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Abstract

What if we could effectively read the mind and transfer human
visual capabilities to computer vision methods? In this paper, we
aim at addressing this question by developing the first visual object
classifier driven by human brain signals. In particular, we employ EEG
data evoked by visual object stimuli combined with Recurrent Neural
Networks (RNN) to learn a discriminative brain activity manifold of
visual categories. Afterward, we train a Convolutional Neural Network
(CNN)–based regressor to project images onto the learned manifold, thus
effectively allowing machines to employ human brain–based features
for automated visual classification. We use a 32-channel EEG to
record brain activity of seven subjects while looking at images of
40 ImageNet object classes. The proposed RNN-based approach for
discriminating object classes using brain signals reaches an average
accuracy of about 40%, which outperforms existing methods attempting
to learn EEG visual object representations. As for automated object
categorization, our human brain–driven approach obtains competitive
performance, comparable to those achieved by powerful CNN models,
both on ImageNet and CalTech 101, thus demonstrating its classification
and generalization capabilities. This gives us a real hope that, indeed,
human mind can be read and transferred to machines.
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1 Introduction
Humans show excellent performance, still unreachable by machines, in inter-
preting visual scenes. Despite the recent rediscovery of Convolutional Neural
Networks has led to a significant performance improvement in automated
visual classification, their generalization capabilities are not at the human
level, since they learn a discriminative feature space, which strictly depends
on the employed training dataset rather than on more general principles.
More specifically, the first-layer features of a CNN appear to be generalizable
across different datasets, as they are similar to Gabor filters and color blobs,
while the last-layer features are very specific to a particular dataset or task.
In humans, instead, the process behind visual object recognition stands at
the interface between perception, i.e., how objects appear visually in terms
of shape, colors, etc. (all features that can be modeled with first CNN
layers) and conception, which involves higher cognitive processes that have
never been exploited. Several cognitive neuroscience studies [12, 16, 17] have
investigated which parts of human visual cortex and brain are responsible for
such cognitive processes, but, so far, there is no clear solution. Of course, this
reflects on the difficulties of cognition-based automated methods to perform
visual tasks.
We argue that one possible solution is to act in a reverse engineering manner,
i.e., by analyzing human brain activity – recorded through neurophysiology
(EEG/MEG) and neuroimaging techniques (e.g., fMRI) – to identify the
feature space employed by humans for visual classification. In relation to this,
it is has been acknowledged that brain activity recordings contain information
about visual object categories [6, 26, 19, 4, 3, 10, 20]. Understanding EEG
data evoked by specific stimuli has been the goal of brain computer interfaces
(BCI) research for years. Nevertheless, BCIs aim mainly at classifying or
detecting specific brain signals to allow direct-actuated control of machines
for disabled people. In this paper, we want to take a great leap forward
with respect to classic BCI approaches, i.e., we aim at exploring a new and
direct form of human involvement (a new vision of the “human in the loop”
strategy) for automated visual classification. The underlying idea is to learn
a brain signal discriminative manifold of visual categories by classifying EEG
signals and then to project images into such manifold to allow machines
to perform automatic visual categorization. The impact of decoding object
category–related EEG signals for inclusion into computer vision methods is
tremendous. First, identifying EEG-based discriminative features for visual
categorization might provide meaningful insights about the human visual
perception systems. As a consequence, it will greatly advance performance

2



of BCI-based applications as well as enable a new form of brain-based im-
age labeling. Second, effectively projecting images into a new biologically
based manifold will change radically the way object classifiers are developed
(mainly in terms of feature extraction). Thus, the contribution of this paper
is threefold:

• We propose a deep learning approach to classify EEG data evoked by
visual object stimuli outperforming state-of-the-art methods both in the
number of tackled object classes and in classification accuracy.

• We propose the first computer vision approach driven by brain signals, i.e.,
the first automated classification approach employing visual descriptors
extracted directly from human neural processes involved in visual scene
analysis.

• We will publicly release the largest EEG dataset for visual object analysis,
with related source code and trained models.

