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Abstract

Manual spatio-temporal annotation of human action in videos is laborious, requires

several annotators and contains human biases. In this paper, we present a weakly su-

pervised approach to automatically obtain spatio-temporal annotations of an actor in

action videos. We first obtain a large number of action proposals in each video. To

capture a few most representative action proposals in each video and evade process-

ing thousands of them, we rank them using optical flow and saliency in a 3D-MRF

based framework and select a few proposals using MAP based proposal subset se-

lection method. We demonstrate that this ranking preserves the high quality action

proposals. Several such proposals are generated for each video of the same action. Our

next challenge is to iteratively select one proposal from each video so that all propos-

als are globally consistent. We formulate this as Generalized Maximum Clique Graph

problem using shape, global and fine grained similarity of proposals across the videos.

The output of our method is the most action representative proposals from each video.

Our method can also annotate multiple instances of the same action in a video. We

have validated our approach on three challenging action datasets: UCF Sport, sub-

JHMDB and THUMOS’13 and have obtained promising results compared to several

baseline methods. Moreover, on UCF Sports, we demonstrate that action classifiers

trained on these automatically obtained spatio-temporal annotations have comparable

performance to the classifiers trained on ground truth annotation.

Keywords: Weakly Supervised, Action annotation, Generalized Maximum Clique

Graph
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1. Introduction

Despite the recent advances in computer vision, action recognition and detection in

realistic videos is a problem far from being solved. In action recognition, the main goal

is to classify whether the testing video clip contains a specific action or not irrespective

of the location of an actor. In addition to recognition in action detection, we also want

to know the precise spatio-temporal location of an actor. Both problems have their own

challenges, with the latter being harder than the former.

Action detection methods accuracy lag far behind action recognition algorithms

[1, 2, 3], which perform quite well on extremely challenging datasets [4, 5, 6]. One of

the reasons is that, in addition to the difficulty of problem, there are only few detection

datasets available, which limits the opportunity to train, validate and test new methods.

This is because action detection datasets require precise spatio-temporal bounding box

annotations for each video, where the spatio-temporal annotations are cumbersome

to obtain, require many human annotators, hundreds of hours, expensive annotation

interfaces and are subject to human biases. Moreover, for any new action class, the

annotation needs to be done from scratch. As action datasets are exponentially grow-

ing, design and development of generic automatic annotation methods are very much

needed. This does not only reduce human biases, but also saves time and cost.

With the advent of large image and object datasets [7, 8], automatic object anno-

tation is becoming challenging and hence, gaining more attention from the research

community. To address this issue, several approaches have been presented recently

to obtain object level annotations from image level annotations. These approaches at-

tempt to automatically obtain object bounding box location using: eye-tracking [9],

transferring annotations from previously annotated object to the new class [10], ex-

ploiting generic object knowledge [11], jointly localizing objects in multiple images

[12, 13] and using video [14]. The straightforward extension of these approaches to

automatically obtain action spatio-temporal annotations from video level labels is not

feasible because temporal domain is quite different from spatial domain [1]. Temporal

length of an action can be arbitrarily long depending upon action cycles captured in

a video. In addition, 3D cuboids would contain significant background pixels due to
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large camera motion and spatial motion of an actor.

Instead of 3D cuboids, spatio-temporal action proposals obtained through segmen-

tation [3, 15] or dense trajectories [6, 16] of a video can precisely enclose action bound-

aries and capture arbitrary spatio-temporal action localization. We believe that the ac-

tion proposals can provide a useful platform to obtain automatic action annotations in

videos. However, these methods produce a humongous number of action proposals;

some precisely enclose the complete action, while the majority are noisy and capture

only action parts, background, camera motion, or both foregrounds-backgrounds. Our

goal is to automatically discover the most action representative proposals from each ac-

tion video that tightly covers actor spatio-temporal localization. We propose to obtain

these spatio-temporal action annotations using videos level.

