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Abstract

Traditional shape from shading techniques, using a single image, do not reconstruct accurate
surfaces, and have difficulty with shadow areas. Traditional shape from photometric stereo tech-
niques have the disadvantage that they need all of the input images together at once to minimize
the total cost, and this process has to be restarted if new images become available.

To overcome the shortcomings of the above two techniques, we introduce a new technique called
shape from photomotion. Shape from photomotion uses a series of 2-D Lambertian input images,
generated by moving a light source around a scene, to recover the depth map. In each of the input
images, the object in the scene remains at a fixed position and the only variable is the light source
direction. The movement of the light source causes a change in the intensily of any given point
in the image. The change in intensity is what enables us to recover the unknown parameter, the
depth map, since it remains constant in each of the input tmages. This configuration is suitable for
iterative refinement through the use of the Fxtended Kalman Filter.

Our novel method for computing shape is a continuous form of the photometric stereo technique.
It significantly differs from photomelric stereo in the sense that the shape estimate will not only
be computed for each light source orientation, but also gradually refined by photomotion. Since the
camera is fized, the mapping between the depths at various light source locations is known, therefore,
this method has an advantage over those which move the camera (egomotion), and keep the light

source fized. Results of this method are presented for sequences of synthetic and real images.
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1 Introduction

A major task for computer vision is to derive a 3-D scene description from its 2-D images.
This led to the development of the shape from X techniques, which include shape from mo-
tion, shape from texture, shape from stereo, shape from intensity, etc. Shape from intensity
extracts shape information from a series of intensity images, assuming each is generated by
a single light source. It can be further divided into three subcategories: Shape from shad-
ing, shape from photometric stereo, and shape from photometric sampling. The differences
between them are in the number of images and arrangement of light sources.

Shape from shading uses a single light source, i.e., one image as input, to recover the
shape information [4, 10, 17]. It has the advantage that it requires the least amount of
input, however, this also introduces disadvantages. One disadvantage is that since it has less
image information available, it is less accurate. At each pixel, intensity provides only one
constraint, however, the description of surface shape (surface gradient, or surface normal) re-
quires two parameters. Therefore, many shape from shading techniques introduce additional
constraints, such as smoothness of surface, and use optimization methods to estimate shape.
Another disadvantage is that since it employs only a single image, shape from shading will
not be able to provide a complete description of a scene with shadow areas. Some methods
also have problems when the scene is illuminated from the side.

To overcome some of the above problems, shape from photometric stereo was introduced
(2, 3,6, 7,8, 13, 15, 16, 18]. The main idea behind photometric stereo is to take multiple
images of a scene with different light source directions for each image, while keeping the
viewing direction constant. Each image of the scene provides one constraint on the surface
shape. Hence, multiple images of the same scene create an overconstrained system, which
is solved for the surface shape. Shape from photometric stereo combines all of the input
information together in order to minimize total cost. This method can only be used to
compute shape of the areas which receive light from all of the light sources.

Another technique which is similar to photometric stereo is shape from photometric
sampling [11, 12, 14]. It usually uses many light sources, instead of a few, and a sequence
of images corresponding to the light sources to recover the shape information. The use of

extra light sources, rather than only three sources, eliminates the inaccurate results caused



by the improper choices of the source positions in photometric stereo, and makes the results
more accurate.

We introduce a new technique called shape from photomotion. In this technique, a series
of 2-D Lambertian input images, generated by moving a light source around a scene, are
used to recover the depth map. In each of the input images, the object in the scene remains
at a fixed position and the only variable is the light source direction. This novel method for
computing shape is a continuous form of the photometric stereo technique. It significantly
differs from photometric stereo in the sense that the shape estimate is not only computed for
each light source orientation, but also gradually refined by photomotion. Since the camera is
fixed, the mapping between the depths at various light source locations is known, therefore,
this method has an advantage over those which move the camera (egomotion, e.g. see [5])
and keep the light source fixed. Moving the light source requires no warping of depth maps.

