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Abstract

Multiple object detection in wide area aerial videos, has
drawn the attention of the computer vision research com-
munity for a number of years. A novel framework is pro-
posed in this paper using a fully convolutional deep neu-
ral network, which is able to detect all objects simultane-
ously for a given region of interest. The network is de-
signed to accept multiple video frames at a time as the in-
put and yields detection results for all objects in the tem-
porally center frame. This multi-frame approach yield far
better results than its single frame counterpart. Addition-
ally, the proposed method can detect vehicles which are
slowing, stopped, and/or partially or fully occluded during
some frames, which cannot be handled by nearly all state-
of-the-art methods. To the best of our knowledge, this is the
first use of a multiple-frame, fully convolutional deep model
for detecting multiple small objects and the only framework
which can detect stopped and temporarily occluded vehi-
cles, for aerial videos. The proposed network exceeds state-
of-the-art results significantly on WPAFB 2009 dataset.

1 Introduction
Object detection in wide area aerial videos has drawn the
attention of the computer vision research community for a
number of years [14, 18, 20, 23, 26]. Numerous applications
exist for both civilian and military domains. In the field of
urban planning, applications include automatic traffic mon-
itoring, with potentially real-time traffic optimizations and
map updates, driver behavior analysis, and road verification
for assisting both scene understanding and land use clas-
sification. Civilian and military security is another large
area to potentially benefit with applications including mil-
itary reconnaissance, detection of abnormal or potentially
dangerous behavior, border protection, and surveillance of
restricted areas. With the recent increases in the use and af-
fordability of drones and other unmanned aerial platforms,
the desire for building a robust system to detect objects in
wide-area, low-resolution, aerial videos has developed con-
siderably.

Object detection in aerial videos can be defined as the
following. Given an aerial video, taken from a camera or a

Figure 1: An example wide area aerial video frame. The
yellow-boxed region is enlarged, then a blue-boxed region
is further enlarged to show vehicles to detect. Ground truth
annotations are marked with red dots.

set of cameras mounted on a moving platform and covering
a wide area of the ground, place a bounding box or a single
point (which typically corresponds to the center of the ob-
ject) on every object of interest in every frame. One frame
of video taken from the WPAFB 2009 [1] with its ground
truth detections are shown in Fig. 1.

Wide area aerial videos pose some unique challenges that
makes detecting objects extremely challenging. As a result,
most of the state-of-the-art object detection methods used in
general object detection do not perform well in this domain.
In general object detection, most methods are based on ap-
pearance (e.g. Fast R-CNN [6], ResNet [7]), which learn
how the objects look and search for them throughout the
video frames. There are three main reasons why the appear-
ance based object detection methods fail on aerial videos:
1) Objects in the aerial videos are very small (i.e. roughly
on the average 9× 18 pixels in WPAFB 2009 dataset) with
high intra-class variation, leaving minimal appearance cues
to exploit. 2) The airborne sensor platforms can cover a
large area (tens of square kilometers) with hundreds of mil-
lions of pixels in each frame. This makes the search space
extremely large for the appearance-based object detection.
Additionally, due to the first reason, object proposal tech-
niques (e.g. Faster R-CNN [19]) do not work well with the
aerial videos to reduce the search space, as they cannot gen-
erate good object proposals for extremely small objects in
this application. 3) The appearance-based object detection
methods need a large training set (e.g. ImageNet [5]) to in-

1

ar
X

iv
:1

70
4.

02
69

4v
1 

 [
cs

.C
V

] 
 1

0 
A

pr
 2

01
7



crease the performance. For aerial videos, it is very difficult
to generate enough annotations since it is quite cumbersome
to find the small objects in such large videos.

Due to the aforementioned reasons, the most successful
object detection methods for aerial videos are motion-based
[17, 23, 24], which use background subtraction or frame
differencing to find the objects in the videos. However, the
motion-based approaches also suffer from three drawbacks.
Obviously, the first drawback is they totally ignore any ap-
pearance information. The second drawback is they highly
rely on the frame registration, and small errors in frame reg-
istration can induce large failure in the final results. The
third drawback is they do not have a mechanism to use in-
formation from multiple frames efficiently. Due to these
reasons and drawbacks of the state-of-the-art methods, it is
intuitive to ask the following question: How can one use
multiple video frames and combine the appearance and mo-
tion cues to improve the object detection results on aerial
videos?

