Detecting Hunts in Wildlife Documentaries

Niels C. Haering, Richard J. Qian, M. Ibrahim Sezan, and Niels da
Vitoria Lobo

N. C. Haering and N. Lobo are with the University of Central Florida, Orlando, Florida, U.S.A.
R. J. Qian and M. I. Sezan are with Sharp Labs of America, Camas, Washington, U.S.A.

January 11, 1999 DRAFT

Abstract

We propose a multi-level video event detection methodology and apply it to animal hunt detection in
wildlife documentaries. The proposed multi-level approach has three levels. The first level extracts color,
texture, and motion features, and detects moving object blobs. The mid-level employs a neural network
to verify whether the moving object blobs belong to animals. This level also generates shot descriptors
that combine features from the first level and contain results of mid-level, domain specific inferences made
on the basis of shot features. The shot descriptors are then used by the domain-specific inference process
at the third level to detect the video segments that contain hunts. The proposed approach can be applied
to different domains by adapting the mid and high-level inference processes. Event based video indexing,

summarization and browsing are among the applications of the proposed approach.

Keywords

Video content analysis; content-based indexing and retrieval; browsing and visualization.

I. INTRODUCTION

The amount of video information that can be accessed and consumed from people’s
living rooms has been ever increasing. This trend may be further accelerated due to the
convergence of both technology and functionalities supported by future television receivers
and personal computers. To obtain the information that is of interest and to provide better
entertainment, tools are needed to help users to extract relevant content and to effectively
navigate through the large amount of available video information. For ordinary users, such
tools may also have to satisfy the following requirements: (1) they should be easy to use
in terms of operations; and (2) they should be easy to understand and predict in terms of
behaviors.

Existing content-based video indexing and retrieval methods do not seem to provide the
tools which are called for in the above applications. Most of those methods may be clas-
sified into the following three categories: (1) syntactic structurization of video; (2) video
classification; and (3) extraction of semantics. The work in the first category has concen-
trated on (a) shot boundary detection and key frame extraction, e.g., [1], [33]; (b) shot
clustering, e.g., [31]; (c) table of content creation, e.g., [9]; (d) video summarization, e.g.,
[20]; and (e) video skimming [26]. These methods are in general computationally simple
and their performance is relatively robust. Their results, however, may not necessarily be

semantically meaningful or relevant since they do not attempt to model and estimate the

January 11, 1999 DRAFT

semantic content of the video. For consumer oriented applications, semantically irrelevant
results may distract the user and lead to frustrating search or browsing experience. The
work in the second category tries to classify video sequences into certain categories such
as news, sports, action movies, close-ups, crowd, etc. [17], [28]. These methods provide
classification results which may facilitate users to browse video sequences at a coarse level.
Video content analysis at a finer level is probably needed, to more effectively help users
find what they are looking for. In fact, consumers often express their search items in terms
of more exact semantic labels, such as keywords describing objects, actions, and events.
The work in the third category has been mostly specific to particular domains. For exam-
ple, methods have been proposed to detect certain events in (a) football games [16]; (b)
soccer games [32]; (c) basketball games [25]; (d) baseball games [18]; and (e) sites under
surveillance [5]. The advantages of these methods include that the detected events are se-
mantically meaningful and usually significant to users. The major disadvantage, however,
is that many of these methods are heavily dependent on specific artifacts such as editing
patterns in the broadcast programs, which makes them difficult to extend for the detection
of other events. A query-by-sketch method has also been proposed recently in [2] to detect
certain motion events. The advantage of this method is that it is domain-independent
and therefore may be useful for different applications. For consumer applications, how-
ever, sketching needs cumbersome input devices, specifying a query sketch may take undue
amounts of time and learning the sketch conventions may discourage users from using such
tools.

In this paper, we propose a computational framework and several algorithmic compo-
nents towards an extensible solution to semantic event detection. The automated event
detection algorithm may enable users to effectively find certain semantically significant
events in their video content and help generate semantically meaningful highlights for fast
browsing. In contrast to most existing event detection work, our goal is to develop an
extensible computational approach which may be adapted to detect different events in
different domains. To achieve this goal, we propose a three-level video event detection
algorithm. The first level extracts color, texture, and motion features, and detects moving

object blobs. The mid-level employs a neural network to verify whether the moving blobs

January 11, 1999 DRAFT

belong to objects of interest. This level also generates shot descriptors that combine fea-
tures from the first level and contain results of mid-level, domain specific inferences made
on the basis of shot features. The shot descriptors are then used by a domain-specific
inference process at the third level to detect the video segments that contain events of
interest. To test the effectiveness of our algorithm, we have applied it to detect animal
hunt events in wildlife documentaries. In our implementation we do not attempt to detect
the stalking phase that precedes many hunts. Our purpose is to detect the swift or rapid
chase of a fleeing or running animal. Since hunts are among the most interesting events in
a wildlife program, the detected hunt segments can be composed into a program highlight
sequence. The proposed approach can be applied to different domains by adapting the
mid and high-level inference processes while directly utilizing the results from the low-level
feature extraction processes.

In the following section, we describe the proposed computational framework and its algo-
rithmic components. In Section 3, we present experimental results obtained as we applied
the proposed algorithm to detection of animal hunt events in a number of commercially
available wildlife video tapes. Implementation details are also furnished in Section 3.

Finally in Section 4, we summarize our work and discuss some future directions.

II. METHODOLOGY

We focus on the classification and detection of non-rigid, amorphous or articulate natural
objects, such as animals, trees, grass, sky, clouds, etc., as well as the motion of objects in
such scenes. Our approach therefore has object classification and motion detection com-
ponents. The object classification component makes use of feature extraction methods
based on multi-resolution Gabor filters, the Gray-Level Co-occurrence Matrix (GLCM),
the fractal dimension, and color. The feature representations of the objects are then classi-
fied by a back-propagation neural network and combined with shot boundary information
and frame motion estimates to detect semantic events such as predators hunting prey.