In photomotion, the shape from shading method is employed for each light source ori-
entation. Therefore, shape from shading can be considered as a special case of shape from
photomotion, where only one light source is used. In contrast, photometric stereo can’t be

applied to a single image, it needs at least two images, and commonly three images are used.

2 Related Work

Shape from photometric stereo was first introduced by Woodham [18] in the early 1980’s. In
this method, Woodham proposed that the surface gradients could be solved for by using only
two input images, if the surface albedo at each surface point were known. Furthermore, if
the albedo were not known, both gradients and reflectance factors could be solved for by the
addition of one more image. This allowed the reflection factor to vary from point to point
on the surface. The method was simple and efficient, but it only dealt with Lambertian
surfaces and was sensitive to noise. In his recent paper, Woodham [19] applied photometric
stereo technique to compute optical flow.

Pentland’s linear shape from shading [10] has problems with images of quadratic surface
reflectance. Therefore, Pentland [9] proposed photometric motion to solve for shape and
reflectance. The images needed in his approach were taken at different time frames while

the object was rotated. The quadratic component of the surface reflectance function was



factored out by subtracting one image from another. The ratio of one of the images and
the difference image was used to cancel out the albedo and to obtain the surface shape.
Therefore, at least two images were required for the shape recovery. This approach was
also extended to three-image photometric motion by considering second derivatives in the
discrete form. The important difference between Pentland’s and our method is that in his
case the object is moving, therefore he needs warping to align the images. In our case the
light source is moving, so no warping is needed, and we successively refine the depth map in
each image.

Ikeuchi [6] was the first to obtain the shape of a specular surface using the photometric
stereo method. In his research, he used a distributed light source obtained by uneven illumi-
nation of a diffusely reflecting planar surface and three input images. His solution involved
solving a set of non-linear equations. A lookup table, made from the reflectance map, was
used to perform the numerical inversion of the three reflectance maps. This method assumed
a known object position, and required accurate measurements of reflected brightness.

Based on Ikeuchi’s approach, Sanderson, Weiss, and Nayar [14] developed a structured
highlighting approach for specular surfaces, which used an array of point sources for illumi-
nation. The simple property of specular reflection was used to solve for the surface normal.
Results were only shown for smooth objects.

Tagare and deFigueiredo [16] estimated the shape of hybrid surfaces (those having both
Lambertian and specular properties). An energy function was minimized with respect to the
surface normal and the weights of the Lambertian and specular components. They proved
that ten light sources were needed to get a unique solution. This approach was based on the
assumption that the Lambertian and specular components could be pre-separated.

Nayar, Ikeuchi, and Kanade [11, 12] presented a method for recovering the shape of a
hybrid surface, and relative strengths of the Lambertian and specular components, using an
array of extended light sources. Their algorithm first separated the specular component from
the Lambertian component. At each surface point, two surface orientations were calculated,
one from the Lambertian component and one from the specular component. The final surface
orientation was the weighted average of the two surface orientations. The implementation
assumed that only two consecutive images contained non-zero specular components for each

point, and was only suitable for 2-D, that is, it required that the light source, camera, and



object be coplanar.

Park and Tou [8] developed a normal vector equalization method for hybrid surfaces based
on the simplified Torrance-Sparrow model for specular reflection by Healey and Binford [4].
Three input images were used to solve non-linear equations in order to extract the specular
component. After the extraction of the specular component, the surface normal could be
computed using Woodham’s photometric stereo method for Lambertian surfaces. This was
a straight-forward method whose only drawback was the need to solve a set of non-linear
equations.

Coleman and Jain [3] solved for shape from hybrid surfaces using four light source pho-
tometric stereo. It was based on the assumption that only one of the light sources caused
specularity for each surface point, therefore, they used relative deviation to determine the
specular source. This reduced the problem to Woodham’s photometric stereo solution for
three sources.

