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Abstract

The motion of a walking person is analyzed by examining cycles in the movement. Cycles are
detected using autocorrelation and Fourier transform techniques of the smoothed spatio-temporal
curvature function of trajectories created by specific points on the object as it performs cyclic
motion. A large impulse in the Fourier magnitude plot indicates the frequency at which cycles
are occurring. Both synthetically generated and real walking sequences are analyzed for cyclic
motion. The real sequences are then used in a motion based recognition application in which one
complete cycle is stored as a model, and a matching process is performed using one cycle of an

iput trajectory.
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1 Introduction

Humans are very good at analyzing motion. Experimentsin Psychology have revealed that people
are able to perceive the motion of objects from Moving Light Displays (MLD). A MLD is simply
a two dimensional movie of a collection of bright dots attached to a moving object. Upon viewing
MLDs, people can recognize different types of motion undertaken by a person, such as walking
forward, backward, and jumping. Recognition of complicated motions, such as couple-dancing,
and sophisticated judgments such as the gender of a subject and the gait of a familiar person, have
also been reported. Only the dots are seen in the display (not the whole object) and there is no
structure present since none of the dots are connected. Even though all parts of the object are not
seen and no structure explicitly exists, humans are able to derive in their minds the 3D structure
of the object from the motion information. From this structure, they can recognize specifically
what the moving object is and how it is moving. This is one of the theories about how humans
interpret MLD type stimulus. According to this theory humans use motion information in the
MLD to recover the three dimensional structure, and subsequently use structure for recognition.
There has been significant interest over the last decade in the Computer Vision community in
the structure from motion theory. In this work, three dimensional coordinates of points on the
moving objects and their three dimensional motion is recovered from a sequence of frames. This
problem is formulated in terms of systems of non-linear equations given 2D positions of moving
points among frames. Interesting theoretical work related to the number of points required for
a solution, the uniqueness of such a solution, and the effect of noise on the solution has been
studied. In these approaches, it is assumed that the recovered 3D structure will subsequently be
used for recognition.

Another theory, which has received much less attention in the Computer Vision community,
is the theory that the motion information in the MLD is directly used for recognition. By
recognition, in this context, we mean the recognition of action through motion. For instance, the
distinction between walking and running using the motion of several points on a human body
is one form of motion recognition. The distinction of the different gaits of two persons using

motion is in a general sense one form of object recognition. This motion based recognition is in



contrast to commonly known object recognition which employs explicit 3D or 2D shape. Both
forms of motion based recognition have been strongly demonstrated by Goddard in his recent
Ph.D. thesis [6].

A strong case for the theory that motion information is directly used for recognition is made
by Johansson [8] in his paper on visual perception of biological motion. In this paper he studies
motion patterns without the interference of the form aspect of the object (a human being in this
case). He represents the motion of a body using bright spots to describe the motions of the main
joints. He maintains that the pendulum-like motions of the body’s extremities are highly specific
for different types of motions, and that it is the mathematical spatio-temporal relations in the
patterns created by the moving bright dots that determine perceptual response. The question of
how points moving together on a screen can give such a definite impression of a walking person is
explained by maintaining that recognition is dependent upon general principles for grouping in
visual perception. Experiments were performed using a vector analysis type model to show that
common motion vector components among the moving bright points are separated from the rest
of the motion pattern, and are seen as reference frames for the pendulum motion. The recognition
of walking from the motion of the bright spots is shown to be independent of the course of the
common component. When a common component was subtracted from the element motions
in the walking pattern, all observers still immediately recognized a walking pattern. Similarly,
all observers immediately identified a walking pattern when an extra component was added to
the primary motion of each element. These results show that the motion patterns carry all
the essential information needed for immediate visual identification of such human motions as
walking. It was also demonstrated that people immediately report seeing a walking human being
when they are only presented with a little less than half a step cycle (one “step”).

We are interested in pursuing the second theory of movement analysis, which deals with the
direct use of motion information for recognition. It is our belief that visual interpretation is a
highly complex task. A single source of information, for instance the structure of an object, is
not sufficient for robust and accurate recognition. We need to employ a combination of multiple
cues such as motion, specularities, texture, etc., and exploit information in each cue using several

alternate ways. The structure from motion methods compute intrinsic surface properties, such



as depth values. As pointed out by Witkin and Tenenbaum [15], depth maps and other maps
of 2.5D sketches are still basically just images. They still must be segmented and interpreted
before they can be used for a more sophisticated task.

