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Abstract—Accurate localization of brain regions responsible for
language and cognitive functions in Epilepsy patients should
be carefully determined prior to surgery. Electrocorticography
(ECoG)-based Real Time Functional Mapping (RTFM) has
been shown to be a safer alternative to electrical cortical stim-
ulation mapping (ESM), which is currently the clinical/gold
standard. Conventional methods for analyzing RTFM signals
are based on statistical comparison of signal power at certain
frequency bands with limited response assessment accuracies.
This inherently leads to low accuracies of functional mapping
results when compared with gold standard.

In this study, we address the limitation of the current
RTFM signal estimation methods by analyzing the full fre-
quency spectrum of the signal and applying machine learning
algorithms, specifically random forest (RF). We train RF with
power spectral density of the time-series RTFM signal in
supervised learning framework where ground truth labels are
obtained from the ESM. Experimental results obtained from
RTFM of six adult patients in a strictly controlled experimental
setup reveal the state of the art detection accuracy of ≈ 78%

for the language comprehension task, an improvement of 23%
over the conventional RTFM estimation method. To the best
of our knowledge, this is the first study exploring the use of
machine learning approaches for determining RTFM signal
characteristics, and using the whole-frequency band for better
region localization. Our results demonstrate the feasibility of
machine learning based RTFM signal analysis method over the
full spectrum to be a clinical routine in the near future.

Index Terms—Epilepsy, Machine Learning, ECoG, RTFM,
Random Forest

1. Introduction

Epilepsy is a neurological disorder characterized by
unpredictable seizures. There are over 65 million people
around the world who have epilepsy and an incidence rate
of 150,000 new cases every year in just USA alone [1].
Drug Resistant Epilepsy (DRE) (or intractable epilepsy) is
defined when the seizures cannot be controlled by medi-
cations and about 25% of all epileptic cases are DRE [2].

Figure 1: Overview of the language localization framework
with RTFM approach. ECoG signal recording, data transfer,
storage, research and clinical paths, and tasks are illustrated.
RTFM signals are obtained from subdurally implanted grid
electrodes.

The only viable option in this case is to surgically remove
the effected tissue. Epilepsy surgery is a curative option
for pharmacoresistant epilepsy, but brain regions associated
with language and cognitive functions can be affected by
surgery. To do this accurately, unaffected regions of the brain
must be identified (localized). Accurate localization helps
to prevent post-surgical loss of functionality. The motor
and language comprehension are examples of functionally
significant region localization.

Clinical standard and the state-of-the-art method for
RTFM evaluation. The gold standard task localization,
Electro-cortical Stimulation Mapping (ESM), utilizes elec-
trodes that are placed on the surface of the brain by means
of craniotomy. During ESM, the current is delivered for
a short duration to stimulate the region of interest. The
behavioral response corresponding to changes in function
are simultaneously recorded. The inherent drawback of this
approach is that the stimulation can cause the neurons
in that region to uncontrollably discharge, i.e. cause
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Figure 2: Language specific areas in the brain.

seizure. Recently, Electrocorticography (ECoG)-based real-
time functional mapping (RTFM) [3] has been proposed as
a promising alternative to ESM. The typical RTFM based
task localization and experimental setup is illustrated in
Figure 1. Similar to the ESM, subdural grids on the cortical
surface are utilized for signal collection, however, no exter-
nal stimulus is provided and only the physiological changes
corresponding to the processed stimuli are recorded via the
electrodes. Hence, no seizure due to stimulation occurs.

Research gap. The results of RTFM are not always con-
cordant with the gold standard due to the difficulty in
understanding the brain signals without stimulation and lack
of sufficient accuracy of the state-of-the-art method, ECoG-
based functional mapping [4], or ECoG-EM from now on,
where EM stands for expectation maximization. There is
a need for a method that would improve RTFM signal
classification accuracy and make it a strong and safer alter-
native to the ESM. Current approaches for detecting positive
response channels in the eloquent cortex localization task,
focus on the power of the signal in the α, β and primarily,
the high-γ (70Hz-170Hz) frequency bands [3], [5]. In these
approaches, a baseline recording of each channel at resting-
state is used. The power of the signal during the tests is
computed using an autoregressive (AR) spectral estimation
approach and is then statistically compared to the baseline to
calculate the probability whether the channel has a response
that is significantly different from it’s resting-state (baseline)
condition or not. This is repeated every 100 ms for the entire
experiment. These approaches do not compare the channels
to each other and also do not account for the signal in the
frequency range beyond high-γ.

