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Abstract

When the camera viewing an action is moving, the motion observed in the video not only contains the motion of the actor but also the
motion of the camera. At each time instant, in addition to the camera motion, a different view of the action is observed. In this paper, we
propose a novel method to perform action recognition in presence of camera motion. Proposed method is based on the epipolar geom-
etry between any two views. However, instead of relating two static views using the standard fundamental matrix, we model the motions
of independently moving cameras in the equations governing the epipolar geometry and derive a new relation which is referred to as the
‘‘temporal fundamental matrix.’’ Using the temporal fundamental matrix, a matching score between two actions is computed by eval-
uating the quality of the recovered geometry. We demonstrate the versatility of the proposed approach for action recognition in a num-
ber of challenging sequences.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last decade, action recognition has received sig-
nificant importance due its applications in human–comput-
er interaction, event based video retrieval, and automated
surveillance. In particular, action recognition is complex
when two instances of the same action are performed by
two different actors. The complexity increases in manifolds
if these actions are viewed from different camera view-
points. In order to simplify the action recognition problem,
a common strategy adopted by researchers is to assume the
unknown action and its corresponding action in the data-
base share the same camera view. For instance, if the exem-
plar walking action is fronto parallel, then the input action
to be matched has to be fronto parallel. Using this formal-
ism, Efros et al. [1] match two actions by computing the
normalized correlation between a set of features extracted
from the optical flow. Similarly, Polana and Nelson [2]
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use template matching in the spatio–temporal space, where
the templates are generated from the statistics of normal
flow. An alternative to the optical flow is to use the spatial
and temporal image derivatives. Manor and Irani [3] com-
pare empirical distributions of two actions which are gen-
erated from the temporal image gradient at various
temporal scales. Similarly, Laptev and Lindeberg [4] match
representative points extracted from spatial and temporal
image gradients. This is essentially an extension of the Har-
ris corner detector [5] to the spatio–temporal space. Action
recognition can also be performed by computing the affine
motion between the corresponding segments in two consec-
utive frames. Following this strategy, Yang et al. [6] gener-
ate an affine trajectory of the hand and head regions for
sign language recognition. Matching score between two
actions is computed using a time delay neural network.
Black and Yacoob [7] compare the rate of change of the
affine parameters that are computed from the bounding
boxes around the eyes, eyebrows and the mouth. The
approach proposed by Bobick and Davis [8] evaluates the
Mahalanobis distance between the Hu moments computed
from the motion history templates extracted from a stack
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1 Relatively stationary cameras are defined as two cameras with zero
motion or two cameras mounted on a stereo rig and moving together.
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of silhouettes. Blank et al. [9] also utilize a stack of silhou-
ettes to compute spatio–temporal properties, which are
extracted by evaluating a Poisson equation for each point
in the silhouette stack. Given these features, a matching
score between two actions is computed by evaluating the
Euclidean distance between the features.

However, fixing the camera viewpoint and considering
only one view of the action is not suitable for solving prac-
tical problems that may arise during a surveillance scenario
where an action can be observed from different viewing
angles. Therefore, ‘‘view invariance’’ has become very
important in computer vision. An intuitive solution to deal
with the viewpoint changes is to set up an environment
with multiple cameras. Multiple camera have also been suc-
cessfully applied in the motion capture work [10,11]. For
action recognition using multiple cameras, Weinland
et al. [12] computed the Fourier descriptors from the
motion history volumes generated from a stack of silhou-
ettes for each view. Despite its simplicity, use of multiple
cameras is generally impractical and expensive. A common
approach to achieve view invariance is to employ the fun-
damental matrix between two different views of an action.
In order to achieve this, trajectories of the body parts
[13,14] and the actor silhouettes [15,16] have been used.
Rao et al. [17] compute a matching score between two
actions by evaluating the fundamental matrix using the
selected points (points corresponding to maxima in spatio–
temporal curvature) on two trajectories. Syeda-Mahmood
et al. [15] extracted eight matching features from the silhou-
ettes of two input actions to compute a matching score
using the fundamental matrix. An alternative approach
to achieve view invariance is to extract view invariant
features from the video. In [18], Parameswaran et al. con-
jectured that during the course of an action, when five
landmark points on the human body form a plane in 3D,
a set of projective invariants can be extracted in the image
domain and used for matching actions.

