that target is treated as exiting the scene and
the algorithm stops tracking that target. In this way, our
approach is able to handle a variable number of targets.

4.2 Experimental Results
In this section, we conduct three sets of experiments. First
we compare our approach with the state-of-the-art meth-
ods on publicly available sequences. For those sequences,
where the object detection performs well, excellent results
are already reported. However, we show that, using our
approach, one can further improve the performance. Sec-
ond, we evaluate our approach on two new sequences of
[12] where targets experience heavy articulation and we
show that we can significantly improve the performance of
data-association based trackers as well as online trackers.
Third, we test our approach on the popular and complex
MOT16 Benchmark. Parking Lot 1 [15], Parking Lot 2 [61],
TUD Crossing [10], TUD-Stadtmitte [62] and PET [63] are the
five publicly available sequences used in our experiments
and the two new sequences are called Running and Dancing.

4.2.1 Tracking
To quantitatively evaluate the tracking performance of our
approach, both popular CLEAR MOT metrics [64] and Tra-
jectory Based Metrics (TBM) [65] are used. CLEAR metrics
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TABLE 1
Quantitative tracking results comparison of our methods (“TINF” and

“TINF + Seg”) with competitive approaches of LPD [56], LDA [57], DLP
[58], H2T [5], GMCP [16], PF [59], SegTrack [43], CET [10], DCT [60],

STRUCK [27] and SPOT [29] using tracking metrics.

Dataset Method MOTA MOTP MT ML IDS

Running

CET 46.3 50.8 0.67 0 0
DCT 37.6 50.4 0 0 0
SPOT 66.1 66.2 0.67 0 0

STRUCK 79.9 64.3 1 0 0
TINF 98.7 66.5 1 0 0

TINF + Seg 99.1 68.3 1 0 0

Dancing

CET 36.6 62 0.57 0 64
DCT 36.3 63.6 0 0.14 81
SPOT 55.4 65.9 0.43 0 16

STRUCK 69.1 67.1 0.71 0.14 9
TINF 89.9 65.9 0.86 0 1

TINF + Seg 91.2 65.7 0.86 0 0

Parking
Lot 1

LPD 89.3 77.7 - - -
GMCP 90.4 74.1 - - -

H2T 88.4 81.9 0.78 0 21
TINF 90.7 69.3 0.86 0 3

TINF + Seg 91.5 67.4 0.86 0 0

Parking
Lot 2

CET 71.7 55.8 0.6 0 59
DCT 73.6 56.5 0.8 0 48
TINF 89.3 66.3 1 0 0

TINF + Seg 90.5 68.7 1 0 0

TUD
Crossing

SegTrack 59.2 73.1 0.67 0 8
PF 84.3 71 - - 2

GMCP 91.6 75.6 - - 0
TINF 92.9 69.2 1 0 0

TINF + Seg 93 68.2 1 0 0

TUD
Stadtmitte

SegTrack 68 55.9 0.6 0 3
GMCP 77.7 63.4 - - 0
TINF 81.6 75.4 0.8 0 0

TINF + Seg 83.8 78.7 0.8 0 0

PETS

SegTrack 85.3 77.5 1 0 9
LDA 90 75 0.89 - 6
DLP 91 70 - - 5

GMCP 90.3 69 - - 8
TINF 90.4 63.1 0.95 0 3

TINF + Seg 92.5 68.2 0.95 0 0

consider the entire video as a whole, while TBM consider
the behavior of each track separately. Each of these metrics
captures different characteristics of a tracker and it is impor-
tant to look at both of them to better capture strength and
weakness of a tracker.

First, we evaluate and compare the proposed TINF
tracker with two main sets of trackers: data-association
based trackers and online trackers. On sequences for which
no other tracking results are reported, we compare our
method with three data-association based trackers for which
we have access to their code, CET [10] and DCT [60]. We
use Deformable Part based model [22] as the human de-
tector. For online discriminative learning-based trackers, we
selected STRUCK [27] as well as structure preserve multi-
object tracking (SPOT) approach [29]. For details about the
parameter selection of each method please refer to [12]. The
results comparison is shown in Table 1.