With the above analyses and reasoning in mind, we pro-
pose a multi-frame fully convolutional deep network based
method for multiple object detection in aerial videos. This
new method can leverage both appearance and motion cues,
and process multiple video frames efficiently. The network
is designed to accept several video frames at a time as the
input and yields detection results for all objects simulta-
neously. The proposed deep network is a fully convolu-
tional neural network, which means the spatial information
for the input is kept throughout the network. The network
input consists of several consecutive video frames (e.g. 5
frames), and the output is the detection map of the center
frame (e.g. the 3rd frame). The deep network is trained in
end-to-end fashion, and during the testing stage, the deep
network is applied to every temporal window in order to
generate detection results in every video frame. Since mul-
tiple frames are input together into the deep network, ap-
pearance and motion cues are automatically combined and
learnt by the training process. Also, since it is a fully con-
volutional network, the searching is automatically done by
the convolutions, which significantly improves the compu-
tational efficiency. While some work has been done on
using multiple video frames as input to neural networks
[3, 8, 10], our method is very different from them since they
are mostly focused on obtaining better features for action
recognition. Our method has very different configurations,
and is designed for simultaneous multiple object detection
rather than classification.

The contribution of the proposed method can be summa-
rized as follows: 1) First use of a multi-frame, deep-learning
model for multiple object detection in aerial videos. 2) The
first object detection method for aerial videos which can
handle slowing, stopped, and even occluded vehicles for
persistent detections. 3) The proposed method significantly

Figure 2: Examples of difficulties present in wide area aerial
videos. Left: Two consecutive frames of video showing
the very low frame rate, illustrated by the red x placed
at the same real-world coordinates in each frame. Cen-
ter: Dramatic motion parallax effects. Vehicles in the
yellow box are occluded for periods of time due to mo-
tion parallax. Right: Several difficulties including mosaic
seams (shown by the blue arrows), camera gain differences,
blurred/unclear object boundaries, etc.

exceeds all state-of-the-art results [4, 17, 23, 24] on WPAFB
2009 dataset.

2 Related Work
Due to the difficulties involved in aerial videos, as dis-
cussed in the introduction, majority of literature has re-
ported that building appearance feature based or machine
learning based classifiers is quite difficult [18, 21, 23, 24].
Thus majority of the state-of-the-art methods fall into two
categories: frame differencing and background subtraction.
Eleven state-of-the-art methods in this area are compared in
[23] and all fall within these two categories.

Both frame differencing and background subtraction
methods require video frames to be registered, also known
as global platform motion compensation, to a single coor-
dinate system. This is usually achieved via some version of
a point-matching based algorithm. Reilly et al. [18] detect
Haris corners in two frames, computes the SIFT features
around those corners and match the points using descriptors.
A frame-to-frame homography is then fit, using RANSAC
or a similar method, and used to warp images to a common
reference frame.

Frame differencing is the process of computing pixel-
wise differences in intensities between consecutive frames.
Both two-frame and three-frame differencing methods have
been proposed in literature with a number of variations
[11, 16, 21, 23, 25]. These methods suffer from issues
caused by both characteristics of wide area aerial video.
The large camera motion combined with a low frame rate,
low resolution, and single channel data makes registration
methods imprecise. Errors in the registration are then di-
rectly transferred to frame differencing methods in the form

2



Figure 3: Multi-frame, multi-object detection framework

of false positives. Strong motion parallax effects combined
with moving camera mosaic seams (i.e. where the multi-
ple cameras are stitched together to form a single sensor)
cause additional false positives. Some of these difficulties
are illustrated in Fig. 2.

Background subtraction methods focus on obtaining a
background model for each frame, then subtracting each
video frame from its corresponding background model.
Reilly et al. computed a background image model by com-
puting the median of ten consecutive images for each frame
of video. Using the median as opposed to the mean uses far
fewer images and leaves fewer artifacts [18].