Although above methods can match two different views
of an action, they rely on stationary cameras. Thus, use of
stationary cameras has become a defacto assumption in the
action recognition literature. In many videos such as
broadcast news, movies, UAV (Unmanned Air Vehicles)
videos, and home videos the stationary camera assumption
is violated. Consider videos clips about the same event
broadcasted by different news networks. The videos may
look very different from each other due to the different
camera viewpoints and motions. Similarly, a home video
of the same event captured by a stationary person cannot
be matched with a video captured by a person who is mov-
ing around as he captures the video. Also, it is difficulty to
match videos captured by two UAVs from different view-
points and with different motions. This complexity is main-
ly due to the camera motion which induces a global motion
in the video in addition to the actor’s motion during perfor-
mance of an action. Additionally, due to the camera
motion different views of the actor may be observed at each
time instant.
A possible approach to matching actions in presence of
camera motion is to use the standard fundamental matrix.
However, standard fundamental matrix is valid for rela-
tively stationary cameras1 [19], hence, we have to treat each
frame independently and compute instantaneous matching
scores using each fundamental matrix. This approach,
however, is not attractive for a number of reasons. First
and foremost, the computation of the fundamental matrix
(eight point algorithm) requires at least eight visible point
correspondences at each time instant. Due to self occlusion
of the body parts this constraint may not be met through-
out the course of an action. In addition, since every frame
has an independent set of fundamental matrix parameters,
number of required correspondences linearly increase with
the number of frames. For instance for an action of 30
frames, 8 · 30 = 240 point correspondences are required.
Third, estimating independent fundamental matrices from
a sequence, in which consecutive frames are related to each
other by the camera motion, requires additional con-
straints, such as trifocal tensor, to enforce temporal depen-
dency [20]. Last but not least, instantaneous constraints
(use of observations on a frame basis) to match actions
are weaker constraints than using the observations all
together to find a global solution.

Another possible approach to perform matching in
moving camera setting is to compensate the camera motion
using planar homography. However, this is only possible
for distant views and planar scenes, which is too restrictive
in the context of actions. Recently, there has been a body
of research dealing with moving cameras for the structure
from motion problem [21,19]. However, these methods
require rigid objects, hence, they are not applicable to the
action recognition.

This paper proposes a novel approach to perform action
recognition in presence of camera motion. Proposed
method makes use of the epipolar geometry between two
cameras. In contrast to the standard fundamental matrix
derived from the epipolar geometry, we model the rotation-
al and translational camera motions and derive a new rela-
tion between two camera views. This new relation, which is
referred to as the ‘‘temporal fundamental matrix’’ (TFM),
is in the form of a matrix function. To compute a matching
score between two actions, we first hypothesize that the
actions satisfy TFM and test the hypothesis by evaluating
the recovered geometry. The experiments performed for
three different applications show the robustness of TFM
in presence of camera motion. The applications include:
action recognition, action retrieval, and object association
across cameras.

The paper is organized as follows. In Section 2, we dis-
cuss the action representation used in our appaorch. Sec-
tion 3 describes the proposed approach to relate two
actions viewed from moving cameras. The experiments
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demonstrating the performance of the proposed approach
is given in Section 4. Subsequently we present our conclu-
sion in Section 5.

2. Representing human actions

Actions are intensional space–time events performed by
moving the body parts in a coordinated fashion [23]. An
ideal representation of this space–time event would be in
a 4D space: (X, Y, Z, t) in terms of the trajectories C of
all the points on the actor. Although, it is desirable to
work in the 4D space, video contains only the spatio–tem-
poral projection (x, y, t) of this space–time event. In his
seminal work, Johansson [22] shows that only a set of
few bright spots attached to the joints of an actor dressed
in black provide sufficient information to infer the action
being performed in front of a dark background. In this
paper, we follow this line of work and represent an action
as a set of trajectories obtained from tracking the land-
mark points on the human body (see Fig. 1). This type
of action representation is also supported by a large body
of research work on articulated object tracking such as
[24,25], which has been discussed and categorized in the
surveys by Aggarwal and Cai [26], Gavrilla [27], and
Moeslund and Granum [28]. Tracking of landmark points
results in a set of spatio–temporal trajectories
Ci = (x1,x2, . . . ,xn)>, where i is the label of the landmark
points, n is the duration of the action and x = (xy1)>.
Given these trajectories, we represent an action by a col-
lection of thirteen trajectories:

U ¼ ðC>1 ;C>2 . . . C>13Þ; ð1Þ
that we call the ‘‘action matrix’’, which is a 3 · 13n matrix.
In Fig. 2a, we show several frames from a walking
sequence. Fig. 2b shows the action trajectories in the
spatio–temporal space.
Fig. 1. Point-based representation of an actor. Johansson [22] has shown tha
performed by an actor.
In the rest of the paper, we assume tracking has already
been performed and we are given a set of joint trajectories.
However, human body joint tracking in an unconstrained
environment is quiet complex and is an active topic of cur-
rent research in computer vision. There are two important
issues related to joint tracking: occlusion and accuracy.
Some joints may be occluded during the motion of an actor
or camera from a particular viewpoint. Since we are using a
redundant set of joints (thirteen or less joints) in several
frames, it is not a problem if a few joints are occluded dur-
ing some number of frames. Since we use several frames
and employ temporal information to distinguish between
different actions, exact locations of the joints in a particular
frame are not that crucial. Our experiments show that we
are able to easily distinguish similar actions, e.g., walking
and running based on very noisy tracks.

3. Theory and analysis of matching actions

When the camera viewing an action is moving, the
motion observed in the video not only contains the local
actor motion but also the camera motion. Due to this,
motion trajectories [29], silhouettes [8], optical flow vectors
[1] or image derivatives [3] extracted from the video with-
out global motion compensation cannot uniquely charac-
terize an action. In this section, we will present our
approach for matching actions in presence of camera
motion without motion compensation.

Before discussing matching of actions in the moving
camera setting, we first discuss stationary camera setting.
In this setting, a matching score between the two actions
can be computed based on epipolar geometry [13–16]. Epi-
polar geometry is defined by projecting a world point
P = (X,Y,Z) to the left camera reference frame,
Pl = RlP + Tl, and the right camera reference frame,
Pr = RrP + Tr (see Fig. 3), which are related by :
t this representation provides sufficient information to perceive an action
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Fig. 2. Trajectories of 13 landmark points of a walking person (a) superimposed on the images, and (b) shown in the spatio–temporal space. The sequence
is taken from a stationary camera.

Fig. 3. Epipolar geometry defined for two cameras observing the same
scene. P denotes a 3D point (a landmark point on the actor performing the
action), Cl and Cr are left and right camera centers, el and er are the
epipoles of the left and right image planes.
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Pr ¼ RrR
>
l

� �
|fflfflfflffl{zfflfflfflffl}

R:relativerotation

Pl � RrR
>
l Tl � Tr

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

T:relativetranslation

: ð2Þ

This relation along with coplanarity condition defined
for the epipolar plane result in the well-known formula:

P>r ðRSÞPl ¼ P>r EPl ¼ 0; ð3Þ
where S is a rank deficient matrix obtained from relative
translation T, and E is the essential matrix [30]. The essen-
tial matrix E can be extended to relate the image planes of
the left and the right cameras by introducing the intrinsic
camera parameters, Ml and MR:

x>r ðM�>
r EM�1

l Þxl ¼ x>r Fxl ¼ 0; ð4Þ
where F is a 3 · 3 matrix referred to as the fundamental
matrix [31].

A common approach to compute a matching score
between two actions using the fundamental matrix is based
on some measure defined from the observation matrix O

given by:
Of ¼

xr;1xl;1 xr;1yl;1 xr;1 yr;1xl;1 yr;1yl;1 yr;1 xl;1 yl;1 1
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xr;mxl;m xr;myl;m xr;m yr;mxl;m yr;myl;m yr;m xl;m yl;m 1

0
BB@

1
CCAf¼ 0;

ð5Þ

where f ¼ ðF11;F12;F13;F21;F22;F13;F31;F32;F33Þ>,
and m is the number of corresponding points across views
[32]. The system of equations given in Eq. (5) is homoge-
neous and has a rank of 8. In an ideal case, where there
are no observation errors and two actions match, the ninth
singular value equals to zero, such that the ninth singular
value can be used to compute matching score. Another
possibility is to consider the condition number of O, which
is given by the ratio between the first and the ninth singular
value. In case of matching actions based on the condition
number, minimum score implies dissimilar actions.