Initialization. For initialization, besides manual anno-
tation, we use human detection to automatically initialize
the targets. During each segment, a new track is initialized
if there are at least four confident detections in consecu-
tive frames that highly overlap and are not associated to
any other tracks. We test automatic initialization of targets
on publicly available sequences, where human detection

TABLE 2
Performance of TINF tracker with automatic and manual initialization of
the targets. For automatic initialization of targets a pre-trained human

detector is used [22].

Method MOTA MOTP MT ML IDS
Parking Lot 1 - Auto 90.5 65.2 0.86 0 5

Parking Lot 1 - Manual 90.7 69.3 0.86 0 3
Parking Lot 2 - Auto 83.4 63.2 0.7 0 5

Parking Lot 2 - Manual 89.3 66.3 1 0 0
TUD Crossing - Auto 90.8 68.8 0.92 0.08 0

TUD Crossing - Manual 92.9 69.2 1 0 0

TABLE 3
Performance of TINF tracker with and without spatial constraint.

Method MOTA MOTP MT ML IDS
Running 97.2 68.1 1 0 0

Running - SP 98.7 66.5 1 0 0
Dancing 88 64.9 0.86 0 2

Dancing - SP 89.9 65.9 0.86 0 1
Parking Lot 1 88 62.9 0.79 0 4

Parking Lot 1 - SP 90.7 69.3 0.86 0 3
Parking Lot 2 82.2 65.6 0.9 0 2

Parking Lot 2 - SP 89.3 66.3 1 0 0
TUD Crossing 86.6 69.8 0.92 0 1

TUD Crossing - SP 92.9 69.2 1 0 0

performs reasonably well. As can be seen in Table 2, the
performance of our method doesn’t change much, when
using automatic initialization. The main difference is that
some of the tracks in some sequences start late compared to
manual annotation which causes a small drop in MOTA due
to the added false negatives.

Effect of Spatial Constraint. In order to clearly see
the effect of our spatial constraint, we run our method on
different sequences with and without the spatial constraint.
As can be seen in Table. 3, when spatial constraint is added,
the performance increases, specially for sequences involving
interaction between objects.

The results of our proposed approach that couples mul-
tiple target tracking and segmentation are shown in Table 1,
denoted as “TINF + Seg”. The coupled approach achieves
better tracking results compared to TINF. In particular, the
number of ID-switches is substantially reduced compared
to other methods and TINF.

MOT16 Benchmark. We also test our approach on the
popular MOT16 Benchmark. It contains 7 test sequences,
including sequences of crowded scenes, sequences captured
by moving and static cameras. Due to the large number of
targets, human detection is used to automatically initialize
targets. The results comparison is shown in Table 4. We
compare our results with other published online trackers
that use non-standard detections [66], [67], [68] as well as
a top performer that uses the standard detections [69]. All
better results reported on MOT16 use deep learning based
human detection or deep learning based data association.
Considering that our approach does not need training and
does not involve deep learning features, the results are
quite competitive. In addition, our approach achieves low
number of ID-switches compared to most state-of-the-art
methods. In particular it is interesting to mention that our
approach, using simple hand-crafted features, outperforms
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TABLE 4
Tracking performance comparison on MOT16 Benchmark.

Method MOTA MOTP FP FN MT ML IDS
[66] 52.5 78.8 4407 81223 0.19 0.35 910
[67] 59.8 79.6 8698 63245 0.25 0.23 1423
[68] 66.1 79.5 5061 55914 0.34 0.21 805
[69] 47.2 75.8 2,681 92,856 0.14 0.42 774

Ours 57.6 77.9 12121 64401 0.3 0.22 733

the top performer which uses standard publicly available
detections along with powerful deep pipeline. Finally the
large number of FPs in our approach is mainly due to the
way we sample dense candidates. This sometimes leads
to inaccurate bounding boxes. (The number of FPs will
significantly reduce if we lower the overlap threshold for
computing the metrics.)