2 Related Work
The idea of reading the mind of people while performing specific tasks has
been long investigated, especially for building brain-computer interfaces.
Most of BCI studies have mainly performed binary EEG-data classification,
i.e., presence of absence of a specific pattern, e.g., in [5] for P300 detection
or in [14] for seizure detection.
Recently, thanks to deep learning, other works have attempted to investigate
how to model more complex cognitive events (e.g., cognitive load, audio
stimuli, etc.) from brain signals. For example, in [1], a combination of
recurrent and convolutional neural networks was proposed to learn EEG
representations for cognitive load classification task (reported classification
accuracy is of about 90% over four cognitive load levels). In [23], a similar
approach, using only CNNs, is proposed to learn to classify EEG-recordings
evoked by audio music with an accuracy of 28% over 12 songs. These
methods have proved the potential of using brain signals and deep learning
for classification, but they tackle a small number of classification categories
(maximum twelve in [23]), and none of them are related to visual scene
understanding.
A number of cognitive neuroscience studies have demonstrated (by identifying
specific regions of visual cortex) that up to a dozen of object categories can
be decoded in event-related potential (ERP) amplitudes recorded through
EEG [26, 4, 20]. However, such scientific evidence has not been deeply
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exploited to build visual stimuli–evoked EEG classifiers. Indeed, a very
limited number of methods have been developed [2, 11, 22, 10] (none of
them using deep learning) to address the problem of decoding visual object–
related EEG data, and most of these methods were mainly devised for binary
classification (e.g., presence or absence of a given object class). One of the
most recent and comprehensive methods was proposed by Kaneshiro et al.
in [10], who trained a classifier able to distinguish EEG brain signals evoked
by twelve different object classes, with an accuracy of about 29% and that
represents, so far, the state-of-art performance.
In this paper, we explore not only the capabilities of deep learning in modeling
visual stimuli–evoked EEG with more object classes than state-of-the-art
methods, but we also investigate how to project images into an EEG-based
manifold in order to allow machines to interpret visual scenes automatically
using features extracted according to human brain processes. This, to the
best of our knowledge, has not been done before.
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Figure 1: Overview of the proposed approach. Top: a low-dimensional
representation for temporal EEG signals recorded while users looked at
images is learned by the encoder module; the computed EEG features are
employed to train an image classifier. Bottom: a CNN is trained to estimate
EEG features directly from images; then, the classifier trained in the previous
stage can be used for automated classification without the need of EEG data
for new images.

3 Method
The work described in this paper relies on three key intuitions:
• EEG signals recorded while a subject looks at an image convey feature-level

and cognitive-level information about the image content.
• A low-dimensional manifold within the multi-dimensional and temporally-

varying EEG signals exists and can be extracted to obtain a 1D represen-
tation which we refer to as EEG features.

• EEG features are assumed to mainly encode visual data, thus it is possible
to extract the corresponding image features for automated classification.

These three ideas provide the design basis for the overall two-stage image
classification architecture proposed in this work and shown in Fig. 1.
The first stage of our approach aims to find a low-dimensional manifold
within the two-dimensional (channels and time) EEG space, such that the
representation within that manifold is discriminant over object classes. In
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Number of classes 40
Number of images per class 50
Total number of images 2000
Visualization order Sequential
Time for each image 0.5 s
Pause time between classes 10 s
Number of sessions 4
Session running time 350 s
Total running time 1400 s

Table 1: The parameters of the experimental protocol.

order to learn this representation, we employed EEG data recorded while
users looked at images on a screen. Then, we trained an encoder network
(implemented through recurrent neural networks – RNNs – for temporal
analysis) to extract EEG features from raw EEG signals; the training process
is supervised by the class of the images for which each input EEG sequences
were recorded, and a classifier for EEG features is jointly trained in the
process.
Of course, it is unreasonable to assume the availability of EEG data for each
image to be classified. Therefore, the second stage of the method aims at
extracting EEG features directly from images, by learning a mapping from
CNN image features to EEG features (learned through RNN encoder). After
that, new images can be classified by simply estimating their EEG features
through the trained CNN-based regressor and employ the stage-one classifier
to predict the corresponding image class.