In this paper, we present a simple yet effective weakly supervised approach to ob-

tain the bounding box annotation of an action. The block diagram of our approach

is shown in Figure 1. Given action proposals, we seek to discover automatically the

proposals that have the higher probability of representing spatio-temporal location of

an actor. Given a large number of proposals, we initially rank them according to their

probabilities of being representative of an action. We achieve this using MAP based

subset selection procedure by employing optical flow gradients and saliency in the 3-

D MRF based framework. We then utilize similarity between top ranked proposals

across different videos of the same action and re-rank the proposals. For this purpose,

we build a fully connected graph where all proposals in one video are connected to

every proposal in all other videos and the edges between proposals capture global, fine

grain and shape simiarities between proposals. Finally, we formulate the proposals

matching across multiple videos as a Generalized Maximum Clique Problem (GMCP)

[17, 18]. The output of our method is the most action representative spatio-temporal

locations in the video.

Our method is weakly supervised, since we only use video level labels instead of

bounding box level annotations. It is efficient since we achieve the final bounding box

action annotation within a few seconds using GMCP employing only a few top ranked

action proposals. Our approach is useful, as it can seamlessly be integrated with any

other action detection method. With these key aspects, our method satisfies three main
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(a) (c) (b) (d) (e) 

Figure 1: Block diagram of our approach. (a) Given the multiple videos of the same action (’running’

in this figure), (b) We first compute large number of action proposals in each video (§3.1), (c) After that

we obtain a few most action representative proposals in each video using motion and saliency information

employing MAP based proposal subset process (§3.2), (d) Then, we construct a fully connected graph

between proposals across multiple videos, where edge between proposals captures global, fine grain and

shape similarities between proposals (§3.3), (e) Finally, using generalized maximum clique of this graph ,

we obtain the most action representative proposal in each video ((§3.4)). Colors of proposals are randomly

selected except (e) where magenta shows ground truth and green box represents automatically discovered

action proposal (actual results).

characteristics of a visual system: less supervision, efficiency and usefulness.

The organization of the rest of the paper is as follows: in section 2, we review

related work on weakly supervised object and action localization. In section 3, we

describe proposed approach in detail. We report results in section 4 and section 5

concludes the paper.

2. Related Work

Recently, there has been growing interest in solving the challenging problem of

human action localization [1, 19, 20]. Most of these approaches are inspired by object

localizations, extending the detection problem from 2D bounding box to 3D cuboid.

Due to a fixed size of the cuboid, detection results of these methods contain a signif-

icant portion of background, specifically, when actors aspect ratio varies significantly.

To circumvent this problem, more precise action detection approaches have been intro-
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duced [3, 2, 16]. However, training action classifiers using any of the above methods

requires hundreds of time consuming spatio-temporal annotations.

In order to avoid these time-consuming annotations, weakly supervised methods

have been introduced recently for training action classifiers [21, 22, 23]. Boyraz et al.

[23] presented a weakly supervised action recognition method to estimate discrimina-

tive regions in each frame. The histograms of these discriminative regions are used

for learning the action classifier using two-layer neural networks. Similarly, [21] re-

ported a method where discriminative regions are considered as latent variables. They

proposed similarity constrained latent SVM, which jointly learns the action classifier

as well as discovers discriminative regions. Both of these methods have shown im-

proved classification accuracy using discriminative regions without requiring manual

spatio temporal annotations. Although they provide improved results, as mentioned in

the papers [21, 23], automatically discovered discriminative regions do not necessarily

represent human action locations. The authors in [22] proposed a weakly supervised

action detection method based on multiple instance learning. However, one of the ma-

jor limitations of their method is the assumption that actions can only be performed by

standing persons. Therefore, their method is not applicable to recent datasets [24, 5, 25]

which contain huge articulated human motion.

Recently, there has been a lot of interest in weakly supervised object localization

using multiple images and videos [26][14]. These approaches compute object candi-

date locations using the objectness score [27] and find the similar boxes in multiple

images or videos frames to improve object localization. To the best of our knowledge,

no such analysis has been presented for action localization, before.