4.2.2 Segmentation

Besides improving the tracking performance, our proposed
dual decomposition based approach is able to track multi-
ple targets with pixel-level target/background labeling. In
order to evaluate the segmentation performance, we use the
segmentation annotations for TUD-Crossing from [40] and
manually annotate pixel-level target masks every 10 frames
in the other sequences. The segmentation annotations will
be released to facilitate future research in this area.

For evaluation, the segments are optimally assigned to
ground truth masks and multiple segments can be assigned
to the same ground truth mask (pixel-wise labeled seg-
mentation). Identity-based IOU is the average intersection-
over-union overlap with target identity information in-
corporated. Traditional IOU used in video segmentation
evaluation [37] computes the mean IOU of foreground re-
gions over all frames. However, it has no notion of target
identities. Therefore, in order to better evaluate the seg-
mentation performance for multiple targets, we extend the
traditional foreground IOU to identity-based IOU. Identity-
based IOU computes the intersection-over-union overlap
between ground truth mask and segments assigned to it
for every target in every frame and then takes the average
over all of them. Overall error is the percentage of wrongly
labelled pixels, while average error computes the percent-
age of mis-classified pixels per ground truth mask. Over-
segmentation counts the number of segments merged to
cover the ground truth masks.

We compare the above four metrics with [43]2 and [40]3

in Table 5. The proposed approach achieves much higher
identity-based IOU and much lower overall error as well as
average error compared to previous methods. “TINF + Seg”
outperforms “Seg Only”, by a large margin, demonstrating
that incorporating tracking leads to more accurate segmen-
tation results. Some qualitative results are shown in Fig. 7.

2. We test the code available on the author’s website with default
parameters on TUD-Crossing. The results on the other two sequences
are obtained from the author.

3. Note that the identity-based IOU of Horbert et al.’s [40] results is
computed using the segmentation results provided by the author, while
the IOU reported in [40] is the traditional foreground IOU without
notion of target identities.

TABLE 5
A quantitative comparison of segmentation results of our method with

competitive approaches in Milan et al. [43] and Horbert et al. [40].

Dataset Method
Identity
-based
IOU

Overall
err.

Avg.
err.

Over
-seg.

PETS
[43] 54.82 0.78 40.08 1.65

Seg Only 19.51 1.68 66.86 1
TINF + Seg 73.51 0.43 17.79 1

TUD
Crossing

[43] 25.35 6.68 63.87 2.23
[40] 46.50 4.13 35.88 3.23

Seg Only 15.64 7.96 71.85 1
TINF + Seg 55.36 3.88 26.93 1

TUD
Stadtmitte

[43] 27.33 6.10 48.59 1.09
Seg Only 18.87 6.85 56.48 1

TINF + Seg 41.62 3.35 23.65 1
Parking

Lot 1
Seg Only 20.97 5.12 49.38 1

TINF + Seg 68.27 1.36 20.57 1
Parking

Lot 2
Seg Only 14.79 8.91 59.54 1

TINF + Seg 58.66 4.94 26.09 1

Running Seg Only 24.67 5.35 58.56 1
TINF + Seg 67.18 2.31 19.57 1

Dancing Seg Only 15.5 12.93 67.8 1
TINF + Seg 58.17 7.88 17.33 1

TABLE 6
This table shows the detection performance comparison between our

detector and DPM [22] in terms of average precision.

Seq PL1 PL2 PETS TUD Crossing TUD Stadmitte
DPM 87.61 74.61 68.54 85.95 77.62
Ours 88.12 81.77 84.23 83.78 79.99

Note that targets are segmented and tracked correctly even
when being occluded or when they are close to other targets.

Moreover, we show number of extracted objects with
varying threshold α on ratio of correctly labelled pixels per
ground truth mask in Fig. 6. An object is extracted if more
than α of its ground truth mask is correctly covered. Our
approach (“TINF + Seg”) is able to extract more objects for
all different thresholds compared to previous methods and
“Seg Only”.

Since MOT16 Benchmark is designed for evaluating mul-
tiple object tracking performance, there are no segmentation
annotations available. Qualitative results on one sequence
are shown in Fig. 7.