A major drawback of both approaches is the incapability
of detecting stopped or occluded vehicles. Slowing vehi-
cles also cause a major problem as they are prone to causing
split detections in frame differencing [24] while registration
errors and parallax effects are increased in background sub-
traction models which use more frames than frame differ-
encing. Additionally, sudden and dramatic changes in cam-
era gain cause illumination changes which cause problems
for background modeling and frame differencing methods
which assume consistent global illumination [21].

3 Proposed Method
We propose a multi-frame multi-object detection method
based on a fully convolutional neural network (FCNN)
(shown in Fig. 3). The proposed method consists of three
important stages: 1) Pre-process the videos and annotation
for our deep network formulation; 2) Multi-frame multi-
object detection by fully convolutional neural network. 3)
Post-processing the neural network output for final results.
We first introduce our main contribution: the multi-frame
multi-object detection neural network in Section 3.1, 3.2,
and 3.3, then we discuss other two stages in Section 3.4.

3.1 Single-frame Deep Network

In order to develop our multi-frame multi-object detec-
tion neural network, we start from a simpler case: single-
frame multi-object detection. Traditional approaches were
focused on training an object detector and using sliding-
window techniques to find the objects from the frame. Re-
cently, object proposal based approaches (e.g. Faster R-

CNN [19]) dominate the research and they generate object
candidates to reduce the search space. However, these two
approaches have some drawbacks in multi-object detection
for aerial images, as already discussed in Introduction.

Fully convolutional neural networks (FCNN) are good
candidates to tackle this problem; however, several design
choices must be carefully considered to boost the perfor-
mance. A single frame can be input to a FCNN and the
location (or bounding boxes) of the objects can be used as
the ground-truth. However, this approach makes the neural
network very difficult to converge, since the sizes of objects
are usually only a few pixels. In order to enable the neural
network to perform better, the heat-map formulation can be
employed, which has already been demonstrated useful for
other computer vision applications (e.g. human pose esti-
mation [15]). In this formulation, a heat-map can be gener-
ated according to the ground-truth object locations to guide
the neural network output. We apply small 2D Gaussians
at the locations of objects as the ground-truth and back-
propagate them to train the neural network (see Fig. 4).

3.2 Multi-frame Deep Network

The information from multiple video frames can be used si-
multaneously for object detection in aerial videos. If formu-
lated correctly, both appearance information and motion in-
formation can be combined together to improve the perfor-
mance. State-of-the-art generic object detection approaches
mostly focus on appearance information, but for object de-
tection in aerial videos, the most successful methods are
purely based on motion information. From these two tra-
ditional groups of methods, it is not immediately clear how
to best combine the appearance and motion cues.

We propose to employ a multi-frame FCNN to exploit
the appearance and motion information from the frames si-
multaneously (see Fig. 4). The input to the neural network
is several consecutive video frames and the output is the
object detection heat-map described in Section 3.1. The
network can learn the temporal information without explic-
itly needing to create a difference image or compute the
background subtraction. Features are combined from all
the frames within the deep network for a given size tem-
poral window. The network uses this information to create
a single heat-map for predicted vehicle locations in the tem-
porally center frame. The temporal window is then moved
forward one step in time and results are obtained for each
frame of video in this manner. To the best of our knowl-
edge, this is the first use of multi-frame fully convolutional
neural networks for object detection.

3.3 Deep Network Architecture

Our FCNN structure can be seen in Fig, 4. ReLU lay-
ers were used on every convolution with a dropout of 50%
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Figure 4: The proposed multi-frame fully convolutional neural network for multiple object detection. The blue-boxed regions
demonstrate the effective receptive field for each pixel in the activation maps of each layer. For example after the first
convolutional layer, each pixel in the output activation map ”sees” a 15× 15 region of the input image. By the end of the 8th

convolutional layer, each pixel in the output heat-map gathers information from a 72× 72 region of the input image.

added to the sixth and seventh convolutional layers. Net-
works were designed to handle any number of input images
and output a single vehicle detection map. These maps were
then post-processed as described in Section 3.4 to obtain a
single x,y point for each proposed object. Activation maps
were sampled from the FCNN to help illustrate how both
appearance and temporal information was being learned by
the network. These sample activation maps can be seen in
Fig. 5. Areas where vehicles are moving appear as blurred
out regions in the early activation maps. Classic appear-
ance features such as edges and corners are also present in
these early layers. In later layers, the earlier blurred regions
begin to have very strong activations and are combined to
the appearance features to produce quite impressive results.
Clearly the network is successfully combining both sources
of information.

