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Abstract

The fundamental matrix is a central construct in the

analysis of images captured from a pair of cameras and

many feature-based methods have been proposed for its

computation. In this paper, we propose a direct method

for estimating the fundamental matrix where the motion be-

tween the frames is small (e.g. between successive frames

of a video). To achieve this, a warping function is presented

for the fundamental matrix by using the brightness con-

stancy constraint in conjunction with geometric constraints.

Using this warping function, an iterative hierarchical al-

gorithm is described to recover accurate estimates of the

fundamental matrix. We present results of experimentation

to evaluate the performance of the proposed approach and

demonstrate improved accuracy in the computation of the

fundamental matrix.

1. Introduction

Traditionally, there have been two paradigms for estimat-

ing motion parameters between images. The first paradigm,

called the direct approach, recovers motion parameters di-

rectly from image measurables (such as gradients or inten-

sities) at each pixel in the image. Direct algorithms such as

[8, 2, 15, 10, 13, 18, 17] have been proposed that provide

highly accurate and stable results for many motion models.

The second paradigm, called the feature-based approach,

advocates the use of salient features or interest points, con-

centrating on the areas of the image where successful cor-

respondence can be expected. A wide variety of algorithms

have been proposed under the umbrella of the feature-based

paradigm, for the estimation of virtually all known models

of motion. A comprehensive survey can be found in [7].

The cases for these paradigms have been espoused by Irani

and Anandan in [10] and Torr and Zisserman in [19], for di-

rect approaches and feature-based approaches respectively.

While the debate has brewed over the merits and demerits of

feature-based methods and direct approaches for the estima-

tion of various motion models (such as the affine transfor-

mation, the planar projective transformation and the trifocal

tensor), this debate has been moot for the estimation of the

fundamental matrix since only feature-based estimation ap-

proaches exist for its computation.

The fundamental matrix, itself, is a central construct in

the analysis of images captured from a pair of uncalibrated

cameras. It has been used widely in many different ap-

plications including object and action recognition, multi-

camera tracking, view-interpolation and structure from mo-

tion. Direct methods typically employ the brightness con-

stancy constraint [8], which is often approximated by as-

suming small motion and linearizing around the point of

estimation, allowing computation of the normal component

of the flow at each pixel. However, it is known that the

fundamental matrix cannot be computed from normal flow

alone. It is known that there are, in general, no geomet-

ric constraints on point to line correspondences between a

pair of views, since a point in an image charts out a line in

3D, and a line in an image (from the normal flow) defines

a plane in 3D and in general every line and plane intersect.

This has been previously described by Stein and Shashua in

[17]. However, by defining a new transformation of images,

referred to as pseudo-warping, we show that given an ini-

tial estimate, highly accurate computation of the fundamen-

tal matrix is, in fact, possible within the paradigm of direct

estimation. In the next section we place this work in con-

text of earlier research both in terms of fundamental matrix

computation, and within the collection of direct methods. In

Section 2 we define pseudo-warping and derive the transfor-

mation functions for the fundamental matrix, followed by a

description of the minimization scheme for estimating the

fundamental matrix in Section 3. In Section 4 we compare

the proposed approach with standard estimation algorithms

and demonstrate cases where it out-performs these existing

methods. We conclude in Section 5 with final thoughts and

a summary of the proposed approach.

1.1. Preceding Work

Longuet-Higgins introduced the essential matrix in his

seminal article [14] and proposed the eight-point algorithm



for its computation. The fundamental matrix, the analogue

of the essential matrix for uncalibrated cameras, was later

simultaneously proposed by Faugeras in [4] and Hartley in

[5]. Since then a multitude of approaches have emerged

for its estimation, that can be categorized as linear methods

and iterative methods. The classic eight-point algorithm is

a widely used linear approach to estimating the fundamen-

tal matrix, usually in the ‘normalized’ form recommended

by Hartley in [6]. Linear methods are quick, easy to code

and usually provide good estimates in the absence of out-

liers and they are often used to initialize iterative methods

that are more accurate. Iterative methods minimize some

symmetric distance, such as the distance between points

and epipolar lines (as defined by a candidate fundamental

matrix). If an appropriate noise model is selected, an algo-

rithm to find the maximum likelihood estimate of F can be

readily devised by minimizing the reprojection error,

∑

i

d(xi, x̄i)
2 + d(x′

i, x̄
′

i)
2 (1)