3.1 EEG data acquisition

Seven subjects (six male and one female) were shown visual stimuli of objects
while EEG data was recorded. All subjects were homogeneous in terms
of age, education level and cultural background and were evaluated by a
professional physicist in order to exclude possible conditions (e.g., diseases)
interfering with the acquisition process.
The dataset used for visual stimuli was a subset of ImageNet [18], containing
40 classes of easily recognizable objects1. During the experiment, 2,000

1ImageNet classes used: dog, cat, butterfly, sorrel, capuchin, elephant, panda, fish, air-
liner, broom, canoe, phone, mug, convertible, computer, watch, guitar, locomotive, espresso,
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images (50 from each class) were shown in bursts for 0.5 seconds each. A
burst lasts for 25 seconds, followed by a 10-second pause where a black image
was shown for a total running time of 1,400 seconds (23 minutes and 20
seconds). A summary of the adopted experimental paradigm is shown in
Table 1.
The experiments were conducted using a 32-channel cap with passive, low-
impedance electrodes distributed according to the 10-20 placement system.
Three out of the 32 electrodes did not convey any useful information (ground,
reference and an auxiliary electrode for removing heart-related artifacts)
reducing the number of effective signals to 29. Brainvision2 DAQs and
amplifiers were used for the acquisition of the EEG signals. Sampling
frequency and data resolution were set, respectively, to 250 Hz and 16 bits.
A notch filter (49-51 Hz) and a second-order band-pass Butterworth filter
(low cut-off frequency 14 Hz, high cut-off frequency 71 Hz) were set up so
that the recorded signal included the Beta (15-31 Hz) and Gamma (32-70
Hz) bands, as they convey information about the cognitive processes involved
in the visual perception [15]. From each recorded EEG sequence, the first
10 samples (40 ms) for each image were discarded in order to exclude any
possible interference from the previously shown image (i.e., to permit the
stimulus to propagate from the retina through the optical tract to the primary
visual cortex [8]). The following 110 (440 ms) samples were used for the
experiments.
By using the protocol described above we acquired 14,000 (2,000 images for
7 subjects) multi-channel (29 channels) EEG sequences. In the following
descriptions, we will refer to a generic input EEG sequence as s(c, t), where
c (from 1 to 29) indexes a channel and t (from 1 to 110) indexes a sample
in time. We will also use the symbol (·) to indicate “all values”, so s(·, t)
represents the vector of all channel values at time t, and s(c, ·) represents
the whole set of time samples for channel c.

3.2 Learning EEG manifold

The first type of analysis aims at translating an input multi-channel tem-
poral EEG sequence into a low dimensional feature vector summarizing the
relevant content of the input sequence. Previous approaches [10, 22] simply
concatenate time sequences from multiple channels into a single feature
vector, ignoring temporal dynamics, which, instead, contains fundamental

chair, golf, piano, iron, jack, mailbag, missile, mitten, bike, tent, pajama, parachute, pool,
radio, camera, gun, shoe, banana, pizza, daisy and bolete (fungus)

2http://www.brainvision.com/
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Figure 2: Tested encoder architectures: a) common LSTM; b) channel LSTM
+ common LSTM; c) common LSTM + output layer.

information for EEG activity analysis [10]. In order to include such dynamics
in our representation, we employ LSTM recurrent neural networks [9], which
are commonly used for the analysis of several kinds of sequence data, thanks
to their capability to track long-term dependencies in the input data. The
top half of Fig. 1 shows the general architecture of our EEG manifold repre-
sentation model. The EEG multi-channel temporal signals, preprocessed as
described in Sect. 3.1, are provided as input to an encoder module, which
processes the whole time sequence and outputs an EEG feature vector as a
compact representation of the input. Ideally, if an input sequence consists of
the EEG signals recorded while looking at an image, our objective is to have
the resulting output vector encode relevant brain activity information for
discriminating different image classes. The encoder network is trained by
adding, at its output, a classification module (in all our experiments, it will
be a softmax layer), and using gradient descent to learn the whole model’s
parameters end-to-end. In our experiments, we tested several configurations
of the encoder network:

• Common LSTM (Fig. 2a): the encoder network is made up of a stack of
LSTM layers. At each time step t, the first layer takes the input s(·, t)
(in this sense, “common” means that all EEG channels are initially fed
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into the same LSTM layer); if other LSTM layers are present, the output
of the first layer (which may have a different size than the original input)
is provided as input to the second layer and so on. The output of the
deepest LSTM layer at the last time step is used as the EEG feature
representation for the whole input sequence.

• Channel LSTM + Common LSTM (Fig. 2b): the first encoding layer
consists of several LSTMs, each connected to only one input channel: for
example, the first LSTM processes input data s(1, ·), the second LSTM
processes s(2, ·), and so on. In this way, the output of each “channel LSTM”
is a summary of a single channel’s data. The second encoding layer then
performs inter-channel analysis, by receiving as input the concatenated
output vectors of all channel LSTMs. As above, the output of the deepest
LSTM at the last time step is used as the encoder’s output vector.

• Common LSTM + output layer (Fig. 2c): similar to the common LSTM
architecture, but an additional output layer (linear combinations of input,
followed by ReLU nonlinearity) is added after the LSTM, in order to
increase model capacity at little computational expenses (if compared
to the two-layer common LSTM architecture). In this case, the encoded
feature vector is the output of the final layer.

Encoder and classifier training is performed through gradient descent by
providing the class label associated to the image shown while each EEG
sequence was recorded. After training, the encoder can be used to generate
EEG features from an input EEG sequences, while the classification network
will be used to predict the image class for an input EEG feature representation,
which can be computed from either EEG signals or images, as described in
the next section.

3.3 CNN-based Regression on EEG manifold for Visual Clas-
sification

In order to employ the RNN learned feature representation for general images,
it is necessary to bypass the EEG recording stage and extract features directly
from the image, which should be possible by our assumption that the learned
EEG features reflect the image content which evoked the original EEG
signals.We employed two CNN-based approaches to extract EEG features
(or, at least, a close approximation) from an input image:
• Fine-tuning. The first approach is to train a CNN to map images to

corresponding EEG feature vectors. Typically, the first layers of CNN

9



attempt to learn the general (global) features of the images, which are
common between many tasks, thus we initialize the weights of these layers
using pre-trained models, and then learn the weights of last layers from
scratch. In particular, we used the pre-trained AlexNet CNN [13], and
modified it by replacing the softmax classification layer with a regression
layer (containing as many neurons as the dimensionality of the EEG
feature vectors), using Euclidean loss as objective function.

• Deep feature extraction. The second approach consists of extracting
image features using pre-trained CNN models and then employ regression
methods to map image features to EEG feature vectors. We used our fine-
tuned AlexNet [13], GoogleNet [25] and VGG [21] as feature extractors
by reading the output of the last fully-connected layer, and then applied
several regression methods (namely, k-NN regression, ridge regression,
random forest regression) to obtain the predicted feature vectors.

We opted to fine-tune only AlexNet, instead of GoogleNet [25] and VGG [21],
because these two CNNs contain more convolutional layers and, as such,
they were more prone to overfitting given the relatively small dataset size.
The resulting CNN-based regressor allows to extract the brain-learned fea-
tures from any input image; the extracted features can then be fed to the
classifier trained during EEG feature learning to perform automated visual
classification.

4 Performance Analysis
Performance analysis is split into three parts since our method consists of:
1) learning visual stimuli–evoked EEG data using RNN (implemented in
Torch); 2) CNN-based regression to map images to RNN-learned EEG-based
features (implemented in Caffe); 3) the combination of the above two steps
to implement automated visual classifiers.