Consider Fig. 4 where trajectories of the landmark
points appear very different for two actors performing
the same picking up action. Therefore, in the case of
moving cameras, the matching scores described using the
standard fundamental matrix cannot be used for action
recognition. This is due to the changing epipole positions
at each time instant which results in a new geometric
relation (see Fig. 5).

In order to analyze the effect of camera motion on the
geometric relation defined for two views of an action, we
introduce the rotational and translational camera motions
in the derivation of the essential and fundamental matrices.
Particularly, Eq. (2) becomes Pr(t) = R(t) Pl(t) � T(t),
where every component of the matrix is a function of time
t, hence, we have the following observation:
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Fig. 4. Trajectories of the landmark points of two actors performing the picking up action which is captured from different viewpoints. In both sequences,
cameras undergo different motions. As observed, the trajectories are not similar. (a) Camera is translating in the x axis, (b) camera is rotating and
translating around the z axis.

Fig. 5. Epipolar geometry between two views for moving cameras. At
each time instant, the locations of the epipoles change which results in a
new fundamental matrix between the views.

2 Due to small motion constraint, we can assume that the first order
Taylor series expansion of the rotational velocities is adequate such that
cosa = 1 and sina = a.
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Observation 1 (Temporal fundamental matrix). For two

independently moving cameras, the pixels locations at time

t in the left and right camera image planes are related to

each other through a time varying matrix function of the

form:

ð6Þ

where ~FðtÞ is referred to as the temporal fundamental matrix

(TFM).

Under this observation, each component of the TFM is
a function of time, such that we have f11(t), f12(t), f13(t),
f21(t), . . ., f33(t). Assuming that the internal camera param-
eters do not change, each component fij(t) relies only on
translational and rotational camera motions.
We use video clips of temporal length of two to three
seconds for action matching. In this time period, motion
of the cameras can be approximated by polynomial func-
tions. In particular, let the rotational motion be polynomi-
als of order nl and nr and the translational motion be
polynomials of order ml and mr for the left and right
cameras respectively. Under these definitions, TFM has
the following form:

Theorem 1 (Small motion constraint). For relatively mov-

ing cameras, the temporal fundamental matrix FðtÞ is a 3 · 3

matrix whose components are polynomials of order:

deg ~FijðtÞ ¼ max ðnlr þ mlÞ; ðnlr þ mrÞð Þ; ð7Þ
where nlr = max(nl, nr).

In order to prove the lower bound of this theorem, we
first discuss the degree of polynomials (DOP) in the camera
projection matrices, then we will provide DOP for relative
rotation and relative translation and finally, the degree of
polynomials in TFM. Under the small motion constraint,
we first define rotational and translational motion of the
left camera (the following discussion applies to the right
camera as well)2.
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DXlðtÞ¼
1 �xzðtÞ xyðtÞ

xzðtÞ 1 �xxðtÞ
�xyðtÞ xxðtÞ 1

2
64

3
75; DHlðtÞ¼

hxðtÞ
hyðtÞ
hzðtÞ

2
64

3
75:

ð8Þ
Since the camera pose changes at each time instant,

camera projection matrix becomes:

PlðtÞ ¼
Yt

i¼0
DXlðiÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

XlðtÞ

Pworld þ
Xt

i¼0
DHlðiÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

HlðtÞ

; ð9Þ

where (Xl(0), Hl(0)) denote the initial camera pose. The
rotational component of the projection matrix, after the
cascade of the rotational motions, becomes:

XlðtÞ¼

1 �
P

i
xzðiÞþ �

P
i

xyðiÞþ �
P

i
xzðiÞþ � 1 �

P
i

xxðiÞþ �

�
P

i
xyðiÞþ �

P
i

xxðiÞþ � 1

2
66664

3
77775Xlð0Þ;