where (xi,x
′

i) are the measured correspondences, and

(x̄i, x̄
′

i) are the estimated correspondences that exactly sat-

isfy x̄′T Fx̄ = 0 for the estimated (singular) matrix F. Non-

linear techniques such as Levenberg-Marquardt or Newton-

Raphson are used to minimize the distance function over

the parameters of the fundamental matrix and the ‘true’ po-

sitions of the correspondences. The first-order approxima-

tion of the reprojection distance, or the Sampson-error has

also been applied by Torr in [20] and by Zhang in [23].

A detailed survey and performance comparison of different

methods has been recently reported in [1].

The basis of most direct methods is the brightness con-

stancy assumption, often used in the linearized form of

Horn and Schunck, [8]. Direct methods as a paradigm for

recovering motion was first proposed by Horn and Wel-

don in [9]. Rather than use point correspondence, they ad-

vocated estimating motion parameters directly from image

gradient information (Irani and Anandan later generalized

this to any image measurable [10]). Bergen et al. proposed

a linear approach to estimating an affine transformation re-

lating two views, in [2]. The general framework laid out

in their paper was to become the blueprint for later meth-

ods: A coarse-to-fine approach ([3]) with iterations at each

level minimizing the sum of squares errors between the first

image and the transformed second image. This framework

was used to propose a non-linear estimation algorithm for

planar projective transformations by Szeliski in [18]. A

linear version was later proposed, along with other motion

models by Mann and Picard in [15]. For 3D models, Ku-

mar et al. proposed a direct method for the plane+parallax

mode in [13], and a multiple frame extension was later pro-

posed by Irani et al. in [11]. Finally, a direct algorithm was

also proposed by Stein and Shashua in [17], that utilized

the tensor brightness constraint to estimate structure and

motion directly from triplets of views. A hallmark of such

direct approaches is sub-pixel accuracy and the so-called

locking property in the presence of outliers. On the other

hand, feature-based methods have several highly desirable

qualities such as invariance to photometric and geometric

transformations, and statistical modeling is easier with the

feature-based abstraction of images.

The case being made here for a direct method to compute

the fundamental matrix is two-tiered. First, using direct re-

finement of initial estimates, highly accurate estimates can

be obtained between a pair of frames, particularly when

motion is small. This is important in structure computa-

tion from video data, where frame-to-frame motion is often

expected to be small, and highly accurate estimates of the

fundamental matrices is imperative. Second, in cases where

there aren’t features that can be readily used or computed,

or where aliasing exists, direct methods provide an accurate

means of computing the fundamental matrix relating pairs

of views where feature-based methods may run into detec-

tion or correspondence problems.

2. Pseudo-Warping of an Image

In [22], Wolberg defines image warping to be a spatial

transformation defined by the geometric relationship

between points in a source and target image. Clearly, no

such image warping can be defined for the fundamental

matrix since it relates a point in the source image to a line

in the target image. However, in this section, we describe

a function that allows us to transform a source image

according to a fundamental matrix, using constraints from

image information.

Definition A pseudo-warp of an image is a bijection, f :
IR2 → IR2, of the image domain which is a function of

the parameters of a geometric transformation and the image

intensity information,

(x′, y′) = f(x, y|F, I1, I2), (2)

where (x, y) are the spatial indices on the original image,

(x′, y′) are the transformed locations, F are the parame-

ters of the geometric transformation between the image pair

(I1, I2).

2.1. Brightness Constraint

Consider the function I(x, y, t), mapping the imaged

spatio-temporal space recorded by a camera to brightness

values. Using the brightness constancy constraint, i.e. the

brightness of a point on the object, as recorded by the cam-

era, remains the same across time, we have,

I(x, y, t) = I(x + u, y + v, t + 1), (3)



Figure 1. Pseudo-warping. Using geometric and brightness con-

straints in conjunction allows a one-to-one transformation of im-

age pixels.

where u is the x-component of the optical flow, i.e. u =
x′ − x, and v is the y-component, v = y′ − y, where

(x′, y′, t+1) is the point corresponding to (x, y, t). Expand-

ing the right-hand side of the equation using Taylor’s series

and retaining only the linear terms, at the point (x, y, t) we

have,

I(x+u, y+v, t+1) = I(x, y, t)+
∂I

∂x
·u+

∂I

∂y
·v+

∂I

∂t
·1+. . .