4.1 Learning visual stimuli–evoked EEG representations

We first tested the three architectures reported in Sect. 3.2 using our EEG
dataset. Our dataset was split into training, validation and test sets, with
respective fractions 80% (1600 images), 10% (200), 10% (200). We ensured
that the signals generated by all participants for a single image are all in-
cluded in a single split. All model architecture choices were taken only based
on the results on the validation split, making the test split a reliable and
“uncontaminated” quality indicator for final evaluations. The overall number
of EEG sequences used for training the RNN encoder was 13,944 out of the
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available 14,000, since some of them were strongly affected by environmental
noise.
Existing works, such as [24, 1], employing Support Vector Machines (SVM),
Random Forests and Sparse Logistic Regression for learning EEG represen-
tation, cannot be employed as baseline since they do not operate on whole
brain signals (but on feature vectors) and are applied to other tasks (e.g.,
music classification, seizure detection, etc.) than visual object–evoked EEG
data.
Table 2 reports the achieved performance by the three encoder configurations
with various architecture details. The classifier used to compute the accuracy
is the one jointly trained in the encoder; we will use the same classifier
(without any further training) also for automated visual classification on
CNN-regressed EEG features. The proposed RNN-based approach was able
to reach about 40% classification accuracy, which greatly outperforms the
state-of-the-art performance of 29% achieved by [10], with fewer image classes
(12 against 40 of our work).
To further contribute to the research on how visual scenes are processed
by the human brain, we investigated how image visualization times may
affect classification performance. Thus far, it has been known that feature
extraction for object recognition in humans happens during the first 50-120
ms [8] (stimuli propagation time from the eye to the visual cortex), whereas
less is known after 120 ms. Since in our experiments, we displayed each image
for 500 ms; we evaluated classification performance in different visualization
time ranges, i.e., [40-480 ms], [40-160 ms], [40-320 ms] and [320-480 ms].
Table 3 shows the achieved accuracies when using the RNN model which
obtained the highest validation accuracy (see Table 2), i.e., the common
128-neuron LSTM followed by the 128-neuron output layer. Contrary to
what was expected, the best performance was obtained in the time range
[320-480 ms], instead of during the first 120 ms. This suggests that a key
role in visual classification may be played by neural processes outside the
visual cortex that are activated after initial visual recognition and might be
responsible for the conception part mentioned in the introduction. Of course,
this needs further and deeper investigations that are outside the scope of
this paper.

4.2 CNN-based regression

CNN-based regression aims at projecting visual images onto the learned EEG
manifold. According to the results shown in the previous section, the best
encoding performance is obtained given by the common 128-neuron LSTM
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Model Details Max VATA at max VA

Common
64 common 34.8% 34.4%
128 common 37.6% 36.5%
64,64 common 37.8% 38.2%
128,64 common 39.0% 36.7%
128,128 common 39.2% 37.8%

Channel + Common 5 channel, 32 common 34.2% 31.9%
5 channel, 64 common 34.9% 36.6%

Common + output 128 common, 64 output 38.3% 34.4%
128 common, 128 output 40.1% 35.8%

Table 2: Maximum validation accuracy (“Max VA”) and corresponding test
accuracy (“TA at max VA”) for different configurations of the three RNN
architectures shown in Sect. 3.2. The model yielding the best validation
results is in bold.

Visualization time Max VA TA at max VA
40-480 ms 40.1% 35.8%
40-160 ms 38.1% 32.2%
40-320 ms 39.3% 35.4%

320-480 ms 41.8% 35.9%

Table 3: Classification accuracy achieved by the RNN encoder using different
portions of EEG signal data. Best results in bold.
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Feature set AlexNet FT AlexNet FE GoogleNet VGG

k-NN Ridge RF k-NN Ridge RF k-NN Ridge RF

Average 2.0 1.8 1.7 1.7 0.8 2.0 1.1 0.9 1.7 1.1
Best 2.4 2.1 1.8 1.9 3.8 7.8 4.2 3.8 7.2 4.1

Table 4: Mean square error (MSE) values obtained by different regression
methods for extracting EEG features from images. “FT”: fine-tuned; “FE”:
feature extractor. Best performance underlined and in bold.