A related problem includes video object co-segmentation [28, 29]. Instead of using

each video independently, these methods use multiple videos to improve segmentation

of the moving objects. The authors in [28] obtain an object proposal in each frame and

track them over the video, forward and backward. Final segmentation is achieved using

shape, color and motion similarity in a regulated maximum weight clique’s framework.

Similarly, [29] produced accurate co-segmentation of a moving object in a video using

shape and color similarities employing CRF. Both of these methods have been tested

on clean videos where we test the proposed approach on challenging action datasets
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that have large variations in pose, cluttered backgrounds, poor illumination conditions

and low quality videos.

3. Proposed Approach

In the proposed approach, we begin with obtaining action proposals in a video.

In each video, we rank action proposals using elementary action cues and select a

few high quality action proposals from several thousand proposals. Then, for multiple

videos of the same action, we compute similarity between proposals across videos by

carefully considering their saliency, shape, and fine grain similarity. Finally, by using

the similarity information among multiple proposals in a global framework, we select

the most action representative proposal in each video.

3.1. Action Proposals

The first step of our approach is to generate spatio-temporal action proposals. To

achieve this, we obtained action proposals using improved dense trajectories[6] using

an unsupervised method [16]. Similar to [16], we employed unsupervised hierarchical

clustering algorithm [30] to merge dense trajectories using HOG, HOF, MBH, Traj and

SPAT(spatio-temporal positions) features. To achieve efficiency and spatio-temporal

smoothness, only few nearest neighbors are considered to compute similarity, while

merging clusters. Finally, the clusters whose distance is more than a certain threshold

represents individual action proposals. As compared to previous methods [31, 3], this

method [16] does not require supervoxel segmentation and has time and space com-

plexity of O(n2). Figure 2 shows typical action proposals for UCF-Sports dataset.

We stress that our main approach of action annotation does not depends on any

specific action proposal method and any recent action proposal methods [3, 31, 16] can

be employed .

3.2. Initial Proposals Ranking

Although action proposals reduce search space for action detection and classifica-

tion, the number of proposals are still huge and cannot be directly used in place of
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action annotation. However, given the large number of proposals, one can safely ex-

pect at least a few proposals that would have very high overlap with the actual actor

spatio-temporal location. Our ultimate goal is to discover those action representative

proposals automatically.

Not all action proposals are equally important. Many proposals originate from the

background and several contain only part of an action. Moreover, computing expensive

features from all proposals is computationally inefficient. Therefore, we propose to

rank action proposals using simple elementary features and keep a few highly action

representative proposals, only. Inspired by [32, 27], we compute the following action

cues from each video independently.

Motion Cues: Motion boundaries have proven to be resistant to camera and back-

ground motion but characterize human motion quite well [6]. Therefore, we compute

frobenius norm of optical flow to estimate the probable location of an actor.

‖UX‖F =

∥∥∥∥∥∥
ux uy

vx vy

∥∥∥∥∥∥
F

(1)

whereUX represents forward optical flow , ux, vx, uy and vy are optical flow gradients.

Visual saliency: Actors usually stand out among their neighbor and capture visual at-

tention. We estimate saliency of each pixel in video frame using [33]. In this method,

feature and orientation maps are computed at multiple scales using local gradients and

Gabor filters, respectively. Finally, center surround activation maps and their normal-

ization are obtained using a fully connected graph over feature space. Further details

of this method can be found in [33].

Figure 2: Typical action proposals. Color of proposals is randomly assigned.
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Spatio-temporal coherence: The above features are estimated independently for each

frame and max normalized to represent foreground score maps. We aggregate motion

(M) and saliency (S) as: M+S. These initial scores have no or little spatial temporal co-

herence. Therefore, we impose spatio-temporal consistency using a discontinuity pre-

serving 3D Markov Random Field framework, which enforces smoothness in nearby

video locations. The video is considered as a 3D grid graph, where each node (pixel) is

connected to four spatial neighbors and two temporal neighbors. . Formally, 3D MRF

energy minimization is given as,

E(l) =
∑
p∈V

Φ(lp) +
∑

(p,q)∈N

Ψ(lp − lq), (2)

where lp is labelling (score) of pixel p. We used quadratic unary term Φ and trun-

cated quadratic smoothness term Ψ. The inference over this graph is achieved using

Max-Product/Min-Sum loop belief propagation [34, 32]. Qualitative examples of fore-

ground scores, in Figure 3, for moving camera and low quality videos demonstrate the

robustness of the above framework for estimating foreground regions.