Solomon and Tkeuchi [15] extended Coleman and Jain’s solution by dividing the object
into different areas, depending on the number of light sources illuminating them. The areas
illuminated by four sources were solved by Coleman and Jain’s method. Three source areas
were solved by adding the constraint that the surface normals be unit vectors. Two source
areas could only be solved if neither light source caused specularity.

Lee and Kuo [7] were the first ones to introduce parallel and cascade photometric stereo.
In their recent paper, they showed that shape from shading algorithms had a problem that
the accuracy of the reconstructed surface was related to the slope of the reflectance map
function defined on the gradient space. They proposed two different photometric stereo
concepts: Parallel and cascade. Parallel photometric stereo took all of the photometric
images together to produce the best estimation of the surface. Cascade would take the
images, one after the other, in a cascading manner. For each image, their shape from shading
method, using triangular element surface approximation, was applied. The estimated shape
from the previous image was used as input for the initial estimate of the next image. They
used a two source photometric stereo method, and concluded that the best results could
be obtained when the two light source directions were orthogonal to each other. Lee and
Kuo’s approach is close to ours, however, there are significant differences. We successively

refine the shape estimate and explicitly use the confidence measurement (covariance matrix)



to represent the accuracy of the shape estimate. Our method for computing shape in each
iteration is faster, simpler and more straightforward than Lee and Kuo’s method.

Recently, Clark [2] proposed an active photometric stereo approach, which models the
motion of the light source in infinitesimal steps. He was the first to use perspective, instead
of orthographic, projection, thus, removing the need for the light source to be modeled at
infinity. The computation was local, non-iterative, and directly solved for depth in a closed
form equation. To measure the infinitesimal image gradients with respect to the change of
the light source, seven images were needed to provide a discrete approximation. The problem
with this approach is that the results shown in his paper were not very accurate, due to the
discrete approximation of the infinitesimal gradients. To solve the problem of inaccuracy, a
lot of images are needed in order to use least squares or median estimator to decrease the
€errors.

None of the above methods dealt with interreflections, the mutual illumination between
surface facets. Nayar, Ikeuchi, and Kanade [13] were the first to challenge the interreflec-
tion problem using photometric stereo. Their observations were based on the fact that the
erroneous shape extracted by shape from photometric stereo algorithms, in the presence of
interreflections, was a little bit shallower than the real shape, therefore, it could be iteratively

refined. The limitation of their algorithm was that it only dealt with Lambertian surfaces.

3 Shape From Photomotion

In this paper, we present a model for shape from photomotion, which uses a series of 2-D
Lambertian input images, generated by moving a light source around a scene, to recover the
depth map. In each of the input images, the object in the scene remains at a fixed position
and the only variable is the light source direction. The movement of the light source causes a
change in the intensity of any given point in the image. This change in intensity allows us to
recover the unknown parameter, the depth map, since it remains constant in each of the input
images. We use a Lambertian reflectance model, and employ the discrete approximation for
p and ¢, and compute Z.

The main thesis of this approach is to recover whatever information is possible at a given

time, then move to the next image to refine the previous estimates and also attempt to



recover information at new points for which previous estimates are not available.

Our formulation is suitable for the Extended Kalman Filter [1]. The basic process of
the Kalman filter is as follows: A set of measurements of a fixed number of parameters are
taken as input to estimate a number of unknown parameters, based on how good the current
measurements are, and how accurate the current estimations are. The estimations from the
previous iteration are used together with the new measurements in the current iteration in
order to gradually refine the estimates. A major advantage of the Kalman filter is that it
can be started at any point, stopped at any point, and continued at any time.