In this paper, cyclic motion is detected in the motion paths of joint elements during human
walking. Cyclic motion can be defined as the motion undertaken by an object that follows a
repeating path over time. Examples include a person walking, running, skipping, riding a bike,
a pendulum swinging, a ball bouncing, wings flapping, and a piston moving. An application of
cyclic motion detection is the detection of gait problems in an injured person by comparing the
path followed by specific points on the walking body of an injured person to the path created by
the same points on a healthy person. Similarly, athletic performance can be improved when an
expert examines the paths created by points on an athletes body during training. The detection
of cycles is also useful in recognition problems, since specific types of motion may be recognized
according to the cycles a moving object makes.

We will use correlation and Fourier transform techniques to detect cycles in 2-D trajectories
created by points on a moving object. We consider the trajectory as a spatio-temporal curve in
(x,y,t) space. Cyclic motion is detected by finding cycles in the curvature of this spatio-temporal
curve. The detected cycles are then applied to a method proposed by Rangarajan et al [12] for
matching pairs of single trajectories. Instead of storing all the trajectories with different cycles
as models in order to find the correct match for an input trajectory, we will store the trajectory
with one complete cycle as our model, and do the matching with one cycle of the input trajectory.

In a first experiment the cycles in a sequence of points generated by a program that simulates
the movement of a walking person are detected and extracted. Then, a real walking sequence
is tested for cycles. In all cases, the correct frequency of the cycles is detected from the Fourier

transform of pre-processed curvature functions of the trajectories.

2 Related Work

A great deal of work has been done in the field of psychology to show that people can recognize

objects from their trajectories [8, 13]. It has been theorized that humans can recognize an object



based on the motion of several points on that object by inferring the three dimensional structure
of the object from the transformations the two dimensional image undergoes. Cutting [3] gives
examples of six different types of motion: rolling wheels, walking people, swaying trees, aging
faces, the rotating night sky and expanding flow fields. Todd [13] is interested in distinguishing
between rigid and several types of non-rigid motion such as bending, stretching, twisting and
flowing. By displaying the trajectories of either rigid or non-rigid objects, Todd shows that
human observers are able to distinguish between the two. Goddard [5] has proposed a compu-
tational model for visual motion recognition in the moving light displays. He believes that the
visual system continuously computes invariants used to represent objects and movement. These
invariants are used to index into 2D memory models. Having identified the most likely candi-
date, the viewpoint is computed and a verification stage operating in 3D confirms or denies the
hypothesis. Another possible method would use motion information to reconstruct various static
qualities, and use those static qualities to index into memory and recognize the object. However,
Goddard has argued for a recognition process operating directly on motion information. Engel
and Rubin [4] describe an implementation of an algorithm for detecting motion boundaries given
discrete position input. Motion boundaries comprise starts, stops, pauses, and force impulses.
Their algorithm represents image motion velocity in polar coordinates. Force impulses are as-
serted when the slope of zero-crossing of the second derivative of speed or direction exceeds a
threshold.

In Computer Vision the work related to detection of motion before recognition has been re-
ported. Allmen and Dyer [1] detect cyclic motion by tracking curvature extrema in spatio-
temporal images. Repeating patterns are detected using a scale-space representation. In their
approach, 3-D spatio-temporal volumes are formed by stacking a dense sequence of image frames,
and when an edge operator is applied, this ST-volume contains surfaces and volumes which rep-
resent object motion swept out through time. ST-curves are detected on the ST-surfaces by
connecting edge points into contours, and the curvature extrema are then found. The curvature
extrema are used as tokens which are connected from one frame to the next, forming ST-curves.
The ST-curves recover the cyclic behavior of the ST-surfaces. Repeating patterns in the ST-

curves are then detected by matching the scale-space features of every curve. Both fine and



coarse cyclic motion can be observed since curvature scale-space represents curvature over many
scales.

Koller et al [10] characterize vehicle trajectories by motion verbs. They exploit internal rep-
resentation of about ninety German motion verbs to automatically characterize trajectory seg-
ments. The English translation of their German verbs are: to reach, to come nearer, to move
away, to accompany, to go beside, etc.

Hogg [7], addresses the problem of finding a known object in an image using a generate and
test strategy. He models humans with generalized cylinders of varying sizes. From the model,
the occluding edges are predicted, and the hypothesis is verified by the number of edge points
lying near the predicted edges. When dealing with a sequence of images, a difference picture
is used to identify the approximate position of moving objects in the first frame. He also uses
kinematic constraints to reduce the search space in identifying the object in subsequent frames.