Our contributions. We present a novel framework for
ECoG signal analysis with RF to accurately discriminate
between channels that respond positive and negative in
regards to language functional mapping task. To the best
of our knowledge, this is the first work comparing the
different (positive and negative) responses rather than using
a baseline approach. We show the superiority of our ap-
proach to the state of the art ECoG-based functional analysis

using Expectation Maximization approaches (ECoG-EM),
and demonstrate its strong potential to become an alternative
to ESM. The rest of the paper is organized as follows: In
Sec. 2 we discuss the ECoG data collection, pre-processing
of the data into the discriminative domain and the proposed
classification approach. in Sec. 3, we present our experimen-
tal results before finally summarizing our findings in Sec.
4.

2. Methods

2.1. Data Collection and Experimental Setup

ECoG represents the electrical activity of the brain
recorded directly from the cortical surface. ECoG-based
functional mapping allows identification of brain activity
correlated with certain task, e.g., language. The basic setup
for ECoG-based functional mapping is shown in Figure 1.
ECoG signals from the implanted subdural grids are split
into two streams: one for continuous clinical seizure moni-
toring and the other for ECoG-based functional mapping.
The tool used to record the incoming ECoG signal was
BCI2000 [6]. A baseline recording of the cortical activity
was first acquired to capture the ”resting-state” neuronal
activity of the regions. The literature on localization of
motor function using ECoG-based functional mapping (such
as RTFM) is vast [7][8]. Unlike good accuracies obtained
from such studies, the localization of eloquent language
cortex has proved to be more challenging [9]. The language
function in the brain is processed in several regions primar-
ily, the Wernicke’s area and Broca’s area as illustrated in
Figure 2. The Wernicke’s area is located in the posterior

Figure 3: Subdural grid localization and position of ECoG
electrodes on the brain surface are illustrated (left). For a
sample of 1 min duration, both control and active tasks are
illustrated (right).

section of the superior temporal gyrus and is responsible
for the receptive language task i.e. language comprehension.
The Broca’s area, on the other hand, is more involved in
speech production. There exists an anatomical connection
between these two regions, named the arcuate fasciculus,



(a) High Gamma Frequency band - Active task block (b) High Gamma Frequency band - Control block

(c) Higher Frequency bands - Active task block (d) Higher Frequency bands - Control task block

Figure 4: PRC vs NRC in different frequency bands. a,b show an example of the difference between PRC and NRC in
high-γ band. c,d show the same samples in a higher frequency range.

which could induce a response in one region owing to the
other’s activation.

Language comprehension task. Following the baseline
recording step, paradigms similar to those employed in
ESM or functional Magnetic Resonance Imaging (fMRI) are
also employed to record the task-related ECoG signal for
functional mapping purposes [10]. Figure 3 shows one such
paradigm, mimicking experimental setup for the language
comprehension task. Alternate 30 second blocks of ECoG
data during “control” and “active” conditions are recorded
continuously at a fixed sampling rate of 1200 Hz.

For the language comprehension task, the active con-
dition implies listening to a story, while the control task
involves listening to broadband noise [11]. Another associ-
ated paradigm is the reading comprehension task where the
subject reads sentences from a screen, and replies with a
”True” or ”False” response. The system records information
from 128 ECoG channels as illustrated in Figure 3.

2.2. Pre-processing

As a first step of preparing the data, non-task/control
time points in the signal are eliminated. These correspond
to the spontaneous activity recording before the 0-min in
Figure 3 and any trailing signals at the end of the experi-
ment. The use of power spectral density (PSD) is proposed

in [3] as a discriminating feature between the baseline and
task signals. In a slightly different manner, we represent
PSD with a number of coefficients extracted from an au-
toregressive (AR) model. Herein, the AR parameters, ã[n],
are estimated by forward linear prediction coefficients and
then, the spectral estimate is calculated as

P̃ (f) =
T ρ̃∣∣1 +∑p

n=1 ã[n]e
−i2πfnT

∣∣ (1)

where T is the inverse of the sampling rate (fs), ρ̃ is the es-
timated noise variance and p is the order of the AR process.
This approach gives us fs

2 + 1 frequency components. The
PSD estimates are computed for each block (task/control) of
each channel. Later, we use these components as features to
determine RTFM characteristics. Unlike conventional meth-
ods, we simplify signal representation with PSD coefficients
only.