followed by the 128-neuron output layer. This implies that our regressor
takes as input single images and provides as output a 128-feature vector,
which should ideally resemble the one learned by encoder.
To test the regressor performance, we used the ImageNet subset presented in
Sect. 3.1 and the same image splits employed for the RNN encoder. However,
unlike the encoder training stage, where different subjects generated different
EEG signal tracks even when looking at the same image, for CNN-based
regression we require that each image be associated to only one EEG feature
vector, in order to avoid “confusing” the network by providing different target
outputs for the same input. We tested two different approaches for selecting
the single feature vector associated to each image:

• average: the EEG feature vector associated to an image is computed as
the average over all subjects when viewing that image.

• best features: for each image, the associated EEG feature vector is the
one having the smallest classification loss over all subjects during RNN
encoder training.

Table 4 shows the mean square error (MSE) obtained with each of the
tested regression approaches. The lowest-error configuration, i.e., feature
extraction with GoogleNet combined to k-NN regressor, was finally employed
as EEG feature extractor from arbitrary images. Note that the accuracy
values for average are markedly better than the best features’ one. This is
in line with the literature on cognitive neuroscience, for which changes in
EEG signals elicited by visual object stimuli are typically observed when
averaging data from multiple trials and subjects [22].

4.3 Automated visual classification

Our automated visual classifier consists of the combination of the CNN-
based feature regressor achieving the lowest MSE (GoogleNet features with
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k-NN regressor, trained on average features) with the softmax classifier
trained during EEG manifold learning. We evaluated image classification
performance on the images from our dataset’s test split, which were never
used in either EEG manifold learning or CNN-based feature regression,
obtaining a mean classification accuracy of 85.1%, which, albeit lower than
state-of-the-art CNN performance3, demonstrates the effectiveness of our
approach.
In order to test the generalization capabilities of our brain-learned features, we
also performed an evaluation of the proposed method as a feature extraction
technique, and compared it to using VGG and GoogleNet (we did not test
AlexNet given its lower performance as shown in Table 4) as feature extractors.
We tested the three approaches on a 30-class subset of Caltech-101 [7] (chosen
so as to avoid overlap with the classes used for developing our model) by
training separate SVM classifiers and comparing by classification accuracy.
The results are reported in Table 5.
Although our approach achieves lower accuracy than the compared models,
it is actually an impressive result, considering that VGG and GoogleNet
were trained on ImageNet, which is basically a superset of Caltech-101, while
our EEG encoder and regressor were trained not only on a different set of
object classes, but mainly on a feature space not even directly related to
visual features.

GoogleNet VGG Our method
92.6% 80.0% 69.3%

Table 5: Classification accuracy achieved when using GoogleNet, VGG
and the proposed method as image feature extractors for training an SVM
classifier on a subset of Caltech-101.

5 Conclusions
In this paper we propose the first human brain–driven automated visual
classification method. It consists of two stages: 1) an RNN-based method to
learn visual stimuli-evoked EEG data as well as to find a more compact and
meaningful representation of such data; 2) a CNN-based approach aiming
at regressing images into the learned EEG representation, thus enabling
automated visual classification in a “brain-based visual object manifold”. We

3http://image-net.org/challenges/LSVRC/2015/results
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demonstrated that both approaches show competitive performance, especially
as concerns learning EEG representation of object classes. The promising
results achieved in this first work make us hope that human brain processes
involved in visual recognition can be effectively decoded for further inclusion
into automated methods. Under this scenario, this work can be seen as a
significant step towards interdisciplinary research across computer vision,
machine learning and cognitive neuroscience for transferring human visual
(and not only) capabilities to machines.
As future work, we plan a) to develop more complex deep learning approaches
for distinguishing brain signals generated from a larger number of image
classes, and b) to interpret/decode EEG-learned features in order to identify
brain activation areas, band frequencies, and other relevant information
necessary to uncover human neural underpinnings involved in the visual
classification.
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