Tsotsos et. al. [14] present a framework for the abstraction of motion concepts from sequence
of images. The framework includes: representation of knowledge for motion concepts that is
based on semantic networks; and associated algorithms for recognizing these motions concepts.

During the final stages of writing this paper, we came across a paper by Polana and Nelson
[11]. They used similar techniques as we did. They considered an image sequence as a spatio-
temporal solid with two spatial dimensions and one time dimension, and detected periodicity
using the Fourier transform. They compute reference curve (which is essentially a trajectory)
by tracking the centroid of moving region in several frames. They use reference curve to align
the frames, and then compute gray level signals at every pixel in the image frame. The gray
level signals are used to detect periodicity. The gray-level signals used by Polana and Nelson
are different from the curvature signals, generated from the trajectories, used in our approach.
Their main concern is to judge the degree of periodicity; this also differs with our main concern,
which is to extract one cycle from an input trajectory with unknown cycles, and subsequently

uses it for matching.



3 Detection of Cycles Using the Fourier Transform

A trajectory is defined as a sequence of points ((z1,y1), (22,92), (3,Y3), ... (24,y:)), ordered
by an implicit time dimension. We can represent a 2-D trajectory as two 1-D trajectories, x(t)
and y(), or two 1-D time functions, namely speed and direction. Once coordinates of points that
make up a trajectory are acquired, this 1-D information can be Fourier transformed to detect
cycles. However, when a 2-D trajectory is represented by two 1-D signals, different frequencies
from the two signals may be detected, and a problem is how to combine two different frequencies
to get the correct frequency for the trajectory. Another problem is that the direction function is
very sensitive to noise.

To avoid these problems we will instead consider a trajectory as a spatio-temporal curve
([x(1),y(1),1], [x(2),y(2),2], [x(3),y(3),3], ...... [2(t),y(t),t] ). We will compute the curvature
of this curve which is a function of time by using a 1D version of the quadratic surface fitting

procedure described by Besl and Jain [2]. The curvature, &, is defined as follows:

A2 B2+ C?

K= 1
P+ 7+ 7 Y
where
ad t/ t/ I/ L,C/ ad
a=|" ", B= . and c=|" 7
y// t// t// I// $// y//
The notation | - | denotes the determinant. We will use the discrete approximation to compute

the derivatives, for example, 2/(t) = x(t) —x(t — 1) and 2"(t) = 2/(t) —2'(t — 1). Since we assume
At to be constant, ¢ will equal 1, and ¢" will be 0.

A number of pre-processing steps can be used to improve the detection of cycles. The curvature
function exhibits large and narrow impulses at points of sudden changes on the trajectory. These
impulses contain large high frequency components that may interfere with the detection of cycles,
and it would be beneficial to be suppressed. A median filter is particularly suitable filter for this
task since it can suppress narrow impulses while preserving smoother regions of the curvature.
In our work the first step is to suppress narrow impulses using a conditional median filter [9]

which can better preserve the shape of the curvature function while suppressing the large and



narrow impulses. This filter performs median filtering only on samples where the absolute value
of the difference between the sample and the corresponding median exceeds a threshold. With
this strategy smooth signal regions remain intact, but sufficiently narrow and large impulses are
suppressed. The second pre-processing step is to remove the DC component of the curvature in
order to avoid the zero frequency impulse. We will subtract the average value of the curvature
function from the original curvature function before we perform the Fourier transform. The third
step is to compute the autocorrelation of the curvature. If the motion is cyclic there will be some
self-similarity within the curvature function which becomes more evident in the autocorrelation
function. Finally the Fourier transform of the autocorrelation is used to detect the presence of
cycles and the period of the cyclic motion. A large impulse will occur on the frequency axis of
the Fourier magnitude plot at the fundamental frequency of the cycles that are present. Smaller
impulses may also be present (harmonics) at integer multiples of the fundamental.

This approach for detecting cycles is simpler than one that uses curvature scale space, because
scale space approach essentially matches portions of scale space to find repeated patterns of
curvature for periodicity, which is time consuming. Also, our approach can detect periodicity
not evident in the spatial domain because of the presence of uncorrelated noise. It is also
computationally efficient because the Fourier transform can be computed via the FFT (Fast

Fourier Transform) algorithm.