(4)

Substituting Equation 3 in Equation 4, we get the well-

known optical flow constraint equation of Horn and Schunk,

[8],

Ix(x, y, t)u + Iy(x, y, t)v + It(x, y, t) = 0, (5)

where Ix, Iy and It are the spatial (in x and y) and temporal

image derivatives respectively. The optical flow constraint

equation (Equation 5) can be rewritten as the equation of a

line,

v(x, y, t) = −
Ix(x, y, t)

Iy(x, y, t)
u(x, y, t) −

It(x, y, t)

Iy(x, y, t)
. (6)

This linear ambiguity is often referred to as the aperture

problem. Since u = x′ − x and v = y′ − y, we can re-write

this linear constraint in terms of x′ and y′, the coordinates

at t + 1 of the point corresponding to (x, y).

y′ − y = −
Ix(x, y, t)

Iy(x, y, t)
(x′ − x) −

It(x, y, t)

Iy(x, y, t)
,

y′ = −
Ix(x, y, t)

Iy(x, y, t)
x′ −

(

It(x, y, t)

Iy(x, y, t)
− y −

Ix(x, y, t)

Iy(x, y, t)
x

)

.

(7)

Finally we can rewrite this equation in homogeneous coor-

dinates as,

[x′, y′, 1]T [Ix, Iy, It−yIy−Ixx] = [x′, y′, 1]T ·l′b = 0 (8)

where the true flow is constrained by brightness values to

lie on the line l′b.

2.2. Geometric Constraint

The fundamental matrix, F, satisfies the constraint that

for a pair of corresponding points (x, y, 1) and (x′, y′, 1),

[x′, y′, 1]F[x, y, 1]T = 0. (9)

The epipolar line is l′e = F[x, y, 1]T and therefore for a

rigid scene we have,

[x′, y′, 1]T · l′e = 0. (10)

Thus, given that the fundamental matrix relating two

consecutive views, the correspondence at any point can then

be computed,

x′ = l′e × l′b, λx′ = [x′, y′, 1]. (11)

Expanding the equation we get,

x
′ =

(f4x + f5y + f6)(It − Iyy − Ixx) − (f7x + f8y + f9)Iy

(f1x + f2y + f3)Iy − (f4x + f5y + f6)Ix

, (12)

y
′ =

(f7x + f8y + f9)Ix − (f1x + f2y + f3)(It − Iyy − Ixx)

(f1x + f2y + f3)Iy − (f4x + f5y + f6)Ix

. (13)

Equations 12 and 13 define the relationship between cor-

responding points in the two images. The transformation

described by these equations are analogous to other point-

to-point warping such as planar affine transformations or

planar projective transformations. However, unlike these

purely geometric transformations, the pseudo-warping de-

fined by Equations 12 and 13 differs from regular warping

in two important ways. First, unlike regular warping, it

requires image information for transformation, thus it will

transform different images differently for the same geomet-

ric transformation (e.g. fundamental matrix parameters).

Second, since the optical flow constraint equation assumes

small motion, this transformation loses fidelity in warping

large transformations. The pseudo-warping between points

in the two images is shown in Figure 1.