3.4 Data Processing for Deep Network

In order for the deep network to perform well, some pre-
processing of the video frames and post-processing of the
results are needed.

3.4.1 Frame Registration

For all state-of-the-art approaches, the motion registration
of video frames over time is absolutely necessary. Video
frames are fed into the neural network only after global
camera motion has been removed. Video motion com-
pensation was performed following the method proposed
by Reilly et al. [18] where Harris corners were detected

in each frame, SIFT features were extracted around each
corner, frame-to-frame homographies were computed and
then fit using RANSAC, and finally images were warped
to a common coordinate system. Due to large camera mo-
tion, parallax, poor resolution, drift in the homographies,
etc., these initial alignments were only roughly correct and
second-pass local alignment was performed for each area-
of-interest (AOI).

3.4.2 Ground-truth Preparation

For most of the publicly available aerial video datasets (e.g.
WPAFB 2009 dataset [1]) with object detections, the an-
notations come in the form of (x, y) coordinates with ve-
hicle ID numbers and other metadata. Since it would be
nearly impossible to train a deep network using only a sin-
gle point as the ground truth, the (x, y) ground-truth loca-
tions are processed to a heat-map format. These heat-maps
are created by centering a Gaussian filter with set variance,
σ, at each (x, y) coordinate, with the highest score being in
the center. Each frame of video has a corresponding ground
truth heat-map with all vehicles marked by these Gaussian
filters, thus one heat-map can have hundreds or even thou-
sands of these Gaussian spots (see Fig. 6). The loss for
supervised learning is then computed as the Euclidean dis-
tance (Eq. 1) between the network output and the ground-
truth heat-map as follows,

Li =
1

2N

N∑
j=1

||x1j − x2j ||22 (1)
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Figure 5: A few activation maps for a multi-frame input are
sampled from each layer. In early layers, moving vehicles
appear as blurred out regions in some activation maps while
others find classical appearance features such as edges and
corners. In later layers, the earlier blurred regions begin to
have very strong activations. When combined with the more
appearance feature-based activation maps also found in later
layers, the output of the final convolutional layer produces
quite impressive results.

where the loss for a single output i is calculated by taking
the squared difference of x1j and x2j , the pixel intensities for
the jth output heat-map pixel and ground-truth heat-map
pixel, calculated over all N pixels. An additional approach
was investigated using binary ground-truth maps instead of
these Gaussian heat-maps. Here the problem is formulated
as a binary segmentation problem (BinSeg) where segmen-
tation masks are created for each vehicle location. Loss is
computed using a softmax with cross-entropy loss function
(Eq. 2) instead of a Euclidean distance,

Li = − log
( efyi∑

j e
f
j

)
(2)

where fj are the pixel intensity of the output heat-map i,
and fyi is the ground-truth.

3.4.3 Post Processing for Deep Network

As just discusssed, pre-processing the data turns the origi-
nal ground-truth detections, given as (x, y) coordinates, into
heat-maps for training. On the output side of the FCNN
we must now turn our output heat-maps back into single
(x, y) coordinates. First the output of the network is thresh-
olded to remove weak responses in the heat-map and create
a binary map. Connected components are then found and

Figure 6: AOI 01 with its corresponding ground-truth Gaus-
sian heat-map. A small section has been enlarged at right.
Note: The heat-map has inverted colors and the slightly in-
creased σ for display purposes.

components with very few pixels (i.e. < 100) are removed
as these are considered just another form of weak response
by the network. Next is the merged handling component.
Since we trained on fairly large σ Gaussian spots when we
created our training heat-maps, (this was done to try to help
the network converge) our output spots sometimes overlap
for very densely packed vehicles. To solve this, for larger
than normal connected components (i.e. > 900 pixels), a
bounding box is placed around the component and a cir-
cle finding algorithm is ran to find the center of each spot
within the merged detection. If this method fails to return
any circles, the merge is assumed to be only two objects and
is split into two points, otherwise the centroid of each circle
is returned. Centroids of the connected components not too
small or too large are then taken as positive detections and
added to those returned by the merge handling component.