The reflectance function, of a Lambertian surface, at point (¢, j) can be expressed as:
Eij=Ni; - L. (1)

where FE; ; is the gray level intensity, N, ; is the unit surface normal, and L = (L, L,, L.) is

the unit light source direction. The surface normal, IV, ;, can be expressed in terms of the

gradient, (p; j,qi;), as:
N — (pi,j7qi7j7 _1)
6 = '
pli+at;+1

Substituting for IV; ; in equation 1 yields:

L.p+Ly,q— L,
VPi a1

Using the discrete approximations for p; ; and ¢; ; as follows:

Ei;=

Pij = Zij = Zij-1,
Gij = Zij — ZLi-1j,

where 7, ; is the depth at point (7, j), equation 2 becomes:

Lo(Zij — Zij1) + Ly(Zij — Zirj) — L
V(Zij = Zija )P + (Zij = Zica ) + 1

i =

Now our aim is to compute Z;; such that the following function is minimized:

Lo(Zij — Zij—1) + Ly(Ziyj — Zi—15) — L.
VZig = Zij 2+ (Zij— Zia j) +1

J(Eij, L, Zij) = Bij — = 0. (3)



If we use superscript k£ to indicate the k" input parameters and k** output parameter,

and approximate the above equation by a first-order Taylor expansion, we have:

af af

ko 1k k=1 gk _I*
f(Ez ]7L Z ) 8Ei,j (Eh] Ez,]) 8LI(L$ Lx)
of .1 ky, Of k af k—
where
af
= 1 4
8E,L7] b ( )
OL. \/(Zm‘ —Zija )+ (Zij — Zica i) 1
of _ Zig — Zic1, (6)
0Ly V(Zij = Zija P+ (Zij = Zica ) + 1
af _ 1 (7)
8LZ (Zz,] ,] 1 2 + (ZZ] - Zi—l,j)Z +1
of  _ LelZij—Zij1) + Ly(Zij — Zior) = L) 2715 — Zijr — Zicaj)
9Z; (Zij = Zijr)* + (Zig — Zicag)? + 1)

Lo+ L) (Zij = Zij1)* + (Zij — Zicaj)* + 1)

)

(Zig — Zijor 2+ (Zij — Ziia )P + 1)3

: (8)

and the partial derivatives are estimated at (Ef],Lk,ij_l). Note that in equation 3 we
assumed that Z;_;; and Z;;_; are constants, which are given by the previous iteration.
Therefore, in the Taylor series expansion, we have considered f in equation 3 to be a function
of E;;, L and Z; ; only. Z;_; ; and Z; ;_; can also be treated as variables. This results in n?
(for an n X n image) coupled linearized equations, each with three knowns. It can be shown
that when this sparse system of linear equations is solved using Jacobi’s iterative method, it
reduces to the scheme used here in which Z;_;; and Z; ;_; are treated as constants [17].

The depth map ij at the k' iteration can be computed iteratively using the following

recursive Kalman filter:

k k—1 - k—1
K = S*'M(W 4+ MS*=MT)?, (10

SF = (1 - KM)SH!, (11

of
0Z;,

—f(E”,L Zk 1) (12



af
M = 13
aZm" ( )

where S is the 1 by 1 covariance matrix of the estimation error for the depth, and

af A aof T

W=
I E;;, L) O(E;; L)

A is a 4 by 4 matrix which indicates the covariance of the input, i.e., the intensity E;;, and
source direction (L, Ly, L,). The input of the system are a set of measurements: intensities
and light sources, the state is indicated by the current estimates: depths. The previous
estimates are combined with the current measurements in order to gradually refine the
estimates. The refinement is done by considering how good the input measurements are and
how accurate the estimates are.

Since our method is purely local, the computation of K, the Kalman gain, only involves
the inverse of a 1 by 1 matrix. Currently, the initial value for S is set to 1 to indicate a poor
initial guess, and the initial values for A are small, to describe input images with very little
noise. The depth map is initially set to zero everywhere. A can also be derived using some
noise models for the intensity and light source.

This method can be implemented using the following simple algorithm:

1. Initialize all the depth values, Zgj to zero.

2. Compute the partial derivatives =2, 2L 2L 2L 91

5B, 9L, 31, BL.’ 97, from equations 4 to 8.