4 Experiments

In our experiments we used the FFT algorithm to compute the Fourier transform. To achieve
sufficient frequency resolution the data array to be transformed was padded with zeros to become
of length 2048 samples and a 2048-point FFT was used. It should be noted that computation
of the autocorrelation function prior to transformation is not necessary because by the Wiener-
Khintchine theorem the Fourier transform of the autocorrelation of a signal is the same as it’s
energy spectral density (Fourier magnitude squared). However, in order to demonstrate the effect

of each pre-processing step, the autocorrelation function was still computed.
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4.1 Synthetic data

The first experiment was performed using synthetic data obtained from a program by Cutting
[3], which generates files containing the coordinates of certain points on the body of a simulated
walking person. Values are input to the program to determine factors such as hip swing and
shoulder excursion, and the program uses laws of physics to determine the z and y coordinates of
each point as the person walks. Feature points are at the following locations: ankle, wrist, elbow,
knee (right and left), hip, shoulder (right), and head. For each cycle there are 40 instances at
which coordinates are calculated, and the program outputs coordinates for twelve cycles, giving
a total of 480 frames. Figure 1 shows the results for motion of the right ankle point. The
twelve cycles that were created by Cutting’s program are shown in Figure 1.(a), which shows the
trajectory created by the z and y coordinates of the right ankle point. The curvature function
is shown in Figure 1.(b). The result of the autocorrelation is shown in Figure 1.(c), and the
magnitude of the Fourier transform of the autocorrelation is shown in Figure 1.(d). We can
clearly see that a large impulse occurs on the frequency axis of the Fourier magnitude plot.

In order to illustrate that the proposed method can deal with the presence of uncorrelated
noise, we added Gaussian noise with variance 0.1 to the curvature function of Figure 1.(b), and
the resultant noisy curvature is shown in Figure 2.(a). The result after filtering through the
conditional median filter is shown in Figure 2.(b). The autocorrelation of the filtered curvature
is shown in Figure 2.(c), and the magnitude of the Fourier transform is shown in Figure 2.(d).
We can see that the autocorrelation of the noisy filtered curvature is still very similar to the
autocorrelation of the noise-free curvature (as shown in Figure 1.(c)), and a large impulse clearly
occurs on the frequency axis of the Fourier magnitude plot.

Figure 3 demonstrates that the proposed method can detect and extract one cycle from a
trajectory with unknown number of cycles. Figure 3.(a) and (c) are the curvature functions of
Figure 1.(b) with different length (180 frames and 310 frames). The proposed method successfully
detected and extracted the same cycle (as shown in Figure 3.(b) and (d)) for both cases.
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Figure 1: Results for the synthetic walking person trajectory (obtained from a program by
Cutting). (a). The trajectory of the right ankle point. (480 frames). (b). The curvature
function of (a). (c). The autocorrelation function of (b). (d). The magnitude of the Fourier

Transform of the autocorrelation function.
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Figure 2: Results for the noisy example. (a). The curvature function of Figure 1.(b) with
noise. (b). Result after filtering through the conditional median filter. (c¢). The autocorrelation

function of (b). (d). The magnitude of the Fourier Transform of the autocorrelation function.
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Figure 3: Results for cycle detection and extraction. (a). The curvature function of Figure 1.(b)
with unknown cycles. (180 frames) (b). One cycle extracted from (a) using the proposed method.
(c). The curvature function of Figure 1.(b) with unknown cycles. (310 frames) (d). One cycle

extracted from (c) using the proposed method.
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4.2 Real data

The proposed method was also tested on a real walking sequence that was obtained from Goddard
[6] at University of Rochester. He used the WATSMART image processing system, which is
designed specifically to gather data on human gait. It consists of two cameras arranged to give
a stereo view, a set of light-emitting diodes (LEDs), a calibration frame, and an IBM RT with
software for processing the camera signals. The LEDs are taped to the actor, and wires string
from the LEDs to the computer. As the actor moves, the system gathers data by sequentially
flashing each LED and recording the location of the LED in the camera frames. The system can
gather data from 8 LEDs at up to 400 frames/second. Software computes the 3D location of each
LED in each frame by examining the 2D frame data from the two cameras. Goddard operated
the system at 100 frames/second, with LEDs attached to the six proximal joints (shoulder, elbow,
wrist, hip, knee, ankle) and the two most visible distal joints (wrist and ankle). Actor motion
was roughly perpendicular to the calibration axis (the average of two camera axes). He then
converted raw data files containing 3D LED locations to 2D by omitting the depth coordinate,
which did not change much during the recordings. The raw data was converted into orientation
angles for each of the limb segments and software was written to display and edit the data
in order to smooth it and ensure that the starting and ending point of a cycle were identical.
Finally, he resampled the data to produce 60 frames per cycle for each set of data in order to
normalize the cycle time. A walking person sequence obtained from Goddard with 132 frames
was tested. The stick figure of the first 60 frames is shown in Figure 4.(a). Eight points on the
person’s body are shown in the stick figure. The trajectory of the shoulder point is shown in
Figure 4.(b). The curvature function is shown in Figure 4.(c). The autocorrelation of the pre-
processed curvature function is shown in Figure 4.(d). The magnitude of the Fourier Transform
of the autocorrelation function is shown in Figure 4.(e). A large impulse is clearly shown on the
frequency axis of the Fourier magnitude plot. Figure 4.(f) shows one cycle which is extracted