Finally, we estimate initial action score, Ωpi
, of each proposal by computing fore-

ground score (normalized by proposal area) within each proposal.

Given all proposals P in a video V , we use this initial action score to select a few

most probable action proposals. However, this initial action score of proposal can be

noisy and also there are many highly overlapped proposals, therefore to select a small

subset S of most probable action proposals, we propose to use MAP-based proposal

Figure 3: Action Score Map, Λs, for four actions videos of Sub-JHMDB dataset.
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subset selection procedure similar to [35].

Overall, we want to group proposals into automatically determined number of clus-

ters and select exemplar proposal from each cluster. We assume an auxiliary variable

Z= (zi)
n
i , where zi =j if proposal pi belongs to a cluster represented by proposal pj .

The joint distribution of a few selected proposals S and Z for video V is given by:

P (S,Z|V) =
P (V|S,Z)P (S,Z)

P (V)
, (3)

where P (V|S,Z) represents likelihood term and P (S,Z) represents prior term. We

want to estimate Maximum a posteriori (MAP) of above equation. In order to select a

few action representative less overlapping proposals, the prior term can be written as

P (S,Z) = K1P (Z))W(S)C(S,Z), (4)

where K1 is a normalization constant. C(S,Z) is 1 for exemplar proposal from each

cluster. W(S) is prior information about detection window and is given as:

W = W1 ×W2, (5)

W1 softly penalize highly overlapped proposal windows in S and is given by:

W1 =
∏

i,j:i6=j

exp(−γ × IOU(pi, pj)), (6)

where IOU(pi, pj) represents intersection over union between two proposals. W2 =

exp(−φN) controls the number of finally selected proposals. We choose this parame-

ter so that at least one hundred proposals in each video are produced.

After substituting prior and likelihood term, Equation 3 can be written as:

P (S,Z|V) ∝ P (Z|V)W(S)C(S,Z), (7)

whereW(S) and C(S,Z) are defined above and considering the independent assump-

tion among zi, P (Z|V) can be given as follows:

P (Z|V) =

n∏
i=1

P (zi|V), (8)
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Figure 4: Top few action proposals for four actions videos of Sub-JHMDB dataset.

In the above equation, P (zi = j|V) = λ × K2 if j = 0, otherwise it is K2 ×

IOU(pi, pj)si, whereK2 is a normalization constant. Note that P (zi = j|V) encour-

age proposals which have high overlap with many high initial action score proposals

and hence it is robust to individual noisy score proposal.

Figure 4, shows a few top ranked action proposals after proposal subset selection

process.

3.3. Proposals Similarity Across Multiple Videos

Although a few top ranked proposals maintain high MABO (defined in Equation

12), the top most proposal does not necessarily represent the best available proposal.

Therefore, we re-rank the proposals by leveraging action proposals similarity across

multiple videos of the same action.

A naive similarity measure between proposals can hurt the proposal ranking, since,

sport videos backgrounds are more similar than the action itself. Therefore, we use

global, fine grain and shape similarities between proposals to discover the most action

representative proposals.

Each of the similarity measure between proposals is explained below.

Global Similarity

We use bag of words (BOW) similarity between proposals. We represent each

proposal by M -bin global histogram and spatial pyramids of 2 × 2 using improved

dense trajectory features (Trajectory, MBH, HOF and HOG) [6]. Next, the similarity
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Figure 5: Illustration of proposals matching across videos. The similar color ellipses show the matching

clusters using Hungarian algorithm.

between two proposals is measured using χ2− distance, which is defined as:

Sf
ij = exp

(
−γ

k=d∑
k=1

(hik − hjk)2

(hik + hjk)

)
, (9)

where hi and hj respectively, represent bag of words histogram of feature f for ith and

jth proposal and d is the dimensions of the histogram. The final similarity between any

two proposals, Θij, is the linear combination of individual feature similarities.