ð10Þ

where � includes terms such as
P

xixj,
P

xixjxk, etc. Due
to small angle approximation, � is approximately 0 and can
be dropped. By definition, xx(t), xy(t), and xz(t) are poly-
nomials of order nl. Hence, the DOP in Xl(t) becomes nl.
Similarly, DOP in Hl(t) given in Eq. (9) is ml. For the mov-
ing camera system, relative rotation between the cameras is
given by RðtÞ ¼ XrðtÞX>l ðtÞ. Based on Euler angles the DOP
in R(t) can be computed as max(nl,nr). The relative transla-
tion between the moving cameras is given by T(t) =
R(t)Hr(t) � Hl(t). In order to find DOP in T(t), we first
need to consider R(t)Hr(t). Multiplication of these terms
results in summation of the degR(t) and degHr(t). Com-
bining this with the second term in T(t), DOP in T(t)
becomes max(max(nl,nr) + ml,mr). Due to the multiplica-
tion of R(t) with the rank deficient matrix version of T(t)
to produce EðtÞ, the DOP of EðtÞ and FðtÞ is:

degFðtÞ ¼ degEðtÞ ¼ maxððnlr þ mlÞ; ðnlr þ mrÞÞ; ð11Þ

where nlr = max(nl, nr). Based on this result:

FðtÞ ¼
Xk

i¼0

Fitk;

where Fi is the 3 · 3 coefficient matrix of the kth order
TFM stisfying Eq. (6). Note that for stationary cameras,
where the polynomial orders are k = 0, TFM reduces to
the standard fundamental matrix.

Given n corresponding trajectories in two sequences, the
coefficients in the polynomials of the TFM can be estimat-
ed by rearranging Eq. (6) as a linear system of n equations.
Let us assume degFðtÞ ¼ 2, such that we have 27
unknowns. In this case, linear system of equations are
given by:

Mf ¼ ðM>
1 M

>
2 . . .M>

n Þ
>

f ¼ 0; ð12Þ
where

Mt ¼ðx1x01 x1y01 x1 y1x01 y1y 01 y1 x01y01 1 x1x01t x1y 01t x1t

y1x01t y1y01t y1t x01t y 01t t x1x01t2 x1y 01t2 x1t2 y1x01t2 y1y 01t2

y1t2 x01t2 y01t2 t2Þ;

and f ¼ ðF1;1j F1;1j F1;1j F2;1j F2;2j F2;3j F3;1j F3;2j
F3;3Þ>, where Fi;j denotes ith coefficient matrix and jth
row. Matrix M is a 13n · 27, and assuming the existence
of a non-zero solution, M must be rank deficient, i.e., for
n P 27 rank of M is at most 26. The solution of f is given
by the unit eigenvector of the covariance matrix M>M cor-
responding to the smallest eigenvalue. Once f is estimated,
an instance of the fundamental matrix at a given time t can
be computed by imposing rank two constraint as discussed
in [32].

3.1. Computing the matching score

Consider two actions A and B with associated observa-
tions in the form of action matrices UA and UB. Our goal is
to find how likely A matches B. For this purpose,we intro-
duce an event L which occurs when both actions are the
same. Hence, a matching score between two actions can
be defined by the posterior conditional probability
pðLjUA; UBÞ. Since the observations are independent (clips
are taken at different times and the actors are different) and
occurrence of any action is equally likely, application of
Bayes’ rule to this conditional probability results in:

pðLjUA;UBÞ ¼ kpðUAjLÞpðUBjLÞ; ð13Þ
where k ¼ pðLÞpðUAÞ�1pðUBÞ�1. In Eq. (13), the observa-
tion UA (UB) has an associated label A (B) such that the
condition L can be replaced by the label of the other
action, B (A):

pðLjUA;UBÞ ¼ kpðUAjBÞpðUBjAÞ: ð14Þ
In order to compute these conditional probabilities, we
define a relation between UA and UB based on the afore-
mentioned geometric relation:

Proposition 1. If two action sequences belong to the same

action, trajectories of the corresponding landmark points

satisfy a unique polynomial TFM:

UA>FðtÞUB ¼ 0 ð15Þ
where UA and UB are action matrices (Section 2) correspond-

ing to each sequence.