3.5 Implementation Details

Since the frame size of the aerial videos is extremely large
(over 5 MP for the cropped AOIs and over 315 MP for the
entire video frame), the deep network can not process the
frames due to the memory limit. Thus, the frames are first
divided into small patches, fed through the network, and re-
combined on the other side. We divide the video frames into
128× 128 pixel patches and each 5 temporally consecutive
patches at the same location are combined as one patch im-
age. Models were trained from scratch using Caffe [9]. The
solvers used Adam to update the weights with a based learn-
ing rate of 0.00001. A batch size of 32 was used for both
training and testing the network on a single Titan X GPU.
Obtaining results for each frame of video using the preced-
ing methods on a single GPU takes roughly 3.5 seconds.

4 Experimental Setup

4.1 Dataset

Our method was evaluated using the WPAFB 2009 dataset
[1], one of the only publicly available datasets for wide
area aerial video with ground-truth vehicle annotations.
The video is taken from a single sensor, comprised of six
slightly-overlapping cameras, covering an area of over 19
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sq. km., at a frame rate of roughly 1.25 Hz. The average
vehicle in these single-channel images make up only ap-
proximately 9 × 18 out of the over 315 million pixels per
frame, with each pixel corresponding to roughly 1

4 meter.
With almost 2.4 million vehicle detections spread across
only 1, 025 frames of video, there averages out to be well
over two thousand vehicles to detect in every frame. Af-
ter registering the frames to compensate for camera motion,
eight AOIs were cropped out in accordance to those used is
testing other state-of-the-art methods [4, 17, 23, 24], allow-
ing for a proper comparison of results. AOIs 01 − 04 are
2278 × 2278, covering different types of surroundings and
varying levels of traffic. AOI 34 is 4260× 2604. AOI 40 is
3265 × 2542. AOI 41 is 3207 × 2892. AOI 42 is simply a
sub-region of AOI 41 but was included to test our method
on persistent detections where slowing and stopped vehicles
were not removed from the ground truth. All cropped AOIs
are shown with their ground-truth heat-maps (one example
frame and heat-map each) in the supplemental materials.

4.2 Data Creation

Ground-truth heat-maps and segmentation maps were cre-
ated for each of the eight areas of interest. We obtained
AOIs 34, 40, and 41 with their ground-truth annotations al-
ready redacted to only moving vehicles, since none of the
state-of-the-art methods can handle detecting stopped ve-
hicles, with the exception of [17] which using a tracking
method to obtain persistent detections. AOIs 01 − 04 were
created ourselves by the above stated methods and only ve-
hicles which did not move a distance greater than 15 pixels
(or 2

3 a car length) over the course of five frames were re-
moved. This was done to show our method is more robust
to slowing and stopped vehicles and could achieve higher
results even with this more stringent exclusionary criteria,
allowing more vehicles into the ground-truth to require de-
tections. Data was then split into training and testing splits
in the following way. For training, only tiles which contain
vehicles were included. The splits were as follows: AOIs
02, 03, and 34 were trained on AOIs 40, 41, and 42; AOIs
01 and 40 were trained on AOIs 34, 41, and 42; and AOIs
04, 41, and 42 were trained on 34 and 40.

Binary extension images were created with varying
channel depths and stored in lmdbs for training with Caffe.
Single frame training used a single frame stored in a one
channel image. Five frame images were combined in order
with the frame at time t − 2 was in the first channel and at
t+2 in the 5th channel. For background subtracted images,
these included 2 copies of the frame at t0 and a background
subtracted image filing a three channel input image. For all
of these, the ground-truth map was a single channel binary
extension image of the objects at frame t0.

Figure 7: Results on AOI 41 testing the ability of the deep
FCNN to learn explicitly or implicitly given temporal infor-
mation, and its necessity.