The problem of detecting semantic events in video, e.g., hunts in wildlife video, can be
seen as having three levels as shown in Figure 1. At the lowest level we determine the
boundaries between shots, estimate the global motion, and express each frame in a color

and texture space. We also compensate for the estimated global motion between each pair

January 11, 1999 DRAFT

of frames. The earlier frame of each pair is transformed by the motion estimate and a
difference image is produced to highlight areas of high residual error. We assume that this
residual error is mostly due to independent object motion, and therefore the highlighted
areas correspond to independently moving objects which are also referred as motion blobs.

At the intermediate level the detected motion blobs are then verified with the class
labels assigned to that region by a neural network. The network uses the color and texture
representation of the input obtained by the lower level, and performs a crude classification
of image regions into sky, grass, tree, rock, and animal regions. If (1) the motion between
two consecutive frames is large, (2) a blob exists that has a high motion residual (motion
other than that of the background), and whose motion and position in consecutive frames
varies smoothly, and (3) is labeled as animal region by the network then we assert that we
are tracking a fast moving animal. The intermediate level generates and integrates such
frame information and produces a summary for an entire shot. If throughout the shot
there was support for a fast moving animal and the location/motion of the animal was
found to be stable enough then the shot summary will indicate that a fast moving animal
was tracked throughout the shot.

At the highest level a domain specific analysis of these shot summaries is used to infer

the presence of a hunt in the underlying video sequence.

 Detected Events)

A
i

Event Inference

Shot Summarization

]

[
Motion Blob Verification
A
i i
Texture/Color Analysis Motion Estimation Shot Detection

 ——— I

' Video Sequences

Fig. 1. The flowchart of our method.

January 11, 1999 DRAFT

A. Global Motion Estimation and Motion Blob Detection

We assume that the global motion can be estimated with a three parameter system

allowing only for zoom, horizontal and vertical translation.

u(z,y) = ag + aox
v(z,y) = a1 + axy

The robust recovery of the three parameters has to deal with the following problems,

« corresponding points in adjacent frames are often far apart (50-60 pixel displacements
are not uncommon, peak displacements exceed 100 pixels),

« interlacing between frames drastically changes the appearance of small objects and tex-
tures in adjacent frames,

« the object and hence the global motion we are trying to estimate is often very large and
motion blur eliminates texture in the direction of that motion (of course the motion in
this direction is also the motion we are most interested in),

« often animals need to be tracked under strongly varying lighting conditions and occlusion,
as when a hunt leads through areas with trees or bushes.

Given the large possible displacements between corresponding patches of adjacent frames
an exhaustive search creates unreasonable processing requirements. Therefore we use a
pyramid of reduced resolution representations of each frame. At each level of the 5-level
pyramid we consider matches from a 5 x 5 neighborhood around the location of the patch
in the source frame, enabling a maximum matching distance of 62 pixels. The levels of
the pyramid are obtained by subsampling the lower level image rather than computing a
more accurate Gaussian pyramid. We expect the use of a Gaussian pyramid to produce
better results at a slight computational cost.

At the lowest level of the pyramid, i.e. the full resolution representation of the frame,
the patches used for matching are of size 64 x 64. Patches from uniform areas often result
in erroneous displacement estimates. To avoid matching such patches we discard patches
with insufficient “texture”. We use a 2D variance measure to determine the “amount of

texture”.

var, =

n
=

(3 (a(i.9) ~ .. 3)F - a(.)

0 ¢

January 11, 1999 DRAFT

var, = i(i(a(i,j) —a(i,.))* —a(.,.))?

§=0 i=0
where a(7,7) is an m x n image patch, a(i,.),a(., j), and a(.,.) are the averages of the "
row, the j* column, and the entire patch a respectively.

We compute motion estimates at each of the four corners of a frame, as shown in
Figure 5(a). Bad motion estimates are often due to matching errors made high up in
the pyramid that are subsequently not recovered by the lower levels. Since the motion
of the tracked animals often does not vary drastically between consecutive frames (i.e.
their acceleration is small) we also use the previous best motion estimate to predict the
location of the four patches in the next frame. A limited search in a 5 x 5 neighborhood
around the predicted location, improves the motion estimates in many cases. Therefore
we obtain up to eight motion estimates, one pyramid based estimate for each of the four
patch locations, and one for each of the four estimates based on a limited search around
the predicted match locations. Since some patches may not pass the “texture” test we
may have fewer than eight motion estimates. The highest normalized dot product between
a source patch P1 and matched patch P2 determines the “correct” global motion estimate
between the current and next frame. The normalized dot product is equal to the cosine

of the angle («) between the two patches (vectors) P1, and P2:

Zi,j Pl(’l,,j) Zi,j PQ(Z:J)

COS(O!)pLPQ =

We would like to point out that
« almost all wildlife videos are taken with a tele lens at a great distance to the objects of
interest. For our motion analysis, we therefore assume an orthographic model, in which
the camera pan and tilt appear as plain translations, thus supporting our assumption of
uniform background motion,
« motion estimates based on the feature space representation of the frames are very similar
to those obtained on the original color frames, and
« although the described motion estimation scheme is sufficient for our purpose a Kalman
filter based approach [11] might yield more consistent results.

The motion estimates are then used to compensate for the global motion between con-

secutive frames. Finally, we use the grayvalue difference between the current image and

January 11, 1999 DRAFT

the motion compensated next frame to estimate the location of the animal in the frame.
Areas with low residual error are assumed to have motion values similar to those of the
background and are ignored. The independent motion of animals on the other hand usually
causes high residual errors between the current frame and the following motion compen-
sated frame. Therefore we can make use of a robust estimation technique to obtain an
estimate of the animal location within the frame. This estimation technique iteratively
refines the mean x and y values dependent on the residual error within a fixed size neigh-
borhood around the mean values for the entire difference image. The robust estimation
method was first developed in [24] for real-time human face tracking. Here we briefly
describe how the method is applied to the application discussed in this paper. Based on
the frame difference result, the algorithm constructs two 1D histograms by projecting the
frame difference map along its x and y direction, respectively. The histograms, therefore,
represent the spatial distributions of the motion pixels along the corresponding axes. Fig-
ure 2(a) illustrates an ideal frame difference map where there is only one textured elliptical
moving object in the input sequence, and the corresponding projection histograms.