Proposition 1 can be validated by projecting the action
viewed in one camera to the other camera. For instance, in
the case when both actions are the same, the projected action
matrix should be similar to the target action matrix (see
Fig. 6). In context of epipolar geometry, projection of a point
in one view provides a line in the other view. Given a point in
the left image, its corresponding point in the right image can
easily be obtained by projecting the location of left point in
the right image and finding its closest point on the epipolar
line.
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Fig. 6. (a) Set of representative frames showing the projection of an action (blue) onto the corresponding action from another view (red), (b) same as (a)
but this time we project the pickup action to the walking action. As observed, non-matching action does not project as well as the matching action. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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Based on this observation, the similarity between two
actions is computed from the quality of the estimated the
TFM. Using TFM, for each point x in action matrix UB,
we compute its distance d from the epipolar line uA gener-
ated from the corresponding point x 0 in action matrix UA.
Summation of all these distances results in the similarity
between the actions:

dðUA;UBÞ ¼
X

xj2UB

x>j ðtÞuA
j ðtÞ

juA
j ðtÞj

; ð16Þ

where j.j denotes norm 2, t is frame number and
uA

j ðtÞ ¼F>ðtÞx0jðtÞ, x0jðtÞ 2 UA
i . The distance given in Eq.

(16) is ideally zero, however, due to noise in the observa-
tions it will be greater than zero. Assuming that the obser-
vation noise is Gaussianly distributed, the conditional
probability p(UAjB) becomes:

pðUAjBÞ ¼ 1

2p
ffiffiffi
r
p exp� dðUA;UBÞ2

2r2
: ð17Þ

At this point, we should note that d(UA, UB) „ d(UB, UA)
such that p(UAjB) is different from p(UBjA). Substituting
these conditional probabilities into Eq. (14), a matching
score between two actions can be computed as:

pðLjUA;UBÞ ¼ k0 exp� dðUA;UBÞ2 þ dðUB;UAÞ2

2r2
; ð18Þ

where k 0 is constant. The proposed matching score is
related to the symmetric epipolar distance. In particular,
taking the negative log likelihood of Eq. (18) results in
d(UA, UB)2 + d(UB, UA)2 + �.
4. Experiments

To validate the proposed matching approach, we per-
formed a set of experiments for three different applications.
The first set of experiments involved recognition of an
action from a database of known actions. Since there is
no standard database of action videos captured using mov-
ing cameras, we generated our own database of eighteen
different actions. The actions are performed by different
actors in different environments. In Fig. 7, we show the
complete set of actions in our action database. For most
of the actions, the landmark trajectories are noisy. In addi-
tion to the noisy trajectories, the motion of the camera
makes the recognition task harder. The second set of exper-
iments involved the retrieval of two exemplar actions from
a long video where the exemplar actions are performed by
actors different from the actor in the long video. In third
experiment, our goal is to associate object trajectories
across cameras to solve the multiple camera tracking prob-
lem in presence of camera motion.

4.1. Action recognition

In order to perform action recognition, we use complete
set of actions given in Fig. 7 and compute the matching
score given in Eq. (18). We match each action against all
other actions. Action recognition is then achieved by select-
ing the action with the highest matching score.

In order to analyze the performance of the proposed
approach against the standard approach based on the stat-
ic fundamental matrix, we generated confusion matrices for
both methods. In Fig. 8, we show the confusion matrices
computed for our approach (part a) and the standard
approach (part b), where light color illustrates similar
actions and dark illustrates dissimilar actions. For auto-
matically clustering similar actions, we use a modified ver-
sion of the normalized cut segmentation method proposed
by Shi and Malik [33]. In particular, we represent each
action as a node in a graph with links to all other actions.
The weight of the links are provided from the values stored
in the confusion matrices. Clustering is then achieved by
evaluating the eigenvectors of a generalized eigensystem
[33]. A qualitative analysis of the clustered confusion
matrices shows that using the proposed method the actions
are correctly clustered. In contrast, using the standard
method no clusters are obtained except for the forehand
tennis stroke action where the exemplars are captured by
stationary cameras. These results confirm that the pro-
posed method based on the TFM is better for clustering
the similar actions.