5 Experimental Results
To be consistent with literature [23] detections were con-
sidered true positives (TP) if they fell within 20 pixels, or
roughly 5 meters, of a ground truth coordinate. If multi-
ple detections are within this radius of a ground truth co-
ordinate, the closest one is taken and the rest, if they do
not have any other ground truth coordinates with 20 pix-
els are marked as false positives (FP). Any detections that
are not within 20 pixels of a ground truth coordinate are
also marked as false positives. Ground truth coordinates
which have no detections within 20 pixels are marked as
false negatives (FN). These three statistics were used to gen-
erate precision-recall curves as well as F1 scores for each
experiment where

precision =
TP

TP + FP
, recall =

TP

TP + FN
, (3)

and F1 = 2 ∗ precision ∗ recall
precision+ recall

. (4)

5.1 Learning Temporal Information

The first experiment run was looking to examine three key
questions. These questions needed to be answered before
the proposed method could be considered a candidate for
further exploration. 1) Can deep learning improve the re-
sults of background subtraction (BS) methods when used
together? In other words, can the network incorporate
this temporal information with the appearance information
of the video frames, when explicitly given it. To create
these BS images for testing this hypothesis, we followed
the method proposed by Reilly et al. [18] and trained the
same deep FCNN as the proposed multi-frame method with
three inputs: two copies of a single frame at time t0 and one
of its background subtraction image. 2) If the network can
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Figure 8: Moving object detection results on seven cropped AOIs with comparisons to state-of-the-art approaches. Note that
the top and bottom rows each have their own separate keys. As one can see, our results for both the heat-map method and
BinSeg method significantly outperform the current state-of-the-art.

Comparison of F1 Scores on Eight Crop and Aligned Sections of the WPAFB 2009 Dataset

Method 01 02 03 04 34 40 41 42
Sommer et al. [23] 0.866 0.890 0.900 0.804 x x x x

Shi [22] 0.645 0.760 0.861 0.575 x x x x
Liang et al. [13] 0.842 0.880 0.903 0.760 x x x x
Kent et al. [12] 0.767 0.807 0.668 0.711 x x x x

Aeschliman et al. [2] 0.764 0.795 0.875 0.679 x x x x
Pollard & Antone (3-frame + N) [16] 0.816 0.868 0.892 0.805 x x x x

Saleemi & Shah [21] 0.783 0.793 0.876 0.733 0.755 0.749 0.762 x
Xiao et al. [25] 0.738 0.820 0.868 0.687 0.761 0.733 0.700 x
Keck et al. [11] 0.743 0.825 0.876 0.695 0.763 0.737 0.708 x
Reilly et al. [18] 0.850 0.876 0.889 0.783 0.826 0.817 0.799 x

Pollard & Antone (IGMM) [16] 0.785 0.835 0.776 0.716 0.766 0.778 0.616 x
Teutsch & Grinberg [24] x x x x 0.874 0.847 0.854 x
Prokaj & Medioni [17] x x x x x x x 0.631

Proposed Multi-Frame 0.947 0.951 0.942 0.887 0.933 0.983 0.928 0.927

Table 1: F1 scores of state-of-the-art methods. If precision-recall or F1 values were not reported in the original work, the
values reported in [23] and/or [24] were used. The proposed method outperforms all state-of-the-art methods by a significant
margin on all AOIs. Note that AOI 42 is results on persistent detection (no vehicles removed from ground truth) and is
compared with one of the only other persistent detection methods currently in literature.

learn to combine temporal information and appearance in-
formation effectively when it is explicitly given, can it learn
the temporal information when only given implicitly? More
concretely, given multiple frames as input, can the network
learn the motion information? If the multi-frame method

can perform on-par with the BS method, then we can re-
move the large computational overhead of first computing
all of the median and then background subtracted images
for every frame, in addition to limiting the errors the crop
up in them from alignment defects. 3) Assuming both of
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the above are successful, is any of it really necessary? It has
been stated in numerous recent works [18, 21, 23, 24] that
appearance based classifiers and machine learning classi-
fiers almost universally fail due to the difficulties presented
in wide area aerial video. Can we validate or refute this
claim? Our experimental results shown in Fig. 7 answer all
three of these questions strongly in the affirmative.