using the proposed method. The correspondent cycle of the trajectory is shown in Figure 4.(g).
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Figure 4: Results for the real walking person. (a). The stick figure of the first 60 frames. (b).
The trajectory of the shoulder point (132 frames). (¢). The curvature function of (a). (d). The
autocorrelation function of the pre-processed curvature (c). (e). The magnitude of the Fourier
Transform of the autocorrelation function. (f). One cycle extracted from (c¢) using the proposed

method. (g). The correspondent cycle of the trajectory (b).
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5 Application: Motion-Based Recognition

One important application for cyclic motion detection is in motion-based recognition. In many
cases, where an object has a fixed and predefined motion, the trajectories of several points on the
object may seem to uniquely identify the object. Therefore, it should be possible to recognize
certain objects based on motion information obtained from the trajectories of representative
points. Rangarajan et al [12] proposed a method for matching pairs of single trajectories utilizing
a scale-space representation as the basis for matching. They represent a 2-D trajectory as two
1-D functions, namely speed and direction, and convolve the 1-D speed and direction signals
with the second derivative of Gaussian over a range of o values to produce the 2-D scale-space
image. They then determine the strength and polarity by applying the first derivative of the
Gaussian at each zero-crossing point in the scale-space image. The strength and polarity of
each zero-crossing is referred to as the zero-crossing potential. Match scores between the two
trajectories are determined by computing the difference between their smoothed zero-crossing
potentials.

Rangarajan’s method assumes that the correspondence between the model trajectory and the
input trajectory is known. For an object with cyclic movement, they need to store all the
trajectories with difference cycles as models in order to find the correct match for an input
trajectory. Since we can detect cycles in an input trajectory (assuming the object has cyclic
motion), we only need to store and do the matching with one complete cycle as our model. In
order to minimize the computation and problems due to the noise sensitivity of the direction
function, we use one cycle of the filtered curvature for the matching algorithm, instead of speed-

direction as Rangarajan did. The modified matching algorithm is summarized as following:

1. Compute the curvature signal, [t], from one complete cycle of the input trajectory(using

equation (1)), and filter it through a conditional median filter.

2. Generate the curvature scale-space image by convolving the filtered curvature signal with
the second derivative of the Gaussian over a range of o values, and locate the curvature
zero-crossings by scanning the scale-space image and testing the values in a neighborhood

around each point.
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3. Determine the strength and polarity by applying the first derivative of the Gaussian to
the curvature [t] (i.e. k[t] * %e%) at each zero-crossing point in the scale-space image.
The strength (|«[t] * %eﬁb and polarity (sign) of each zero-crossing is referred to as
the zero-crossing potential. This step produces a 2-D array, (,[t, o], containing the zero-

crossing potentials at each point. In this array, points which are not zero-crossings will

hold a zero value.

4. Diffuse the zero-crossing potentials 3, using a 2-D Gaussian mask with sigma equal to one,

and store the result in array ~,.

5. Scale the value in ~, by the scaling factors %, where a[t, o] is the diffused zero-

crossing potentials for one complete cycle of the model trajectory.

6. Perform an element by element subtraction of the o and ~ arrays, and store the result in

array €.

|Eﬂ(tvg)|

2*|22aﬁ(t,a)| '

7. Compute the match score as 1 —

A perfect match between trajectories will produce a match score of 1.

To demonstrate this application, the walking sequences of persons K and W shown in Figures
5,6 and 7 were used. We videotaped a person, K, walking at two different times, and generated
two distinct image sequences, K1 and K2. We also videotaped another person, W, and generated
a single image sequence, W1. There are 32 frames in each sequence. Figure 5 (a) through (f)
show frames 1, 6, 12, 18, 24, and 30 of sequence K'1. Figure 5.(g) shows the stick figure of the 9
body points. Figure 5.(h) is the trajectory of the left heel point, which is used as the model.