3. Estimation of the Fundamental Matrix

In this section we describe a hierarchical scheme for es-

timating the fundamental matrix, while maintaining its rank

deficiency. Since Equation 5 assumes small motion and

since the Levenberg-Marquardt algorithm tends to get stuck

at a local optima, we perform hierarchical matching using

Gaussian pyramids to capture larger motions, [3]. In this

scheme, sub-sampled versions of the images are used to es-

timate a coarse estimate of the parameters, because the same

motion becomes smaller at coarser levels. These coarse es-

timates are then propagated to progressively finer levels of

the pyramid to refine the estimate at each level of the hi-

erarchy. Each level of the pyramid is a transformation of

the image at a finer level by the 2D similarity transform

T = diag(1
2 , 1

2 , 1), therefore the fundamental matrix es-

timated at level i is propagated to a finer level i + 1 as

F(i+1) = TF(i)T. At each level of the Gaussian pyra-

mid, several iterations of the following minimization are

performed. As in [2, 18], in order to find the optimal es-

timate of the fundamental matrix, we wish to minimize the



mean sum of squares of the intensity error,

E =
1

n

n
∑

i

[I(xi, yi, t) − I(xi
′, yi

′, t + 1)]2 =
1

n

n
∑

i

e2
i ,

(14)

over all the n corresponding pairs of pixels1. We use the

Levenberg-Marquardt minimization (see [16] for details) to

perform this non-linear minimization. We need to minimize

this with respect to the parameters of the fundamental ma-

trix, {f1, f2, . . . f9}, and as a result we need the partial dif-

ferentials of ei with respect to each of the unknown param-

eters. Using the chain rule, these can be computed,

∂ei

∂fj

=
∂ei

∂x′

∂x′

∂fj

+
∂ei

∂y′

∂y′

∂fj

. (15)

Clearly, ∂x′

∂fj
can be readily obtained by differentiating

Equations 12, with respect to all fj . Also, ∂ei

∂x′
and ∂ei

∂y′

can be approximated by the weighted image gradients

−eiIx(x′

i, y
′

i, t + 1) and −eiIy(x′

i, y
′

i, t + 1). From these

quantities, the approximate Hessian H and the gradient vec-

tor G can be computed,

hm,n =
∑

k

∂ek

∂fi

∂ek

∂fj

, gi =
∑

k

∂ek

∂fi

. (16)

It is important to point out, at this stage, that all point on

the lines (or curve) of Equation 8 do not exactly satisfy the

brightness constancy constraint. They do not since the the

Taylor series expansion used approximates the image func-

tion around a point. Intuitively, the brightness constancy

assumption maps out a line in the image (normal flow line)

and we know that we do not, in general, find lines of con-

stant brightness in images. Thus different candidate funda-

mental matrices will give different costs according to Equa-

tion 14, which can be used to select a ‘best’ fundamental

matrix.

3.1. Enforcing the Rank Constraint

By virtue of its construction, the fundamental matrix is

known to be rank deficient. A straightforward strategy that

is sometimes employed to enforce this constraint is to fac-

torize the estimated F using Singular Value Decomposition,

and computing the singular matrix F′ by setting the small-

est singular value to zero. This provides an estimate of

the fundamental matrix that minimizes the Frobenius norm

||F−F′||, [6]. However, this method is inexact and is likely

to increase the error of the estimate with respect to Equa-

tion 9. To obtain the most accurate computation of the fun-

damental matrix, this rank 2 constraint on the fundamental

1As in other direct approaches, if a correspondence lies outside the spa-

tial support of the image (e.g. when the epipolar line and the normal flow

line are approximately parallel) the points are ignored.

Objective

Compute the fundamental matrix F given images I1 and I2

and an initial estimate of the fundamental matrix F−.

Algorithm

1. Compute A−

1 and A−

2 using Singular Value Decom-

position of F−

2. Create a k-level Gaussian Pyramid,

3. At each pyramid level, i = 1 to k times

• Iterate n times

– Use (A−

1 ,A−

2 )(i) as initial estimates for the

Levenberg-Marquardt algorithm.

– Use the error, gradient vector and approxi-

mate Hessian to find the updates ∆A1 and

∆A2 and compute (A+
1 ,A+

2 )(i) iteratively.

– Set (A−

1 ,A−

2 )(i) equal to (A+
1 ,A+

2 )(i), the

final estimate from the minimization rou-

tine.

• Propagate (A+
1 ,A+

2 )(i) to (A−

1 ,A−

2 )(i+1).

4. Compute F from (A+
1 ,A+

2 )(n) (using Equation 17).