Fine Grain Similarity

Proposal matching using spatial pyramid (the fixed grid structure) has an underly-

ing assumption that similar action parts appear at the same location in both proposals.

However, due to actor articulations, large camera motion, pose and scale variations,

the fixed location assumption is not always true. Therefore, we propose the use of flex-

ible matching between action regions to obtain aggregated similarity between action

regions as a proposals similarity measure. Since the flexible similarity measure takes

into account the similarity across the local region between proposals, we call it fine
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grain similarity measure.

To achieve this, we cluster raw improved dense trajectory features within each

proposal in Cr clusters, where subscript r corresponds to MBH, HOG, HOF or Tra-

jectory. A Cr × Cr distance matrix is computed using Euclidean distance. To allow

the flexibility in matching between different spatio-temporal action regions, we use

only raw features (without their actual coordinates) during Euclidean distance compu-

tation. Finally, the optimal one-to-one matching between clusters across two proposals

is obtained using Hungarian algorithm [36]. We compute similarity between clusters

of each raw feature separately and final similarity, Γij, is the linear combination of all

of them. Figure 5 illustrates the flexible matching of clusters (the same color) across

proposals. In experiments we use insensitive parameter Cr=6.

Proposal Shape Similarity

In addition to spatio-temporal features within action proposals, the shape of pro-

posal windows (height, width and aspect ratio) over time itself carries useful infor-

mation about an action. Mostly the same action in multiple videos undergo through

similar articulations and therefore, the similar shape proposal windows across videos

likely capture the same action.

We define the shape of action proposal px and py over time as:

Λpx = [r1, r2, . . . , rn]

Λpy
= [r1, r2, . . . , rm]

(10)

where ri = wi

hi
and wi and hi are the width and height of proposal in frame i and m, n

are length of proposals. A naive way to match shape of px and py is to match r values

frame by frame. However, the same action can occur with different speeds in different

videos and therefore, in most cases n 6= m. Hence, we propose to consider proposals’

shape Λpx
and Λpy

as time series and find similarity, Πij, between them using dynamic

time warping.
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3.4. Generalized Maximum Clique Graph Optimization

Given each proposal action score, as well as their pairwise similarity across mul-

tiple videos of the same action, we seek to identify the most action representative

proposals from every video that have a high action score as well as a high similar-

ity with highly action representative proposals in other videos. Due to large intra-class

variation, matching only two videos may not necessarily facilitate better localization.

Therefore, we re-rank all the videos jointly using a global framework.

To this end, a fully connected graph Z = (V, E) is constructed, such that V = {vi},

i ∈ {1, . . . , n}, is the set of all proposals, and E = {eij}, i ∈ {1, . . . , n}, j ∈

{1, . . . , n}, represents the edge between pi and pj , where eij = ηpi× ηpj(Θij +Γij +

Πij). ηpi discourage proposals whose length is very small as compared to the length of

video and is given by: exp(−(m− n)/n), where m is length of video and n is length

of proposal.

We divide all nodes (which correspond to proposals) into disjoint groups, where

each group Zi belongs to one action video. The nodes within each group is a set of all

top ranked proposals in a single video. We call them a group because they belong to the

same video. Since we want to select one node from each group, the feasible solution is

a subgraph that satisfies two constraints: 1) Only one node from each group is selected;

2) If one node is included in feasible solution, then its N − 1 edges to single node in

each of N − 1 groups should be included as well.

Formally, the feasible solution can be found by maximizing the following objective

function:
i=N∑
i=1

j=N∑
j=1,j 6=i

(
αΩpi

+ (Θij + Γij + Πij)ηpi × ηpj

)
, (11)

where Ωpi represents the initial action score of ith proposal, Θij, Γij and Πij show the

similarity between proposals computed in previous section, ηpi discourage small length

proposals and α controls the weight of the initial action score for the final objective

function.