— h(y)

—

h(x) y T h(x) mean(k+1)

mean(K)|

> X
L\-_—J—l trimmed interval (k+1)
trimmed interval (k)

(a) (b)

Fig. 2. (a) Two 1D histograms constructed by projecting the frame difference map along the x and y

y

direction, respectively. (b) Robust mean estimation for locating the center position of a dominant

moving object.

The instantaneous center position and size of a object in the image can be estimated
based on statistical measurements derived from the two 1D projection histograms. For
example, a simple method estimates the center position and size of a dominant moving

object in an input sequence using the sample means and standard deviations of the dis-

January 11, 1999 DRAFT

9

tributions. More specifically, let h,(i),¢ = 0,1,..., and hy(i),7 = 0,1,..., denote the
elements in the projection histograms along the z and y direction, respectively. Then the

object center position (z.,y.) and object width and height (w, h) may be estimated as:

o Tiahel)) —um)?hz(z')]f hes [zi(yi — 1y (0)]
i b (4) i by (7) i b (4) > hy(9)
where o and (are constant scaling factors.

However, the object center position and size derived from the sample means and stan-
dard deviations may be biased in the cases where other moving objects appear in the scene.
It is therefore necessary to develop a more robust procedure to address this problem. We
propose the use of robust statistical estimation routines to achieve robust measurements
for object center position and size [30]. More specifically, the center position of a dominant
moving object in an input sequence is estimated based on the robust (trimmed) means of
the two 1D projection histograms in the z and y directions. Figure 2(b) illustrates the
process of the estimation of the motion center.

Step 1 Compute sample mean g and standard deviation o based on all the samples of the
distribution.

Step 2 Let py(0) = p and § = max(a o,b x sampleSpaceW'idth) where a and b are scaling
factors, e.g., a = 1.0 and b = 0.2, and sampleSpaceW idth is the image-width and image-
height in the x and y direction, respectively.

Step 8 Compute trimmed mean y;(k+1) based on the samples within the interval [y (k) —
J, pe(k) + 9.

Step 4 Repeat Step 3 until |u:(k + 1) — pe(k)| < € where € is the tolerance, e.g., € = 1.0.
Denote the converged mean as u*.

Step 5 Let center-position = u*.

In addition to the robust estimation of object center position, we propose the following
routine for robust estimation of object size. The method first re-projects the frame differ-
ence result in a neighborhood of the located center. It then derives the object size based
on the robust (trimmed) standard deviation. Given the robust mean p* and § obtained
from the above center locating routine, the routine for estimation the size in either x or y

direction is as follows.

January 11, 1999 DRAFT

10

Step 1 Construct a clipped projection histogram HP by projecting the color filtering
map within the range [u),, — A, u;,, + A] in the opposite direction, where u7,, is the
robust mean in the opposite direction and A determines the number of samples used in
the calculation.

Step 2 Based on HP_ compute the trimmed standard deviation §; based on the samples
within the interval [p* — 0, u* + 9.

Step 3 IF HY(u* 4 d6,) > g HP(u*) OR HYP(u* — dy) > g H2(yr7),

where e.g., d = 1.0 and g = 0.4, THEN increase §; until the condition is no longer true.

Step 4 Let size = ¢ §; where c is a scaling factor, e.g., ¢ = 2.0.

B. Texture and Color Analysis: Low-Level Descriptors

To obtain rich, and hence robust and expressive descriptions of the objects in the video
frames we describe each pixel in terms of color and texture measures. The color measures
are the normalized red, green, and blue intensities of the pixel, and its grayvalue, while the
texture measures are derived from the Gray Level Co-occurrence Matrix (GLCM), Fractal
Dimension estimation methods, and a Gabor filter bank. The feature space representations
of each pixel are classified into the categories sky/clouds, grass, trees, animal, rock using a
back-propagation neural network. The use of these features in conjunction with the back-
propagation classifier have previously been shown to enable the detection of deciduous
trees in unconstrained images [14].

The rich image descriptions are formed from 56 Gray-Level Co-occurrence Matrix, 4
fractal dimension, 12 Gabor, and 4 color based measures. No one of the types of measure
(e.g. color or Gabor measures) has the power of the combined set of measures. The
neural network described in Section II-C is well suited to combine this set of measures and
robustly classify image regions into various animal and non-animal classes. Note that we
are only computing features from still frames and that motion is included explicitly at a
higher level. In an alternative approach [27] uses temporal textures for classification, by

combining spatial and temporal changes in image sequences.

January 11, 1999 DRAFT

11

B.1 Gabor Filter Measures

The image (in the spatial domain) is described by its 2-D intensity function. The Fourier
Transform of an image represents the same image in terms of the coefficients of sine and
cosine basis functions at a range of frequencies and orientations. Similarly, the image can
be expressed in terms of coeflicients of other basis functions. Gabor [13] used a combined
representation of space and frequency to express signals in terms of “Gabor” functions:

F9u =

K3

n
a;(x) g:(0,v) (1)

=1

where 6 represents the orientation and v the frequency of the complex Gabor function:

G:(0, v) = ¥ zeos(®) ysin(®)) o (2)
Gabor filters have gained popularity in multi-resolution image analysis [12], [13], despite
the fact that they do not form an orthogonal basis set. Gabor filter based wavelets have
recently been shown [21] to be fast and useful for the retrieval of image data.

We convolve each image with Gabor filters tuned to four different orientations at 3
different scales. The average and range of the four measures at each scale are computed.
To make the measurements somewhat scale invariant, we obtain the following four texture
measures:

« The average of the orientation responses at all scales.
« The average of the scales’ orientation response range.

o The range of the scales’ averaged orientation responses.

o The range of the scales’ orientation response range.

B.2 Graylevel Co-occurrence Matrix Measures

Let p(i,j,d,0) = £ 1(;(,&’:;,)9) where P(.) is the graylevel co-occurrence matrix of pixels
separated by distance d in orientation # and where R(.) is a normalization constant that
causes the entries of P(.) to sum to one.