3. Compute K, Y and M from equations 10, 12, 13.

4. Compute the depth, ij, from equation 9.

5. Update the covariance matrix S* from equation 11.

6. If the covariance matrix indicates improvements, update the depth.

7. Set k =k + 1 and goto 2.

The above process is done for each point in the image, and for each image in the sequence.
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4 Segmentation

The recovery of accurate depth information requires that there must be adequate intensity
information available. Once the depth has been recovered at a surface point, it should only
be refined if there is adequate intensity information available, otherwise the refinement may
degrade the recovered depth. This demonstrates the need for segmentation.

An example of inadequate intensity information are shadows. Shadows can be divided
into self-shadows and cast shadows. Self-shadow is the part of an object which is not illu-
minated by direct light, and cast-shadow is the area projected by the object in the direction
of direct light. In general, selt-shadow is brighter than cast-shadow since it gets lights from
interreflections. However, both of them create dark regions with very little intensity infor-
mation available. Therefore, we can treat them in the same manner.

Segmentation is done during the processing of each image in the sequence. While process-
ing the current image, the scene is segmented using the following four categories, depending
on whether or not the area contains sufficient intensity information in the current and pre-

vious images:

1. The areas which contain adequate intensity information in both the current image (k)

and the previous image (k — 1).

2. The areas which contain adequate intensity information in the previous image, but not

the current image.

3. The areas which contain adequate intensity information in the current image, but not

the previous image.

4. The areas which do not contain adequate intensity information in either one of the

images.

The segmentation is done through intensity thresholding. For the first category, the
estimated depth from the previous image will be refined by the current image. For the
second category, the estimated depth from the previous image will remain unchanged. For
the third category, the depth will be recovered for the first time using the current image. For

the last category, nothing will be recovered. Figure 1 gives an example of the segmentation.
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(a) (b) ()

Figure 1: Sphere images for segmentation. (a) The first image (light source direction is (1, 0,
1), so the left part of the sphere is not visible). (b) The second image (light source direction
is (0, 1, 1), so the bottom part of the sphere is not visible). (c) Results of segmentation.
The light gray area can only be recovered in the first image, the dark gray area can only

be recovered in the second image, the white area can be recovered / refined in both images,

and the small dark area in the lower left corner will not be recovered in either image.

In Figure 1(c), the white area is the region of the sphere which contains adequate intensity
information in both of the images, therefore, its depth is recovered by the first image, then
refined by the second image. The light gray area is the region which contains adequate
intensity information in the first image, so its depth is recovered by the first image and
not refined by the second image. The dark gray area is the region which contains adequate
intensity information only in the second image, and its depth is recovered by the second
image. The small dark area in the lower left corner is the one which does not contain
adequate intensity information in either one of the images, the depth in this area will not be

recovered.

5 Results

5.1 Synthetic Images

The proposed method is first tested on a sequence of 72 synthetic images of a sphere. The
images are generated by keeping the slant (the angle between the light source and the Z axis)
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Figure 2: Results for the Sphere Images. (a) One of the 72 images. (b) 3-D plot of the final

estimated depth map. (c) Error plot for average estimated surface normal after processing

each image.

of the light source at 5 degrees, while changing the tilt (the angle between the projection
of the light source in the X-Y plane and the X axis) of the light source in 5 degree steps.
Figure 2 (a) gives one of the original images. Figure 2 (b) shows the corresponding 3-D
plot of the recovered depth map. The error plot in 2 (c) indicates the average error in the
estimated depth, compared with the true depth, after processing each image. It shows that
the improvements are large in the beginning iterations, then become relatively small after
the results become stable.

Here, we want to emphasize that it is not always necessary to use 72 images in our
method, as it is clear that the recovered depth map is quite good after processing a few
images. Our main aim in this experiment is to show that, with additional images, the shape
estimate either improves or becomes stable.