2.3. Classification Model

To differentiate positive response channel (PRC) from
negative response channels (NRC), we identify structured
signal patterns in signal blocks, which are not readily visible
to the human eyes. We hypothesize that the features of
the active and control tasks are globally similar between
PRC and NRC but still include substantial differences. This



Figure 5: Auto-classification workflow:First the signals are
split into it’s contributing blocks. After, power spectral
density (PSD) of the signal is estimated and the blocks
are stacked from all channels. Finally, a random forest
(RF) classifier is used for discriminating positive response
channels (PRC) and negative response channels (NRC).

hypothesis can be visually tested and partially confirmed in
Figure 4 where the PSD of the active and control blocks of
PRC are larger than that of NRC.

To test our hypothesis and provide scientific evidences
of ECoG signal separation between functionally positive and
negative regions, we design a RF classifier [12] to model
structured local signal patterns for challenging RTFM signal
characterization. It has been shown in various different areas
that RF is an efficient classifier with considerably good
accuracies in classification tasks [13], [14], [15], [16]. Its
superiority to most other classifiers comes from its gener-
alization property. In RF, briefly, each new tree is created
and grown by first randomly sub-sampling the data with
replacement. An ensemble of algorithms are used so that
the sub-trees are learned differently from each other. For a
feature vector v = (v1, v2, ..., vd) ∈ Rd, where d represents
feature dimension, RF trains multiple decision trees and the
output is determined based on combined predictions. In each
node of decision trees, there is a weak learner (or split func-
tion) with binary output: h(v, θ) : Rd ×T → {0, 1}, where
T represents the space of all split parameters. Note that
each node has different split function assigned. RF includes
hierarchically organized decision trees, in which data arriv-
ing the node j is divided into two parameters. Overall, RF
treats finding split parameters θj as an optimization problem
θj = argmaxθ∈T I(v, θ), where I is objective function

(i.e., split function) and v represent PSD coefficients in
this particular application. As the tree is grown (Figure 5),
an information criterion is used to determine the quality
of a split. Commonly used metrics are Gini impurity and
Entropy for information gain. To overcome potential over-
fittings, a random sample of features is input to the trees so
that the resulting predictions have minimal correlation with
each other (i.e., minimum redundancy is achieved). In our
experiments, we have used linear data separation model of
the RF.

In our experiments, we use full spectrum of RTFM
signal (0-600 Hz) in frequency domain instead of restricted
γ=band. Moreover, we stack the signal to enhance the
frequency specific features rather than concatenating them.
Each channel has 10 blocks (Figure 3) and the final channel
classification is based on a majority voting (Figure 5) on
the classified sub-blocks. For the tested data point (fea-
ture) v, the output is computed as conditional distribution
p(c|v) where c represents the categorical labels (positive
vs. negative response). Final decision (classification) is
made after using majority voting over T leafs: p(c|v) =
1
T

∑T
t=1 pt(c|v).

Model parameters. Number of trees, number of features,
and data size fed to each tree with or without resampling and
the information metric for data splitting are some of the RF
parameters that need to be optimized. To achieve this, the
model was repeatedly tested under different combinations
of the above parameters. For the total number of trees, an
incremental update approach was used where we increased
the total number of trees till the increase in performance
was negligible. Similarly, the number of features was set as
the square root of the number of input variables. For the
choice of splitting function, Gini impurity was used as for
a binary classification problem, both measures yield similar
results. [17].

3. Experiments and Results

With IRB approval, ECoG data were recorded from six
adult patients with intractable epilepsy. Table 1 summarizes
the patient demographics and also highlights the number
of channels tested per patient. The ESM results serve gold
standard for separating ECoG channels into two classes of
”ESM-positive” and ”ESM-negative” electrodes. The num-
ber of tested ESM electrodes varies based on the task in hand
(the function that can be compromised during the surgery
and therefore needs to be localized), patient’s status, possible
after-discharges, location of the grid on the brain surface,
the epilepsy focus and to a smaller extent on the specialist
performing the test.

Except subject 4, all subjects were tested with the
language comprehension paradigm as shown in Figure 3.
Subject 4, on the other hand, underwent the reading com-
prehension test involving reading sentences presented on the
screen and responding to questions as ”True” or ”False”.
Since this test also incorporates speech which would incite
a response from face/tongue sensory motor areas of the brain



TABLE 1: Patient demographics, clinical information, grid placement, and information about the number of analyzed
channels are summarized. Left hemisphere language dominant in all study participants.

Subject Age Sex Epilepsy Grid Epilepsy Channels Tested/
# (yrs) Focus Placement Onset (yrs) PRC / NRC
1 19 M Frontal-Temporal Lateral 16 54 / 22 / 32
2 33 F Frontal-Temporal Lateral 10 32 / 5 / 27
3 20 M Frontal-Temporal Lateral 6 127 / 16 / 111
4 22 F Parietal Lateral 20 30 / 19 / 11
5 32 F Temporal Bilateral 26 48 / 10 / 38
6 52 M Temporal Lateral 30 48 / 5 / 43

as well as the Broca’s area, channels corresponding to these
specific regions were not included in our calculations.