In texture classification, the following measures have been defined, see for example [4],

[15]:

January 11, 1999 DRAFT

12

The Angular Second Moment (E) (also called the Energy) assigns larger numbers
to textures whose co-occurrence matrix is sparse.

Ny Ny

=35 [p(s,5,d,0))

j=1l¢=1

The Difference Angular Second Moment (DASM) assigns larger numbers to tex-

tures containing only a few graylevel patches. This and other features use p,_,(n,d,0) =

>N v p(i, g, d, 0)

li—jl=n

DASM(d,0) = prynde)

n=0

The Contrast (Con) is the moment of inertia around the co-occurrence matrix’s main
diagonal. It is a measure of the spread of the matrix values and indicates whether pixels

vary smoothly in their local neighborhood.

Ng—1 Ny
Con(d,0) = Z ZZij,dH
n=0 j=1li=1

li—j|=n
The Inverse Difference Moment (IDM) measures the local homogeneity of a tex-
ture. It weighs the contribution of the co-occurrence matrix entries inversely proportional
to their distance to the main diagonal.

Ng—1 Ng—1

IDM(d,6) Z Z T)Qp(z ,J,d,0)

The Mean (M) is similar to the contrast measure above but weights the off-diagonal
terms linearly with the distance from the main diagonal, rather than quadratically as for

the Contrast.

Nyg—1

9 9
M(d,0) = z Zszj,dG
i—jl=n

January 11, 1999 DRAFT

13

Similar to the Angular Second Moment the Entropy (H) is large for textures that give
rise to co-occurrence matrices whose sparse entries have strong support in the image. It

is minimal for matrices whose entries are all equally large.
Ng Ng

=35 p(i,7,d,60)log (p(i, j, d, 0))

j=14=1

Other measures are, Sum Entropy (SH), which uses p,,(n,d,0) = Z;_Vgl zfgl p(i,J,d,0)

li+j]=n
24Ny —1
SH(d,0) = Z P+y(n, d, 0) 10g (pz4y(n, d, 0))
Difference Entropy (DH)
Ng
H(d,0) = = pg—y(n,d,0)log (ps—y(n,d,0))
n=0
Difference Variance (DV) N

DV ==Y (n— DH)*p,_y(n,d,)

n=2
The Correlation (Cor) measure is an indication of the linearity of a texture. The
degree to which rows and columns resemble each other strongly determines the value of

this measure. This and the next two measures use u, = >;7>;p(i,5,d,0) and p, =

ij Zzp(la]a da 0)
St e igip(i, 5, d,y 0) — g * gy

Cor(d,0) = =
Ny N,
Shade (S) S(d,0) =" (i+j— pa— 1y)°p(3, j,d, 6)
Ng Ng
Prominence (P) P(d,0) = ZZ i+ 3] = pe — piy)'p(i, §,d, 0)

Note that the directionality of a texture can be measured by comparing the values
obtained for a number of the above measures as # is changed. The above measures were

computed at 8 = {0° 45°,90°, and 135°} using d = 1. For further discussion of these

graylevel co-occurrence matrix measures, see [4], [15], [29].

January 11, 1999 DRAFT

14

B.3 Fractal Dimension Measures

The underlying assumption for the use of the Fractal Dimension (FD) for texture classi-
fication and segmentation is that images or parts of images are self-similar at some scale.
Various methods that estimate the FD of an image have been suggested:
« Fourier-transform based methods [23],
« box-counting methods [3], [19], and
« 2D generalizations of Mandelbrot’s methods [22].
The principle of self-similarity may be stated as: If a bounded set A (object) is composed
of N, non-overlapping copies of a set similar to A, but scaled down by a reduction factor
r, then A is self-similar. From this definition, the Fractal Dimension D is given by

D— log N,

logr

The FD can be approximated by estimating N, for various values of r and then de-

termining the slope of the least-squares linear fit of %Vf. The differential box-counting

method outlined in Chaudhuri, et al [3] are used to achieve this task.
Three features are calculated based on

« the actual image patch I(3,j),
16,7) =L, I(i,5)> 1L
« the high-graylevel transform of (3, j), 1;(i,j) = 5.9) v 165) '
0 otherwise

o o 255 — Ly I(i,7) > 255 — Ly
« the low-graylevel transform of 1(i,5), I,(7,j) =
I(i,7) otherwise

where Ly = gmin + %52, Ly = Gz — 252, and gmin, Gmazs and gayg are the minimum,

maximum and average grayvalues in the image patch, respectively.

The fourth feature is based on multi-fractals which are used for self-similar distribu-
tions exhibiting non-isotropic and inhomogeneous scaling properties. Let k and [be
the minimum and maximum graylevel in an image patch centered at position (i,j), let

ne(i,j) =1 —k+1, and let N, = > then the multi-fractal, D, is defined by
log Ei,j N;?

Dy = lim
27150 logr
)) . logy . NZ .
A number of different values for r are used and the linear regression of ST yields

an estimate of Ds.

January 11, 1999 DRAFT

15

B.4 The Color Features

The final set of features are the 3 normalized color measures r, g, b and the intensity [

R e B R+G+B
“R+G+B’ 9T

I S b= — — =
R+G+B’ R+G+ B’ Rinaz + Graz + Bimas

r

We generally observed that although our feature set is theoretically redundant it is

beneficial for the classifier to use all the measures rather than a carefully selected subset.

C. Region Classification and Motion Blob Verification

We use a back-propagation neural network to arbitrate between the different features
describing the image. Our back-propagation neural network [10] has a single hidden layer

and uses the sigmoidal activation function ®(act) = —0.5, where act is the activation

of the unit before the activation function is applied. A single hidden layer in a back-
propagation neural network has been shown to be sufficient to uniformly approximate any
function (mapping) to arbitrary precision [6]. Although this existential proof doesn’t state
that the best network for some task has a single hidden layer, we found one hidden layer
adequate. The architecture of the network is shown in Figure 3. The back-propagation
algorithm propagates the (input) function values layer by layer, left to right (input to
output) and back-propagates the errors layer by layer, right to left (output to input).
As the errors are propagated back to the input units, part of each unit’s error is being
corrected.