6 Comparison with State-of-the-Art
As stated previously, nearly all state-of-the-art methods can
only detect moving vehicles, thus we dedicate a large sec-
tion of experiments to detecting only moving vehicles be-
fore testing the robustness of our method on slowing and
stopped vehicles as compared with one of the only other
persistent detection methods currently proposed in literature
[17].

6.1 Moving Object Detection

Experiments were performed on seven of the cropped and
aligned AOIs previously discussed. For AOIs 34, 40, and
41, the results using both the binary segmentation approach
(BinSeg) and the Gaussian heat-map approach (heat-map)
are reported. For the rest of the curves, the multi-frame
method is always using the Gaussian heat-map approach.
Quantitative results of these experiments are shown in Fig. 8
and Table 1.

6.2 Persistent Object Detection

AOI 42 tests persistent detection rates. In this AOI, none of
the ground-truth vehicles were removed to see if our method
was more robust to slowing, stopped, and partially or tem-
porarily occluded vehicles. The results far surpass the only
other persistent method reporting results on this dataset and
none of the other state-of-the-art methods included are able
to detect these stopped vehicles. A qualitative example of
our results can be seen in Fig. 9 and quantitative results in
Fig. 10 and Table 1.

7 Conclusion
We have proposed a novel fully convolutional neural net-
work based method for persistent multi-frame multi-object
detection in aerial videos. In our method, we successfully
taking advantage of both appearance and motion cues and
integrate them into a single detection network, trained end
to end. We have shown comparisons with many state-of-
the-art methods, and the performance improvements are
relatively 5 to 16% on moving objects for multiple videos
in the WPAFB 2009 dataset as measured by F1 score and
nearly 50% relative improvement on persistent detections
compared to [17]. Additionally, while detections are con-
sidered true positives if they fall within 20 pixels of the

Figure 9: Persistent detection results for AOI 42. The video
frame number is marked at the bottom of each column in
yellow. Top Row: Highlighted image region at each of the
four times. Middle Row: Ground-truth heat-map. Bottom
Row: Output heat-map without any post-processing. No-
tice in the first frame the black car in the shadow of the
building is nearly invisible to the naked eye. Additionally
due to motion parallax, in the last column the white vehicle
is nearly completely occluded by the building, but detection
is maintained.

Figure 10: Precision-Recall curve for AOI 42 on persistent
detection. No ground-truth coordinates were removed in
these results.

ground-truth, the proposed method’s mean distance from
ground truth annotations, averaged over all true positive de-
tections, was roughly 2 pixels (0.5 m), compared to 5.5 pix-
els reported in [24]. We further demonstrated that the pro-
posed method can handle stopped vehicles well, which is
often a failure case in other methods. Future work can be,
but not limited on, object detections with unaligned frames,
region proposals for whole video frames, etc.
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8 Supplemental Materials

8.1 Qualitative Results and ROC Curves

Figure 11: Left Column: Exemplars for the aligned and cropped scenes from the WPAFB 2009 dataset. Red Circles are
centered on ground truth coordinates. Green dots are the final predicted object locations by the proposed framework.
Right Column: Receiver operator curves (ROC) to compliment the precision-recall (PR) curves in the main paper.

(a) AOI 01: Multi-frame heat-map approach
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(b) AOI 02: Multi-frame heat-map approach

(c) AOI 03: Multi-frame heat-map approach
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(d) AOI 04: Multi-frame heat-map approach

(e) AOI 34: Multi-frame heat-map approach
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(f) AOI 34: Multi-frame binary segmentation (BinSeg) approach

(g) AOI 40: Multi-frame heat-map approach
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(h) AOI 40: Multi-frame binary segmentation (BinSeg) approach

(i) AOI 41: Single-frame heat-map approach
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(j) AOI 41: Multi-frame heat-map approach

(k) AOI 41: Multi-frame binary segmentation (BinSeg) approach
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(l) AOI 41: Multi-frame background subtraction approach

(m) AOI 42: Multi-frame heat-map approach
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