The optimal solution is a subgraph that maximizes the above objective function. It

is easy to observe that the above combinatorial optimization problem falls under the

umbrella of generalized maximum clique problem (GMCP) [17][18]. GMCP is the
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class of graph theory problems that generalizes the standard subgraph problems (from

node to group of nodes). The input to GMCP is graph Z, as defined above. Specifically,

the input graph consists of groups of nodes where edges exist between all the proposals

across the groups only with no connection within the group. The output of GMCP is

a subgraph Ys = (Vs, Es), such that each node in the subgraph belongs to one video

only and the objective function is maximized.

GMCP is an NP-hard problem.We have used the approximate solver proposed in

[17], for which code is available online. This local neighborhood solver has fast con-

vergence speed and is memory efficient. Specifically, we initialized the initial solution

from the top ranked proposals (from section 3.2) and generated NZ × ZN local feasi-

ble solutions of size 1, whereNZ denotes the total number of groups (number of videos

of an action) and ZN represents the number of nodes in a group (number of proposals

in a single video). The solution that has the maximum score is selected and again NZ

× ZN local feasible solutions are generated around this newly found solution and so

on. We repeat this process until we reach the maximum number of iterations or no

more updated solution can be obtained with further iterations.

The above formulation of GMCP assumes only one action instance in a video.

However, there are some videos in UCF-Sports and THUMOS’13 datasets which have

multiple instances of an action in the same video. To annotate multiple action instances

in a video, we use GMCP iteratively. During each iteration (after the first one), we stop

the node selection for the videos that have all of its instances annotated. For the videos

which have yet more instances to be annotated, we ignore the nodes that have high

overlap with already selected node (as they may be localizing the same instance), and

find GMCP solution from rest of the nodes. We repeat this process until all instances

in all videos are annotated.

4. Experimental Results

We have evaluated our method on three action datasets: UCF Sports [24], sub-

JHMDB [25, 37] and THUMOS13 [5]. These datasets are among the most challeng-

ing action datasets. Ground truth bounding box annotations are available for all three
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datasets.

In all experiments, we compute action proposals using online implementation of

[16]. Improved dense trajectory features are extracted using [6] and encoded in stan-

dard bag of words paradigm. The value of α in Equation 11, which controls the contri-

bution of initial raking, is set to 0.07.

UCF Sports [24] contains 10 human actions. This dataset includes actions such as:

diving, kicking, lifting, horse riding, etc. These low quality YouTube videos contain

huge camera motion, dynamic backgrounds, view-point changes and large intra-class

variations.

sub-JHMDB [37] contains 12 complex human actions. This dataset includes ac-

tions such as: catch, climb stairs, run, jump, swing basketball etc. This dataset is a

subset of JHMDB [37] and contains 316 videos. As mentioned in [37], this subset is

far more challenging as compared to the whole JHMDB dataset.

THUMOS13 [5] is the largest and the most challenging trimmed action detection

dataset with 24 complex human actions. It includes actions such as: pole vault, skiing,

ski-jet, surfing, fencing, cricket bowling etc. This dataset is a subset of UCF-101 and

includes 3207 videos with multiple instances of an action in the same video.

First, we evaluate initial proposal ranking followed by qualitative and quantitative

analysis of localization results and their detailed analysis.

4.1. Evaluation of Initial Proposal Ranking

Following previous works [13, 3, 38], we evaluate robustness of our initial action

proposal ranking using Mean Average Best Overlap (MABO). MABO measures the

Proposals UCF Sports Sub-JHMDB THUMOS13

Top 100 56.01 55.25 35.26

All (Upper bound) 62.40 57.77 46.71

Table 1: The first row illustrates MABO using top ranked proposals in the video. The bottom row shows the

MABO using all proposals in a video. On average, UCF Sports, Sub-JHMDB and THUMOS13, respectively,

contain 1866, 328 and 2300 proposals in every video.
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quality of the best available proposal. To compute MABO, we first compute mean of

best overlap (ABO) for each action class c as follows:

ABOc =
1

|Kc|
∑

gc
i∈Gc

max
pj∈P

O(gci , pj), (12)

where gci represents ground truth annotation for ith video in class c and pj is the jth

action proposal from P proposals in a video. |Kc| is the total number of ground truth

in class c. The overlap O is computed using standard intersection over union for

each frame and averaged by the number of frames where either gci or pi exist. Finally,

MABO is mean of ABO over all action classes. First row in Table 1 shows the MABO

calculated using only top 100 proposals. Second row presents MABO calculated using

all action proposals for all three datasets. It is impressive to note in Table 1 that even

by using 10% proposals, sufficiently high MABO is maintained. This indicates that

we have at least one good quality proposal among top ranked proposals. Note that

although initial proposal ranking maintains high MABO for top 100 proposals, the

top most proposal have significantly low MABO (UCF-Sports: 18.54, sub-JHMDB:

31.25, THUMOS’13: 21.01). Therefore, to achieve better localization, we can perform

matching among top ranked proposals only and can ignore the processing of several

thousand proposals.

4.2. Localization Results

In this section, we describe our experimental results for weakly supervised action

localization using multiple videos. At start, each video contains on average 1866, 328,

and 2300 action proposals in UCF Sports, Sub-JHMDBand THUMOS13, respectively.

Method UCF Sports Sub-JHMDB THUMOS13

Cosegmentation[28] 76.17 - -

Negative Mining[39] 25.86 87.34 14.39

CRANE[40] 61.18 86.08 14.17

Ours 85.29 90.51 41.69

Table 2: Localization results and comparison with related work
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Figure 6: Qualitative results of all action of UCF-Sports. Every three frames show an action video at dif-

ferent time instances. Green and magenta bounding boxes show proposed automatic annotation and manual

annotation, respectively.

After initial ranking, we select the top 100 proposals from each video from UCF Sports

and top 50 proposals (to reduce computation) from Sub-JHMDB and THUMOS13.

Following several previous action localization methods [41, 1, 3], we use intersection-

over-union criterion at an overlap of 20% for correct action localization. The quantita-

tive results for three challenging action datasets are shown in Table 2 (last row). The

numbers in the table show the percentage of the videos that have correct localization.

Note that we obtained these localization results without any training video.

The qualitative localization results for all action classes of UCF Sports sub-JHMDB

are shown in Figures 6 and 7, respectively. In these figure, magenta bounding box rep-

resents ground truth annotations and green bounding box shows automatic annotation.

Note that despite large camera motion and change in scale, fast and abrupt motion,

background clutter occlusion, our automatic annotations closely follow the manual an-

notations.

Our approach is closely related to video object co-segmentation. For this purpose,

we use a recently published video object co-segmentation method [28]. Using the code

available on the author’s website, we produced the co-segmentation for each video and

put a tight bounding box around the segmented region to represent co-localization.

Experimental results of this method are given in 2. We compared [28] for UCF Sports

only (because of its large time consumption: 2 min per frame).
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Figure 7: Qualitative results for all actions of sub-JHMDB. Every three frames show an action video at dif-

ferent time instances. Green and magenta bounding boxes show proposed automatic annotation and manual

annotation, respectively.

Our work is also related to weakly supervised concept or action detection using

negative mining [40, 39]. Similar to ours, both methods assume availability of video

level labels. In addition, they use negative data to localize the main concept or action

in video. We follow the procedure described in [40] and use videos not labeled with

action of interest as negative data. We use both methods to discover the best represen-

tative proposals among top ranked proposals. Experimental results of [40, 39] on all

three datasets are given in 2. The quantitative comparison in Table 2 demonstrates the

superiority of our approach.

4.3. Action Detection

In this section, we demonstrate the usefulness of automatically obtained bounding

boxes by using them to train action detectors in the standard train-test settings [1, 41].