A number of factors prevent zero error results. A few of these complicating factors are
that often there is no correct classification. For instance, should bushes be labeled as tree
or non-tree areas? What if a bush is actually a small tree? In general it is difficult to
label class border pixels correctly; and misclassifications need not all be equally important.
Misclassifying a distant herd of animals as trees or rocks is not as severe a mistake as, for
example, classifying a nearby lion as sky.

We trained the network using a total of 14 labels. 9 animal labels (lion, cheetah, leopard,
antelope, impala, zebra, gnu, elephant, and an all-other-animal class) and 5 non-animal
labels (rock, sky/clouds, grass, trees, and an all-other-non-animal class) as well as a don’t
care label that was used to tell the network to ignore border regions between instances of

the different groups, which arguably are bad training inputs.

January 11, 1999 DRAFT

16

Featurel

Sigmoidal
Non-linearities

Feature2

Feature3

Featuren

Featuren+1

Input Layer Hidden Layer Output Layer

Fig. 3. The Neural Network architecture.

After training, we found that the proposed network performed well at classifying grass,
trees, rocks, sky, and animals as a whole group. However, it is difficult for the network
to classify lions, cheetahs, leopards, antelopes, impalas, gnus, hyenas, and even zebras,
rhinos and elephants each into different groups. This is probably due to the fact that
those animals differ mostly in their shape and size which we do not model. Hence, while
the network was still trained on the different animal labels, we artificially grouped those
labels into a single “animal” label when using the network for animal region verification.
We also found that the network did not perform well at solving the opposite problem
of classifying, grass, trees, rocks, and sky together as a single “non-animal” group. The
differences between the appearance of instances of these groups are severe. Asking the
network to assign one label to them and a different label to animals proves to be more
difficult than the classification into the individual non-animal groups.

The output of the network is then used to verify the motion blob candidates from
section II-A. In our current implementation, a simple procedure is employed which imple-
ments the following test. A region that has high residual motion after motion compensation
and that contains a significant amount of animal labels, as detected by the neural network,

is considered as a possible moving animal region.

January 11, 1999 DRAFT

17

D. Shot Summarization and Intermediate-Level Descriptors

We use a simple color histogram based technique to decompose video sequences into
shots. To avoid missing important events in extended shots, we also force a shot summary
every 200 frames. A third kind of shot boundary is inserted whenever the direction of the
global motion changes. Shot boundaries of this last kind ensure that the motion within
shots is homogeneous. Each shot is then summarized in terms of intermediate-level de-
scriptors. The purpose of generating intermediate-level shot summaries is two-fold. First,
the shot summaries provide a way to encapsulate the low-level feature and motion anal-
ysis details so that the high-level event inference module may be developed independent
of those details, rendering it robust against implementational changes. Second, the shot
summaries abstract the low-level analysis results so that they can be read and interpreted
more easily by humans. This simplifies the algorithm development process and may also
facilitate video indexing, retrieval and browsing in video database applications.

In general, the intermediate-level descriptors may consist of (1) object, (2) spatial, and
(3) temporal descriptors. The object descriptors, e.g., “animal”, “tree”, “sky/cloud”,
“grass”, “rock”, etc. indicate the existence of certain objects in the video frames. The
spatial descriptors represent the location and size information about objects and the spa-
tial relations between them in terms of spatial prepositions such as “inside”, “next to”,
“on top of”, etc. [7], [8]. The temporal descriptors represent motion information about
objects and the temporal relations between them in terms of temporal prepositions such
as “while”, “before”, “after”, etc. [7], [8].

For the hunt detection application, we currently employ a particular set of intermediate-
level descriptors which describe: (1) whether the shot summary is due to a forced or
detected shot boundary; (2) the frame number of the beginning of the shot; (3) the frame
number of the end of the shot; (4) the global motion; (5) the object motion; (6) the initial
object location; (7) the final object location; (8) the initial object size; (9) the final object
size; (10) the smoothness of the motion; (11) the precision throughout shot; and (12)
the recall throughout shot. More precisely, the motion descriptors provide information
about the x- and y- translation and zoom components of motion. The location and size

descriptors indicate the location and size of the detected dominant motion blob at the

January 11, 1999 DRAFT

18

beginning and the end of the shot. The precision is the average ratio of the number of
animal labels within the detected dominant motion blob versus the size of the blob, while
the recall is an average of the ratio of the animal labels within the detected dominant
motion blob versus the number of animal labels in the entire frame. In addition, we also
employ descriptors indicating (13) that tracking is engaged; (14) that object motion is fast;
(15) that an animal is present; (16) the beginning of a hunt; (17) number of consecutive
hunt shot candidates found; (16) the end of a hunt; and (19) whether a valid hunt is found.

See Section ITI-F for an example and further explanation.

E. FEvent Inference

Hunt events are detected by an event inference module which utilizes domain-specific
knowledge and operates at the shot level based on the generated shot summaries. From
observation and experimentation with a number of wildlife documentaries, a set of rules
have been deduced for detecting hunts. The rules reflect the fact that a hunt usually
consists of a number of shots exhibiting smooth but fast animal motion which are followed
by subsequent shots with slower or no animal motion. In other words, the event inference
module looks for a prescribed number of shots in which (a) there is at least one animal of
interest; (b) the animal is moving in a consistently fast manner for an extended period;
and (c) the animal stops or slows down drastically after the fast motion. Figure 4 shows
and describes a state diagram of our hunt detection inference model.

Automatic detection of the properties and sequences of actions in the state digram is
non-trivial and the low-level feature and motion analysis described earlier in this paper
are necessary to realize the inference. Since any event can be defined by the occurrence of
objects involved and the specification of their spatio-temporal relationship, the proposed
mechanism, of combining low-level visual analysis and high-level domain-specific rules,
may be applicable to detect other events in different domains. In Section I1I-G, we provide

an example and further explanation for using this inference model for hunt detection.