Figure 2. Direct Estimation of the Fundamental matrix

matrix must be enforced during estimation and not ‘after

the fact’. For projective cameras, the fundamental matrix is

rank 2, and its right and left null space is spanned by the

epipoles in each image respectively, e′T F = Fe = 0. The

rank constraint on F can be applied by factorizing F as the

product of two 3 × 2 matrices, A1 and A2 as,

F = A1A
T
2 . (17)

In order to initialize the algorithm with an estimate of F, we

can use singular value decomposition to factorize the initial

estimate of F− into its constituent matrices U,D and VT .

From these, the initial estimates of A−

1 and A−

2 are

A−

1
=





u11 u12

u21 u22

u31 u32



 ,A−

2
=





v11 v12

v21 v22

v31 v32





[

d11 0
0 d22

]

.

(18)

It should be noted that in this representation the funda-

mental matrix is parameterized by 12 elements rather than

the minimum possible (seven). Thus, for the Levenberg-

Marquardt algorithm, we need to compute the gradient vec-

tor and approximate Hessian with respect to the 12 param-

eters of (A1,A2), instead of the parameters of F. This

can be done in the same way as in Section 2, replacing F

with A1 and A2 and producing (lengthier) pseudo-warping
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Figure 3. Pseudo-warped images during minimization. As the

minimization algorithm progresses, and the estimate of the funda-

mental matrix improves, the pseudo-warped image begins to more

closely resemble the target image (progressing from left to right,

top to bottom).

functions analogous to Equations 12 and 13. To propagate

(A1,A2)(i) to a finer level we have,

(A1,A2)(i+1) = (TA1,A2T)(i). (19)

The final algorithm for hierarchical minimization is pro-

vided in Figure 2, while the pseudo-warped images during

the minimization are shown in Figure 3.

An approximation that is often valid, particularly when

frame-to-frame camera motion is small, is the assumption

of affine cameras. If such a model is assumed then the form

of the fundamental matrix becomes,

F =





0 0 f1

0 0 f2

f3 f4 f5



 . (20)

Making such an assumption reduces the Equation 12 to,

x′ =
f2(It − Iyy − Ixx) − (f3x + f4y + f5)Iy

f1Iy − f2Ix

,

y′ =
(f3x + f4y + f5)Ix − f1(It − Iyy − Ixx)

f1Iy − f2Ix

. (21)

The assumption of an affine camera enforces the rank 2 con-

dition on the fundamental matrix inherently, by virtue of its

form, as well as reducing the number of minimization pa-

rameters to 5. Making such an approximation improves the

numerical stability of estimation, and is usually useful as an

initialization to the fundamental matrix for projective cam-

eras.

4. Experimentation

In this section we report experiments that demonstrate

accurate estimation of frame-to-frame motion using the pro-

posed direct method. A MATLAB implementation, with 3

pyramid levels and 2 iterations per level, took an average of

20.32 seconds per image pair for images of size 352x240

pixels on an Intel P4 Processor, 2GHz with 1GB RAM.

1

2

Figure 4. Sub-pixel accuracy obtained by direct method. The fun-

damental matrix is computed on a sub-sampled image pair and

then compared at the full resolution. Zoomed in views of Area 1

and 2 are shown in Figure 5.

Figure 5. Zoomed in view of Area 1 and 2 in Figure 4.

We do not perform any post-processing of pseudo-warping

results, although simple interpolation or in-painting algo-

rithms can be used to obtain more visually appealing render-

ings. We compare the results of this algorithm against stan-

dard algorithms, such as the normalized eight-point algo-

rithm [6] and MAPSAC [20]. To ensure fidelity of compar-

ison, publicly available code was used for the algorithms be-

ing compared, from several libraries (Torr [21] and Kovesi

[12]).

In order to show the high (sub-pixel) accuracy of the pro-

posed approach, we captured an image pair at high resolu-

tion (2848x4288 pixels) captured by a Nikon D2x camera

(as shown in Figure 4). We carefully marked corresponding

points in each image pair and then resized the images to one

eighth the original size (267x402 pixels). Fundamental ma-

trices were then computed from these pairs and the residual

error was computed w.r.t the propagated ground-truth corre-

spondences. From Figure 5, it is evident that our estimate of



Table 1. Error Comparison for the Feature-based and Direct esti-

mation of the Fundamental Matrix

Name Direct-based SSD Featured-based SSD

Sweater 41689.1 42349.2

Bush 12101.1 13480.1

Floor 9633.7 13746.8

Grass 8253.5 29624.4

Wall 20810.7 21016.9

Towel 21134.1 26522.6

Pot 37464.7 37852.3

Cup 27933.8 32607.4

the fundamental matrix provides higher sub-pixel accuracy

compared to MAPSAC.