The second test is performed on a set of synthetic cake images. These images were
generated with the tilt of the light source changing in 90 degree increments. Fach of the
images contain different shadow areas caused by the layers of the cake, as shown in figure
3. After processing the first image, the shadow area has not been recovered (figure 3(e)).
The subsequent images refine the original depth estimates to yield a good representation of
the shape of the cake (as shown in figures 3(f)-(h)). The hole on the left side in figure 3(e),

caused by the shadow area of the first image, is filled.
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Figure 3: Results for Cake Images. (a) First image (light source direction is (1, 0, 1)). (b)
Second image (light source direction is (0, 1, 1)). (c¢) Third image (light source direction is
(-1, 0, 1)). (d) Fourth image (light source direction is (0, -1, 1)). (e) 3-D plot after processing
the first image. (f) 3-D plot after processing the second image. (g) 3-D plot after processing
the third image. (h) 3-D plot after processing the fourth image.
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Figure 4: Results for Tomato Images. (a) One of the 72 tomato images. (b) 3-D plot of
the final estimated depth map. (c) Error plot for average estimated surface normal after

processing each image.
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Camera
light

Object
]

Platform

Figure 5: The experimental setup for taking real images.

This algorithm is also tested on a sequence of tomato images generated using a range
image. The tilt of the light source was moved in steps of 5 degrees, and the slant remained
at 5 degrees. Figure 4 shows one of the input images, the 3-D plot of the recovered depth,
and the error plot. The error plot was generated by comparing the recovered depth, after

processing each input image, with the original range image.

5.2 Real Images

Next, two tests are performed on real image sequences taken with a video camera. The
experimental setup is shown in figure 5. A platform, with a hole in the center and an arm
on the side, is used to rotate the light source around the object. The object is placed in the
center hole, and a lamp is attached to the arm. The camera is directly above the object. In
order to create images with different light source directions, the platform is rotated to align
the arm with each of the light source directions, while the object in the center hole remains
stationary.

The first sequence only contains two images (Figure 6). The objects in the scene are a
wooden block and a paper box. The wooden block is placed on the top of the paper box,

which creates shadows on the paper box. The first image (shown in figure 6(a)) has a shadow
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Figure 6: Results for block Images. (a) First image (light source direction is (0, -1, 1)).
(b) Second image (light source direction is (0, 1, 1)). (c) 3-D plot after processing the first
image. (d) 3-D plot of the final estimated depth map.
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(c) (d) (e)

Figure 7: Results for the Cylinder Images. (a) The first image (light source direction is (-1,
0, 1). (b) The second image (light source direction is (-0.7, 0.7, 1). (c) The third image
(light source direction is (0, 1, 1). (d) The fourth image (light source direction is (0.7, 0.7,
1). (e) The fifth image (light source direction is (1, 0, 1).

area on one side of the block, and the second image (shown in figure 6(b)) has a shadow area
on the other side of the block. The shadow area in the first image is recovered through the
second image. The rotated (to provide a good view) 3-D plots after processing each image
are given in figures 6(c) and 6(d).

In another sequence, we took images of a cylinder sitting on top of a block. There were
a total of five images. The light source was rotated from 0 to 180 degrees, in steps of 45
degrees. The original set of images, and the needle map describing the surface orientation
after processing, are shown in figures 7 and 8. We can see that the shadow area from the

first image is gradually recovered during the processing of the following images.
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Figure 8: The needle map after processing the first, second, third, fourth image. The fifth

needle map is the same as the fourth, so it is not shown.
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6 Conclusion

Shape from photomotion iteratively refines the shape obtained from a sequence of images.
It can take any sequence of images, in any order, as input. The process can be stopped at
any iteration, and restarted from any other point without loss of accuracy. When there is
only one input image, shape from photomotion is reduced to shape from shading.

So far, the movement of the light source we have considered has been arbitrary. In order
to get better results and to reduce the number of input images required, we can also try to
determine the optimal movement of the light source. The optimal movement of the light
source is affected by the shape recovered from the current image and the shadows. It’s always
better if the light source is moved to illuminate as much of the shadow region as possible
in the next image, while maintaining enough overlapping of bright regions. By moving light
in an optimal manner, we can reduce the number of images required to a minimum, and
eliminate shadow regions as much as possible. Also, we would like to extend the photomotion

to specular surfaces.
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