II1. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented in C++ and tested on Sun workstations.

To evaluate the effectiveness of the algorithm, we have digitized wildlife video footage from

January 11, 1999 DRAFT

19

Tracking Begl r}nl ng
Fest 0
Animal Hunt

Not
Tracking

Fast
Animal

Fig. 4. The state diagram of our hunt detection method. Initially the control is in the Non-Hunt state
on the left. When a fast moving animal is detected the control moves to the Beginning of Hunt state
at the top of the diagram. When three consecutive shots are found to track fast moving animals then
the Valid Hunt flag is set. The first shot afterwards that does not track a fast moving animal takes

the control to the End of Hunt state, before again returning to the Non-Hunt state.

a number of commercially available VHS tapes from different content providers. In the
following sections we show examples of the extracted texture and color features, the motion
estimation and detection results, the region classification results, the shot summaries, and

the final hunt event detection results.

A. Test Data

About 45 minutes of actual wildlife video footage have been digitized and stored as test
data for our hunt detection experiments. The frame rate of the video is 30 frames per
second and the digitized frame resolution is 360 x 243 pixels. A total of 10 minutes of

footage £ 18000 frames 2 100 shots have been processed so far.

January 11, 1999 DRAFT

20

B. Global Motion Estimation

Figure 5(a) shows the size and locations of the four regions at which the global motion is
estimated. For each pair of frames motion estimates are computed using a 5 level pyramid
scheme at the shown patch locations. In addition the previous motion estimate is taken
as the current motion estimate and a tight local search around the four predicted patch
locations yields another four patch matches. The best match of any of these 8 patch
comparisons becomes the motion estimate for the current frame pair. Figure 5(b) shows

the motion estimates during a hunt.

Fig. 5. (a) The locations used to estimate the global motion, and (b) the motion estimates during a hunt.

C. Motion Blob Detection

Figure 6 shows an example of the motion blob detection results. It is apparent that
reliable estimation and compensation of global motion makes the task of motion blob
detection relatively easier. When the accuracy of the global motion estimation results are
poor, the performance of the motion blob detection relies largely on the robustness of the

motion blob detection and tracking algorithm described in Section 2.1.

D. Feature Space Representation of the Video Frames

Figure 7 shows the feature space representation of a video frame. The features shown
are the results of the Gray-Level Co-occurrence Matrix based measures (first 56 feature
images), the Fractal Dimension based measures (next 4 feature images), the color based

measures (next 4 feature images), and the Gabor based measures (last 12 feature images).

January 11, 1999 DRAFT

(a)

Motion Estimate

Ax =-7
Ay = 0
zoom = 1.0

(d) (f)

21

Fig. 6. Two consecutive frames from a hunt (a) and (b), the difference image (c), the estimated motion

between the two frames (d), the motion compensated difference image (e), and the box around the

area of largest residual error in the motion compensated difference image.
. - . -

Fig. 7. The feature space representation of the first frame in Figure 6.

January 11, 1999

DRAFT

N
N

E. Region Classification

A neural network is trained on a number of training frames from wildlife video. The
network is then used to classify unseen wildlife video. Global motion estimates such as the
ones in Figure 5 are used to detect moving objects as shown in Figure 6. The locations of
these moving object blobs are then verified using a neural network image region classifier
that combines color and texture information. Rows 1, 3, and 5 of Figure 8 show a number

of frames from hunts together with their classification results (rows 2, 4, and 6).

Fig. 8. Color and texture based segmentation results.

F. Shot Summarization

The intermediate level process consists of two stages. In the first stage the global motion
estimates are analyzed and directional changes are detected in the x and y directions.
When the signs of the 50 frame global motion averages before and after the current frame
differ and their magnitudes are greater than 1 pixel per frame we insert an artificial shot
boundary. In the second stage each shot is then summarized as in the example shown

below.

January 11, 1999 DRAFT

23

—————————— General Information ------------ ----—--- Hunt Information -------
Forced/real shot summary : 0 Tracking 1
First frame of shot 1 64 Fast 1
Last frame of shot 1 263 Animal 1
Global motion estimate (x,y) : (-4.48, 0.01) Beginning of hunt : 1
Within frame animal motion estimate (x,y) : (-0.17, 0.23) Number of hunt shot candidates : 1
Initial position (x,y) : (175,157) End of hunt : 0
Final position (x,y) : (147,176) Valid hunt : 0
Initial size (w,h) : (92, 67)

Final size (w,h) : (100, 67)

Motion smoothness throughout shot (x,y) : (0.83, 0.75)

Precision throughout shot : (0.84)

Recall throughout shot : (0.16)

The summary consists of two parts, the first part, under General Information shows
general statistics extracted for this shot, while the second, under Hunt Information con-
sists of inferences based on those statistics for the hunt detection application.

The first row of the general Information part of the summary shows whether the shot
boundary corresponding to this shot summary was real, i.e. whether it was detected by
the shot boundary detector, or if it was forced because the maximum number of frames
per shot was reached or the global motion has changed. The next two rows show the
first and last frame numbers of this shot. The following measurements are shot statistics,
i.e., the average global motion over the entire shot on row four, and the average object
motion within the shot on row five. The next four rows measure the initial position
and size, as well as the final position and size of the detected dominant motion blob.
The third last row shows the smoothness of global motion where values near 1 indicate
smooth motion and values near 0 indicate unstable motion estimation. The detection of a
reversal of the global motion direction, described above, was based on a long term average
of the motion estimates around the current frame, indicates a qualitative change in the
global motion. The smoothness measure described here, on the other hand, provides a
quantitative measure of the smoothness of the estimated motion. Finally the last two rows
show the average precision and recall for the entire shot. As defined in Section II-D, the
precision is the average ratio of the number of animal labels within the detected dominant
motion blob versus the size of the blob, while the recall is an average of the ratio of the

animal labels within the detected dominant motion blob versus the number of animal

January 11, 1999 DRAFT

24

labels in the entire frame.