4.2. Action retrieval

The task in this experiment is to retrieve the occurrences
of an exemplar action in a long video. The search is per-
formed by comparing a floating temporal window with
the exemplar action, where the length of the temporal win-
dow is chosen as the length of the exemplar action. In order
to test the performance of the method, we used a long ten-
nis sequence in which a tennis player is performing various



Fig. 8. Confusion matrices computed for two different methods. The light color indicates high action similarity and the dark color indicates low similarity.
(a) Proposed recognition method using the matching score computed using the temporal fundamental matrix. (b) Standard epipolar geometry using the
same metric. Note that correct clustering cannot be performed except for actions captured by the stationary camera.

Fig. 7. The set of actions used to test the proposed method. For each action, we display the first image of the sequence along with superimposed
trajectories of the landmark points.
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actions, such as forehand stroke, walking, etc. In the exper-
iment, we provide two exemplar actions: one for walking,
one for tennis stroke, and retrieve them in the video
sequence. As shown in Figs. 9a and b, both exemplar
actions belong to two different actors and are captured
by moving cameras from completely different viewpoints.
In Fig. 9c, we provide both quantitative and qualitative
evaluation of the method, by plotting the matching score
(Eq. (18)) as a function of the frame number. On the top
of the plot, the colored bars show manually extracted
ground truth along with the duration of the action. The
color codes of the plots correspond to the matching scores
for the walking action (blue plot) and the tennis stroke (red
plot). In both plots, peaks denote temporal position of the



a b

c

Fig. 9. Quantitative and qualitative evaluation of the action retrieval in a 400 frame long tennis sequence. In parts (a) and (b), we show the exemplar
walking and tennis stroke actions. (c) Matching scores for walking (blue plot) and tennis stroke (red plot) plotted as a function of frame number. The
peaks on both plots show the match of the exemplar action. We show the ground truth denoting the start and duration of the action on the top of the plot.
In parts (A–E) a set of representative frames for each retrieved action are shown. The labels of each retrieved action coincide with the labels in part (c).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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action. In parts (A–E), we show sample frames of the
retrieved actions (peaks in the plots). All occurrences of
the exemplar actions are correctly detected.

4.3. Associating objects across cameras

In this experiment we show an application of temporal
fundamental matrix in solving object association problem
across multiple moving cameras. Previous approaches to
associate objects across multiple cameras require scene
planarity, specific camera motion or camera calibration
[34–38]. These constraints limit the applicability of the
proposed methods to specific environments. For instance,
scene planarity can only be observed for orthographic
views and is only suitable for aerial videos. Similarly, meth-
ods requiring specific camera motion such as rotation, pan,
tilt, cannot work for cameras mounted on vehicles. Camera
calibration is difficult to achieve and is not always
available. To the best of our knowledge, there is no work
on the object association problem for uncalibrated freely
moving cameras.

We first define some variables. Let the set of trajectories,
C on the left and the right cameras be denoted by
Ul ¼ ðC1

l
>
; . . . ;CKl

l
>Þ, and Ur ¼ ðC1

r
>
; . . . ;CKr

r
>Þ, as given

in Eq. (1). Our goal is to associate trajectories that belong
to the same object in both views. Two objects are associated
if and only if corresponding trajectories satisfy:
Ci
r
>
FðtÞCj

r ¼ 0. Under this geometric constraint, we
hypothesize possible associations and compute the confi-
dence of the hypothesized match based on the matching
score given in Eq. (18). Given a set of matching hypothesis,
and their confidences, we pose the object association prob-
lem as a graph theoretic problem. Let the nodes V of the
graph G be the object trajectories in both left and right
cameras views. The edges E connecting the nodes are only
defined between the object trajectories of the left and the
right cameras, i.e., there are no edges between the nodes
corresponding to the trajectories in the same camera view
(Fig. 10). Thus, the trajectory association graph is a bipar-
tite graph. The weight wi,j between trajectories Ci

l and Cj
r is

as given in Eq. (18) resulting in the weight matrix:

W ¼

C1;1 C1;2 . . . C1;Kl

C2;1 C2;2 . . . C2;Kl

..

. ..
. ..

. ..
.