Figure 6 (a) and (b) show the first and last frames of sequence K2. Figure 6.(c) shows the
stick figure. Figure 6.(d) is the trajectory of the left heel point. There are 128 frames which are
obtained by repeating the original sequence four times. The curvature of the trajectory is shown
in Figure 6.(e). The magnitude plot of the Fourier Transform of the pre-processed curvature
function is shown in Figure 6.(f). The proposed method extracted 32 frames as one cycle, which

is detected correctly.
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Figure 7 (a) and (b) show the first and last frames of sequence W1. Figure 7.(c) shows the
stick figure. Figure 7.(d) is the trajectory of the left heel point. There are 256 frames which
are obtained by repeating the original sequence eight times. The curvature of the trajectory
is shown in Figure 7.(e). The magnitude plot of the Fourier Transform of the pre-processed
curvature function is shown in Figure 7.(f). The proposed method also extracted 32 frames as
one cycle.

The matching results for sequences K'1 and K2 using one complete cycle are shown in Figure
8. Figure 8 (a) and (b) are zero-crossing potentials of the curvature scale-space of trajectories
K1 and K2, and Figure 8 (¢) and (d) are the diffused version of the zero-crossing potential.
The difference picture between Figure 8 (c) and (d) is shown in Figure 8.(e). The match score
between K1 and K2 is 0.836. (For a perfect matching the match score should be 1.)

The matching results for sequences K1 and W1 using one complete cycle are shown in Figure
9. Figure 9 (a) and (b) are zero-crossing potentials of the curvature scale-space of trajectories
K1 and W1, and Figure 9 (¢) and (d) are the diffused version of the zero-crossing potential.
The difference picture between Figure 9 (c¢) and (d) is shown in Figure 9.(e). The match score
between K1 and W1 is 0.137, which is low enough to declare a mismatch.

It is clear that the cyclic motion detection is helpful in reducing the overhead of the motion-

based recognition.
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(2) (h)

Figure 5: Image Sequence K in which person K is walking. There are 32 frames in this sequence.
(a)-(f) Frames 1, 6, 12, 18, 24 and 30 of the sequence K*, (g) The stick figure drawings of 9 body

points. (h) Trajectory of K}, .
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Figure 6: Image Sequence K? in which person K is walking. There are 32 frames in this
sequence. (a)-(b) First and last frames of the sequence K?, (c) The stick figure drawings of 9
body points. (d) Trajectory of K2,,;. There are 128 frames which are obtained by repeating the
original sequence four times. (e) The curvature function. (f) The magnitude plot of the Fourier
Transform of the pre-processed curvature function. The proposed method extracted 32 frames

as one cycle.
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Figure 7: Image Sequence W' in which person W is walking. There are 32 frames in this
sequence. (a)-(b) First and last frames of the sequence W, (c¢) The stick figure drawings of 9
body points. (d) Trajectory of W} _.,. There are 256 frames which are obtained by repeating the
original sequence eight times. (e) The curvature function. (f) The magnitude plot of the Fourier
Transform of the pre-processed curvature function. The proposed method extracted 32 frames

as one cycle.
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(a) (b) (c) (d) (e)
Figure 8: The matching results for K1 and K2. (a) The zero-crossing potential of the curvature
scale-space of trajectory K1. (b) The zero-crossing potential of the curvature scale-space of
trajectory K2. (c) The diffused version of (a). (d) The diffused version of (b). (e) The difference

picture between (c) and (d). The match score between K1 and K2 is 0.836.

(a) (b) (c) (d) (e)

Figure 9: The matching results for K1 and W1. (a) The zero-crossing potential of the curvature
scale-space of trajectory K1. (b) The zero-crossing potential of the curvature scale-space of
trajectory W1. (c) The diffused version of (a). (d) The diffused version of (b). (e) The difference
picture between (c) and (d). The match score between K1 and W1 is 0.137.
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6 Conclusions

In this paper, we presented a method for cyclic motion detection using autocorrelation and
Fourier Transform techniques. We represent a 2-D trajectory as a 1-D signal: curvature, which
is a function of time. Cycles are detected successfully in the frequency domain by using the
Fourier Transform of the pre-processed curvature signal of the trajectory. The proposed method
was tested on some synthetic data and real data of walking person. We also demonstrated an

application, motion-based recognition, for the cycle detection method.
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