There were 77 PRCs and 262 NRCs in total. Each data
block in a channel is assigned the same label. For 5 minutes
long recording, we have 5 blocks of control and active
conditions each per channel and hence, 3390 data samples
in total. Due to the large imbalance in data, 77 NRCs are
randomly chosen from the 262. In total, we have 1540
blocks of data. For unbiased evaluation of the RF based
results, we used 10-fold cross-validation and the average
over a 100-iteration was conducted.

Time-domain analysis. First, we tested whether the raw
time signal data has sufficiently discriminating information.
For this analysis, a RF model with 100 trees was used. The
resulting classification accuracy was 61.79% with sensitivity
and specificity around 60%. While this is marginally better
than the simple flip of a coin scenario, it is insufficient to
encourage the use of ECoG-based functional mapping over
ESM.

Frequency-domain analysis. Each block in a time-domain
signal was transformed into the frequency-domain using
the pre-processing step described in Section 2 (i.e., PSD
coefficient via AR model). The order of the AR process is
set to SamplingRate

10 = 120. The PSD estimate is of length
fs/2 + 1: 601. We then log normalized PSD coefficients to
train a RF classifier. An ensemble of 200 bagged classifica-
tion trees was trained on 9 folds of the data and tested on
the last fold.

In order to validate the use of control & active task
blocks for channel classification, we first performed block
classification on the 1540 blocks. The classification accuracy
was found to be 94% with sensitivity and specificity of
≈ 93%. These results validate the efficacy of the proposed
block-based classification strategy.

Frequency-band analysis. Three different tests were per-
formed to understand the contribution of the different fre-
quency bands to the channel classification problem:
E1. Classification using full signal spectrum
E2. Classification using α, β, high-γ sub-bands
E3. Classification using only the High-Gamma sub-band
In these experiments, the blocks are classified and a majority
voting is applied to classify a channel as PRC/NRC. Figure
6 summarizes the results of the above experiments for the
language comprehension task. In concordance to what is

Figure 6: Classification scores on ECoG signal classification
on Language Comprehension Task. E1 - Classification using
full signal spectrum, E2 - Classification using α, β, high-γ
sub-bands & E3 - Classification using only the high-γ band.

observed in the ECoG-EM approaches such as SIGFRIED
[3] and CortiQ [18], we find that the lower frequency bands,
specifically, α and β, do not contribute largely towards
classification and the high-γ band achieves good classifi-
cation accuracy. It can also be seen that the full signal
spectrum based classification has higher classification accu-
racy, sensitivity and specificity than the sub-band approaches
indicating that the full spectrum has more information to
offer.

Block-size analysis. We also tested the use of smaller
blocks of data by further dividing each control/active task
block into 10 sub-blocks. Each sub-block of data is the
power spectrum representation of 3 seconds of the recording.
The classification was done based on a majority voting of
the classified sub-blocks within a channel. The resulting
classification accuracy was reported to be 78%, higher than
the block-based approach. This indicates that there is more
local information to be extracted from the signal.

Comparison to the state of the art. ECoG-EM has been
extensively tested on motor localization tasks [5], but not
as much on language localization. Still, ECoG-EM is con-
sidered to be the state of the art method. To have a fair
comparison with ECoG-EM, we applied ECoG-EM on the
frequently tested sub-bands - α, β and high-γ, as well as on
the frequency bands beyond and upto 350 Hz. The results are
shown in Figure 7. While ECoG-EM approach provides



Figure 7: Comparison of ECoG signal classification using
proposed approach - Random Forest (RF) and convention-
ally used, ECoG-EM on the language comprehension task.

a higher specificity, it has a much lower accuracy and
sensitivity than the proposed RF based approach. This
is a strong validation of our hypothesis that inter-channel
comparison is a promising technique as compared to the
intra-channel approach.

4. Conclusion

Discriminating between the response in the eloquent
language cortex regions based on the associated task is a
challenging problem. In the current study, we developed
a novel framework towards the ECoG-based eloquent cor-
tex localization with promising results: 78% accuracy on
channel classification in comparison to the 55% accuracy
of the state of the art ECoG-based functional mapping. By
using our proposed approach, we have performed ECoG
channel response assessment using RF based classification
approach. We showed the efficacy of machine learning based
RTFM signal analysis in replacing ESM. With the increased
classification accuracy on using sub-blocks for classification,
we are working on investigating this further.
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