The hunt information part of the shot summary shows a number of predicates that
were inferred from the statistics in part one. The shot summary shown above summarizes
the first hunt shot following a forced shot boundary. The system is indicating that it
is Tracking a Fast moving Animal and hence, that this could be the Beginning of a
hunt. The Tracking predicate is true when the motion smoothness measure is greater than
a prescribed value and the motion blob detection algorithm detects a dominant motion
blob. The Fast predicate is set to true if the translational components of the estimated
global motion are sufficiently large in magnitude, and the Animal predicate is true if the
precision, i.e. the number of animal labels within the tracked region, is sufficiently large.
(The recall measure has not been used in our current implementation.) The remaining

predicates are determined and used by the inference module as described below.

G. Ewvent Inference and Final Detection Results

The event inference module infers the occurrence of a hunt based on the intermediate de-
scriptors as described in Section III-F. In doing so, it employs four predicates, Beginning
of hunt, Number of hunt shot candidates, End of hunt, and Valid hunt, which are
currently embedded in the shot summary. If the intermediate descriptors Tracking, Fast
and Animal are all true for a given shot, the inference module sets Beginning of hunt
to be true, which means the shot could potentially be the beginning of a hunt event. The
inference module tracks the intermediate descriptors Tracking, Fast and Animal for con-
secutive shots and increments the value of the Number of hunt shot candidates if all
those three descriptors hold true for consecutive shots. In our current implementation,
when the Number of hunt shot candidates is equal or greater than 3, Valid hunt is
set to be true. Finally the inference module sets End of hunt to be true if one of the
intermediate descriptors Tracking, Fast and Animal becomes false, which implies either
the animal is no longer visible or trackable, or the global motion is slow enough indicating
a sudden stop after fast chasing.

In our final results, hunt events are specified in terms of their starting and ending
frame numbers. In the 10 minutes (18000 frames) of wildlife video footage which we have

processed, there exist 7 hunt events. Table I shows the actual frames of the 7 hunts and

January 11, 1999 DRAFT

25

all the frames of the detected hunts when we applied the proposed algorithm to the 10
minute video footage. The table also shows the retrieval performance of our method in
terms of the two commonly used evaluation criteria (1) precision and (2) recall.
TABLE I
A COMPARISON OF THE ACTUAL AND DETECTED HUNTS IN TERMS OF THE FIRST AND LAST HUNT

FRAME, AND THE ASSOCIATED PRECISION AND RECALL.

Sequence Actual Detected Precision | Recall
Name Hunt Frames Hunt Frames
hunt1 305 - 1375 305 - 1375 100 % 100 %

hunt2 2472 - 2696 | 2472 - 2695 100 % 99.6%
hunt3 3178 - 3893 | 3178 - 3856 100 % 94.8%
hunt4 6363 - 7106 | 6363 - 7082 100 % 96.8%
hunt5 9694 - 10303 | 9694 - 10302 100 % 99.8%
hunt6 12763 - 14178 | 12463 - 13389 67.7% 44.2%
hunt? 16581 - 17293 | 16816 - 17298 99.0% 67.0%
Average 95.3% | 86.0%

IV. SUMMARY AND DISCUSSION

In this paper, we have presented a new computational framework and a number of
enabling algorithmic components for automatic event detection in video and applied it
to detect hunts in wildlife documentaries. Our experimental results have verified the
effectiveness of the proposed algorithm. The developed framework decomposes the task
of extracting semantic events into three stages where visual information is analyzed and
abstracted. The first stage extracts low-level features and is entirely domain-independent.
The second stage analyzes the extracted low-level features and generates intermediate-level
descriptors some of which may be domain-specific. In this stage, shots are summarized in
terms of both domain-independent and domain-specific descriptors. To generate the shot
summaries, regions of interest are detected, verified and tracked. The third and final stage
is domain-specific. Rules are deduced from specific domains and an inference model is built
based on the established rules. In other words, each lower stage encapsulates certain low-

level visual processing from the higher stages. Therefore the processes in the higher stages

January 11, 1999 DRAFT

26

can be stable and relatively independent of any potential detail changes in the lower level
modules. In order to detect different events, the expected changes are (a) the addition
of descriptors in the second stage and (b) the design of a new set of rules in the third
stage. The proposed algorithm also provides several reusable algorithmic components. In
fact, the extracted low-level texture and color features are domain independent and many
objects involved in events carry certain texture and color signatures. The neural network
used for image region classification can be easily re-configured or extended to handle other
types of objects [14]. The robust statistical estimation based object tracking method has
already been used in different applications and its robustness and simplicity are verified
in experiments repeatedly [24].

It is important for us to point out that the proposed algorithm detects hunt events by
detecting certain spatial-temporal phenomena which are physically associated with a hunt
event in the nature. More precisely, the physical phenomenon which we attempt to capture
is the combination of the presence of animals in space and their movement patterns in time.
This is in contrast to many existing event detection methods which detect certain events
by detecting artificial postproduction editing patterns or other artifacts. The drawbacks
of detecting specific editing patterns or other artifacts are that those patterns are often
content provider dependent and it is difficult, if not impossible, to modify the detection
methods and apply them to the detection of other events. It is also important to point
out that our algorithm solves a practical problem and the solution is needed in the real
world. In the wildlife video tapes which we obtained, the speech from the audio track
and the text from the close-caption are loosely correlated with the visual footage. It is
therefore unlikely that the hunt segments may be accurately located by analyzing the
audio track and close-caption. In other words, given the existing wildlife tapes, a visual-
information-based detection algorithm is needed to locate the hunt segments otherwise
manual annotation is required.

An immediate focus of future work is to develop a full set of intermediate-level de-
scriptors for generating shot summaries. The purpose of developing the descriptors is to
provide a wider coverage over different domains and events so that fewer domain-specific

descriptors need to be added in new applications. Other future work is to improve the

January 11, 1999 DRAFT

27

procedure which detects and tracks regions of interest. Finally, it would be interesting to
adopt machine learning techniques into the event inference engine so that it can improve

its performance over time automatically.

REFERENCES

” Proc.

[1] F. Arman, R. Depommier, A. Hsu, and M.-Y. Chiu, “Content-based Browsing of Video Sequences,
ACM Multimedia, pp- 97-103, 1994.