4.2.3 Detection
We also present the detection performance of our proposed
approach. The comparison with DPM [22] is shown in Table
6. Our detector is much simpler compared to DPM, while
coupled with segmentation and data association, it can
achieve better performance on almost all the sequences.

In addition, we evaluate our approach on MOT17DET
Benchmark. The detection performance comparison is sum-
marized in Table 7. With the help from tracking and seg-
mentation, our approach outperforms DPM [22] and Faster
R-CNN [70] on the videos of complex scenes.

4.3 Run Time and Convergence
In order to compare the complexity of the proposed La-
grangian relaxation method with integer program (IP) and
linear program (LP), we implemented the IP and LP version
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Fig. 6. The curves show the number of extracted objects as a function of correctly labeled pixels per ground truth mask.

Fig. 7. Examples of segmentation and tracking results on PETS-S2L1, TUD-Crossing and MOT16. Each target is shown by a unique color.

TABLE 7
Detection performance comparison with DPM [22] and Faster R-CNN

[70] on MOT17DET Benchmark.

Method AP Prec. Rec. TP FP FN
DPM 0.61 64.8 68.1 78007 42308 36557

Faster R-CNN 0.72 89.8 77.3 88601 10081 25963
Ours 0.74 89.3 83.4 95506 11435 19058

of TINF as well. We employ CPLEX [71] as the optimization
toolbox. The performance of IP and LP is within 1 − 2%
performance of our Lagrange relaxation formulation when
no spatial constraint is used. The runtime for a selected
segment of PL2 sequence with different number of targets

is shown in Fig. 8. Note that the curves are shown with
logarithmic coordinates. As can be observed, the proposed
Lagrangian relaxation optimization is a lot more efficient
compared to the IP and LP solutions.

In Fig. 9, we further demonstrate the convergence of
the proposed TINF and TINF + Seg trackers on PL2 se-
quence. The number of iterations taken for convergence
varies depending on the complexity of the segments. For
example, for TINF + Seg, it takes only a few iterations to
converge for segments near the beginning or the end of
PL2 sequence, since the scene is simpler and it is easy to
reach agreement between tracking and segmentation results.
While some segments in middle of the PL2 sequence take
40 to 75 iterations to converge. That is because the scene is
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Fig. 8. TINF runtime comparison of the proposed Lagrangian relaxation
solution vs IP and LP.

Fig. 9. Convergence of TINF and TINF + Seg on PL2 sequence.

more complex, there are more interacting targets and a lot
of occlusions.

4.4 Limitation and Future Work
There are mainly two reasons that the proposed approach
does not achieve state-of-the-art tracking results on MOT16
Benchmark. First, the tracking and segmentation are purely
based on non deep learning based features. It is not robust
enough to handle complex and dynamic scenes well. Sec-
ond, it lacks an effective mechanism to terminate and re-
initialize a track when the track drifts. This would lead to
both false positive and false negative at the same time for
that track.

One line of research for future work is to explore au-
tomatic ways to terminate and re-initialize tracks to avoid
drift. This will allow one to utilize the proposed algorithm in
scenarios where the camera angle is low and frequent long-
term intra object occlusions occur. These sequence are not
common in surveillance scenarios. However, recent multi
object tracking dataset contains these types of sequences. We
also plan to explore the use of more powerful discriminative
features, such as deep learning based features, to further
improve the performance. In addition, a regressor can be
added on the top to improve bounding box accuracy, which
is our future work.

5 CONCLUSION

We present a novel framework that combines two main
components of most existing trackers, detection and data
association, along with segmentation in a single frame-
work. The three tasks are closely related, and solving one
helps improve the others. Detection and data association
are combined through a structured learning framework,
using a novel network flow graph. Additionally, the on-
line discriminative tracking algorithm and segmentation are

jointly optimized using dual decomposition, which leads to
more accurate segmentation results and also helps resolve
typical difficulties in tracking, such as occlusion handling,
ID-switch and track drifting. Moreover, more detailed repre-
sentation of targets - pixel-level target foreground labeling,
is obtained rather than coarse bounding boxes.
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