To this end, we automatically annotate UCF sports actions using training videos only;

no test video is used during annotation. We use BOW representation of improved dense

trajectories to train each action classifier. Moreover, we train separate classifiers using

exactly the same settings on ground truth bounding boxes. We evaluate testing results

using standard metrics as shown in Figure 8. We consider these results quite promising

as action classifiers trained on automatically obtained annotations have comparable

performance to that of classifiers trained on manual annotations.
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Figure 8: The ROC curves on UCF Sports dataset. The results show comparable performance of classifier

trained on manual annotations (green) and proposed automatic annotations (magenta).

4.4. Analysis and Discussion

Our approach has several components. We quantitatively evaluated each compo-

nent and have shown the experimental results for stripped down versions of our method

for UCF Sports in Table 3. It can be seen that each component of our method has com-

plementary effects and helps in achieving overall localization accuracy.

Ideally, increasing the number of videos should help in getting better annotation,

i.e., THUMOS’13 which has more than 100 videos per action should have better local-

ization accuracy than UCF-Sports which has on average 15 videos per action. However,

the improvement for THUMOS’13 is less when compared with UCF Sports, mainly

due to the difficulty level of THUMOS’13, as shown in the first row of Table 1. The

typical behavior of localization accuracy for skateboarding action (THUMOS’13) for

100 videos is shown in Table 4. The first row in the table shows the mean localization

(mean IOU) for the batch of 25 videos. As can be seen, the videos in the 26-50 batch

have less localization accuracy as compared to other batches. Employing proposed

method (second row) on the first 1-25 videos boosts their MABO from 24.83 to 27.86.

Using proposed method on 1-50 videos (third row) further increase first batch from

27.86 to 29.39 and second batch from 21.00 to 28.89. Similar pattern can be seen for

third row. It is worth considering that, although localization improves in local batches

(1-25, 26-50 and 51-75), the overall localization accuracy drops from 27.86 (25 videos)

to 26.55 (75 videos), mainly due to large intra-class variation in THUMOS’13 videos.
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Method [I]nitial Score [I]+[S]hape [I]+[S]+[G]lobal [I]+[S]+[G] +Fine Grain

Diving 64.2 64.2 100 100

Golf Swing 5.5 55.5 55.5 88.8

Kicking 20.0 50.0 55.0 65.0

Lifting 0 0 50.0 100

Riding Horse 33.3 25.0 25.0 100

Run 20.0 20.0 33.3 80.0

Skateboarding 50.0 41.6 41.6 91.6

Swing Bench 10.0 15.0 70.0 95.0

Swing SideAngle 38.4 38.4 30.7 61.5

Walk 16.6 58.3 33.3 70.0

Avg 25.8 36.8 49.4 85.2

Table 3: Component’s contribution to overall performance. First column shows localization obtained using

initial action score only. Second column depicts the same using proposal shape similarity as well. Third and

forth column show contribuition from global and fine grain similarity, respectively.

Computation Time: We performed experiments on desktop computer Intel Xeon

E5620 at 2.4GHz. For UCF-Sports, after extracting action proposals, unoptimized

MATLAB code takes 0.3s for fine grain matching and 0.01s for global matching be-

tween two proposals, Moreover, GMCP takes 7.7s to re-rank all top proposals in all

videos of an action.

5. Conclusions

We have presented a weakly supervised approach to automatically obtain spatio-

temporal annotations in a video. In contrast to expensive and time-consuming anno-

tations, we obtain these spatio-temporal annotation boxes in a few seconds by match-

ing action proposals across multiple videos using their feature and shape similarities.

Moreover, we have demonstrated that these annotations can be used to learn robust

action classifiers. In future work, we plan to extend our framework to localize actions

without video level labels.
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Method 1-25 26-50 51-75 76-100 Mean

Localization 24.83 21.00 25.65 23.75 23.85

Localization(25) 27.86 27.86

Localization(50) 29.39 28.89 29.14

Localization(75) 28.30 25.24 26.06 26.55

Localization(100) 28.29 23.57 26.75 26.06 27.42

Table 4: Localization accuracy behavior across different batches of videos. The number in brackets shows

number of videos used for Localization
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