[2] S.-F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong, “A Fully Automated Content Based Video
Search Engine Supporting Spatio-Temporal Queries,” IEEE Trans. Circuits and Systems for Video Technology,
1998.

[3] B.B. Chaudhuri, N. Sarkar, and P. Kundu, “Improved Fractal Geometry Based Texture Segmentation Tech-
nique,” IEE Proceedings, part E, vol. 140, pp. 233-241, 1993.

[4] R.W. Conners, C.A. Harlow, “A Theoretical Comparison of Texture Algorithms,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, vol. 2, no 3, pp. 204-222, 1980.

[5] J. D. Courtney, “Automatic Video Indexing via Object Motion Analysis,” Pattern Recognition, vol. 30, no. 4,
pp. 607-626, 1997.

[6] G. Cybenko, “Approximation by Superposition of Sigmoidal Function,” Mathematics of Control, Signals, and
Systems, Chapter 2, pp. 303-314, 1989.

[7] A. Del Bimbo, E. Vicario, D. Zingoni, “A Spatial Logic for Symbolic Description of Image Contents,” J. Visual
Languages and Computing, vol. 5, pp. 267-286, 1994.

[8] N. Dimitrova and F. Golshani, “Motion Recovery for Video Content Classification,” ACM Trans. Information
Systems, vol. 13, no 4, pp 408-439, 1995.

[9] P. England, R.B. Allen, M. Sullivan, and A. Heybey, “I/Browse: The Bellcore Video Library Toolkit,” SPIE
Proc. Storage and Retrieval for Image and Video Databases, pp- 254-264, 1996.

[10] S. Fahlman, “Faster-Learning Variations on Back-Propagation: An Empirical Study,” Proc. Connectionist
Models Summer School, Morgan Kaufmann, 1988.

[11] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press, 1993.

[12] I.Fogel and D.Sagi, “Gabor Filters as Texture Discriminator,” J. Biological Cybernetics, vol. 61, pp. 103-113,
1989.

[13] D. Gabor, “Theory of communication,” J. IEE, vol. 93, pp. 429-457, 1946.

[14] N. Haering, Z. Myles, and N. da Vitoria Lobo, “Locating Deciduous Trees,” Proc. IEEE Workshop on Content-
based Access of Image and Video Libraries, pp. 18-25, 1997.

[15] R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans.
Systems Man and Cybernetics, vol. 3, no 6, pp. 610-621, 1973.

[16] S. S. Intille, “Tracking Using a Local Closed-World Assumption: Tracking in the Football Domain,” Master
Thesis, M.I.T. Media Lab, 1994.

[17] G. Iyengar and A. Lippman, “Models for Automatic Classification of Video Sequences”, SPIE Proc. Storage
and Retrieval for Image and Video Databases, pp. 216-227, 1997.

[18] T. Kawashima, K. Tateyama, T. Iijima, and Y. Aoki, “Indexing of Baseball Telcast for Content-based Video

Retrieval,” Proc. International Conference on Image Processing, pp. 871-875, 1998.

January 11, 1999 DRAFT

28

”

[19] J.M. Keller and S. Chen, “Texture Description and Segmentation through Fractal Geometry,” Computer
Vision, Graphics and Image Processing, vol. 45, pp. 150-166, 1989.

[20] R. L. Lagendijk, A. Hanjalic, M. Ceccarelli, M. Soletic, and E. Persoon, “Visual Search in a SMASH System”,
Proc. International Conference on Image Processing, pp. 671-674, 1997.

[21] B.Manjunath and W.Ma, “Texture Features for Browsing and Retrieval of Image Data,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 8, pp. 837-859, 1996.

[22] S. Peleg, J. Naor, R. Hartley, and D. Avnir, “Multiple Resolution Texture Analysis and Classification,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 6, no 4, pp. 518-523, 1984.

[23] A.P. Pentland, “Fractal-based Description of Natural Scenes,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 6, no 6, pp. 661-674, 1984.

[24] R. J. Qian, M. I. Sezan and K. E. Matthews, “A Robust Real-Time Face Tracking Algorithm”, Proc. Inter-
national Conference on Image Processing, pp. 131-135, 1998.

[25] D. Saur, Y.-P. Tan, S.R. Kularni, and P.J. Ramadge, “Automated Analysis and Annotation of Basketball
Video,” SPIE Proc. Storage and Retrieval for Image and Video Databases, pp. 176-187, 1997.

[26] M. Smith and T. Kanade, “Video Skimming for Quick Browsing Based on Audio and Image Characterization,”
CMU Computer Science Department Technical Report CMU CS-95-186, 1995.

[27] M. Szummer, “Temporal Texture Modeling,” Master Thesis, M.I.T. Media Lab, 1995.

” Proc.

[28] N. Vasconcelos and A. Lippman, ”A Bayesian Framework for Semantic Content Characterization,
Computer Vision and Pattern Recognition, pp. 566-571, 1998.

[29] J.S. Weszka, C.R. Dyer, and A. Rosenfeld, “A Comparative Study of Texture measures for Terrain Classifi-
cation,” IEEE Trans. Systems Man and Cybernetics, vol. 6, no 4, pp. 269-285, 1976.

[30] R.R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, Statistical Modeling and Decision
Science Series, Academic Press, 1997.

[31] M. Yeung, and B.-L. Yeo, “Video Visualization for Compact Presentation and Fast Browsing of Pictorial
Content,” IEEE Trans. Cicuits and Systems for Video Technology, vol. 7, no 5, pp. 771-785, 1996.

[32] D. Yow, B.L.Yeo, M. Yeung, and G. Liu, “Analysis and Presentation of Soccer Highlights from Digital Video,”
Proc. Asian Conference on Computer Vision, 1995.

[33] H. J. Zhang, S. W. Smoliar, and J. H. Wu, “Content-Based Video Browsing Tools,” SPIE Proc. Storage and
Retrieval for Image and Video Databases, pp. 389-398, 1995.

January 11, 1999 DRAFT