We also present results of estimation of frame-to-frame

fundamental matrices on the flower garden sequence. We

initialize our method with the MAPSAC estimated funda-

mental matrix. We then minimize the mean error between

the pseudo-warped and the target image using two levels of

pyramid with two iterations per level. Despite small frame

to frame motion and accurate initial estimates from MAP-

SAC, the proposed approach still manages to provide re-

finements on the estimate. The final mean absolute error of

intensity of each frame for both the methods is illustrated

in Figure 6. It is evident from the figure that direct method

results in a lower mean absolute error compared to MAP-

SAC based estimation. The direct method also results in

lower accumulative error compared to MAPSAC based es-

timation, between consecutive frames of the flower garden

sequence as shown in Figure 7.

Finally, the sum of squared difference for the different

images in our test set is summarized in Table 1. Figure

8 provides an qualitative error comparison of the pseudo-

warped images of the estimated fundamental matrices us-

ing the feature based and direct estimation methods. The

leftmost figure in each row of the test image shows the tar-

get image, the center figure depicts the pseudo-warped im-

age of the fundamental matrix estimated using feature based

method, and the right image shows the pseudo-warped im-

age of the fundamental matrix estimated using proposed di-

rect method. Figures 8(a), and 8(b) are images with blur,

where the direct method further refines the fundamental ma-

trix estimated using the feature based method, hence reduc-

ing the error. While, Figure 8(d) is an image of a pot with

crisp features; even then the direct method has slightly im-

proved results compared to the feature based method.

We also compared the symmetric epipolar distance error

for the fundamental matrices estimated using the feature-

based and the proposed direct method in Table 2.
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MAPSAC+Projective

Figure 6. Flower Garden Sequence Error. The fundamental ma-

trix between each pair of adjacent frames was computed using

MAPSAC, which was then refined by the proposed approach. The

two estimated matrices were then used to pseudo-warp the source

frame. The mean absolute error of intensity is shown for each

frame for both the MAPSAC estimate as well as the direct refine-

ment.
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Figure 7. Accumulative error. Error between the first frame in

the flower garden sequence and the next 4 frames. The error is

minimized using direct refinement.

Table 2. Symmetric Epipolar Distance Error for Feature-based and

Direct estimated Fundamental Matrix

Name Direct-based Error Feature-based Error

Matching Manual Matching Manual

Sweater 14.54 24.67 7.82 39.14

Towel 9.42 37.73 7.74 46.53

5. Conclusion

Direct approaches have been proposed for computing

many 2D parametric and quasi-parametric motion models,

such as affine transformations, planar projective transfor-

mations (homographies), spline based motion, and the tri-

focal tensor. However, hitherto, an algorithm that computes

the fundamental matrix directly has not been proposed. By

defining a pseudo-warping operation with respect to an im-

age and a fundamental matrix, we propose such as ap-

proach. On the debate of feature-based approaches vs di-

rect approaches, we acknowledge the advantages and lim-

itations of both methods, and adopt the view that the best

results are obtained by allowing both approaches to com-

plement each other, rather than using either in isolation.
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Figure 8. Comparison of the pseudo-warped images. (a) Sweater

(b) Floor (c) Towel (d) Pot (e) Cup. Left to right: Target Image,

MAPSAC estimation based pseudo-warped image, and Direct es-

timation based pseudo-warped image.

Clearly, in scenes where salient features are absent, such

as blurred images, or where correspondence is difficult to

estimate, such as textured images with aliasing, direct ap-

proaches offer a means to significantly improve estimates

produced by feature-based approaches. On the other hand,

scenes where significant transformations (both spatial and

colorimetric) exist are challenging, perhaps impossible, for

direct methods to reliably operate.
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