CKr ;1 CKr ;2 . . . CKr ;Kl

2
66664

3
77775: ð19Þ

The correspondence between trajectories is achieved by
computing the maximum matching of the weighted bipar-
tite graph. A matching of a graph is a set of edges, such
that no two edges share a common vertex. A maximum
matching contains the highest number of possible edges.
In our case, the maximum matching will provide 1-1



BA

Fig. 10. Maximum matching of weighted bipartite graphs: trajectory
correspondence is established by finding the maximum matching between
two parties A and B of the graph corresponding to trajectories in the left
and the right cameras. The correct trajectory correspondences are
emphasized with thicker lines.
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(one-to-one) mappings from A to B (see Fig. 10), such thatP
i

P
jwi;j is maximized. An important advantage of the

proposed method over recovering individual fundamental
matrices per frame is the requirement of fewer number of
tracked objects. In this scenario, at least eight objects per
frame are required to compute the standard fundamental
matrix. In contrast, for the proposed method, since all
observations over time are used during estimation of
TFM, as minimum as ‘‘two objects’’ are adequate to find
associations. Contrast this to at least eight point correspon-
dence required for the standard epipolar geometry.

We have tested the proposed method on a number of
sequences. In the figures, trajectories of the associated
objects are shown with the same color in both views. In
all the experiments, we set the degree of TFM to three
resulting in thirty-six unknowns. In order to employ
a

c

e

Fig. 11. (a–d) Associating objects are indicated by color codes across cameras. I
Epipolar lines for sequences shown in (d) at different time instants computed us
scene, thats why the order of the lines is switched in two views, e.g., red object i
the associations are correct. (For interpretation of the references to color in t
TFM, we use object trajectories in each camera for the first
60 to 100 frames. After associating these objects, we main-
tain the object labels without computing TFM again.

In Fig. 11a, we demonstrate that the objects are correctly
associated for an indoor sequence where two moving hand-
held cameras are viewing the lobby of a building. Next
sequence, which is shown in Fig. 11b, is captured outdoor
using two hand-held camcorders with a small but jerky
motion. The objects are associated using the first 60 frames
and labels are maintained for the remaining 300 frames.
Further, we applied our method to aerial videos which
were captured by two UAVs (Fig. 11c). Associations
between three moving objects are correctly established. In
Fig. 11d, we tested the proposed method on sequences cap-
tured by two hand-held camcorders positioned at two
opposite ends of the building. One camera is almost sta-
tionary (see red trajectory on the right view) whereas the
other camera translates. In parts (e) and (f), we show the
recovered epipolar lines using the TFM and object associ-
ations in both camera views for the qualitative judgment.
In the figures, both the points on the objects and the corre-
sponding epipolar lines are labeled with the same color.

5. Conclusions

We proposed a novel approach for matching two
actions in presence of camera motion. Proposed method
makes use the epipolar geometry, however, instead of using
the standard fundamental matrix, which is not able to deal
with independent camera motion, we presented a new
b

d

f

n all the sequences, the cameras view the scene from an oblique angle. (e–f)
ing the TFM. Note that the cameras are looking at the opposite ends of the
s right most in the left image but it is left most in the right image. However,
his figure legend, the reader is referred to the web version of this paper.)
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construct called ’’temporal fundamental matrix.’’ Each ele-
ment of the temporal fundamental matrix is a function of
time, which can be approximated by a polynomial assum-
ing smooth camera motion. In order to demonstrate the
versatility of the proposed approach, we presented results
on action retrieval and recognition and association of
objects across moving cameras.

We would like to conclude by commenting on two
important issues. First, in this work, we assumed tracking
problem has been already solved and we are given a set
of joint trajectories of an actor performing the action. Body
and joint tracking in unconstrained environment is still a
complex problem, which needs to be addressed. However,
recently some progress has been made (e.g., [39,40]). Sec-
ond, we have assumed smooth camera motion, which is
valid for short video clips of two to three seconds, which
is typical length of most human actions. However, if the
motion is not smooth and if the video sequence much long-
er temporal fundamental matrix may not be valid. In that
case, one needs to compute different temporal fundamental
matrix for each smooth section of video, which is still bet-
ter than using a separate fundamental matrix for each
frame. Also, one can experiment with higher degree of
polynomials to deal with some non-smooth camera
motion.
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