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Methods designed for tracking in dense crowds typically employ prior knowledge tomake this difficult problem
tractable. In this paper, we show that it is possible to handle this problem, without any priors, by utilizing the
visual and contextual information already available in such scenes.
Wepropose a novel trackingmethod tailored to dense crowdswhichprovides an alternative and complementary
approach to methods that require modeling of crowd flow and, simultaneously, is less likely to fail in the case of
dynamic crowd flows and anomalies by minimally relying on previous frames. Our method begins with the au-
tomatic identification of prominent individuals from the crowd that are easy to track. Then,we useNeighborhood
Motion Concurrence to model the behavior of individuals in a dense crowd, this predicts the position of an indi-
vidual based on themotion of its neighbors. When the individual moves with the crowd flow, we use Neighbor-
hood Motion Concurrence to predict motion while leveraging five-frame instantaneous flow in case of
dynamically changing flow and anomalies. All these aspects are then embedded in a framework which imposes
hierarchy on the order in which positions of individuals are updated. Experiments on a number of sequences
show that the proposed solution can track individuals in dense crowds without requiring any pre-processing,
making it a suitable online tracking algorithm for dense crowds.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Crowd analysis is an active area of research in Computer Vision [1].
Over the past few years, methods have been proposed that estimate
density and number of people in a crowd [2,3], find group structures
within a crowd [4], detect abnormalities [5–8], find flow segments
[9,10], and track individuals in a crowd [11–13].

Density is an important feature which can be used to classify dif-
ferent kinds of crowds [1]. From the computer vision perspective,
videos of high density crowds can be divided into groups based on
the number of pixels on target. High density crowds with extremely
small object size permit only holistic approaches for scene understand-
ing, such as finding motion patterns and segmentation of crowd flows
[14,15,9,10]. However, if individuals in a crowd are distinguishable,
then tracking of individuals may be possible, which is important in
the context of safety and surveillance [1].
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Tracking in dense crowds [16,12,13] is a challenging problem. Non-
crowd methods, which track individuals in isolation do not perform
well on dense crowds [16] because the large number of objects in
close proximity poses difficulty in establishing correspondences across
frames. Furthermore, human motion in crowds is influenced by social
constraints [17] which force individuals to follow more complex, non-
linear patterns that need to be taken into account for successful tracking
of dense crowds.

Methods specifically designed for dense crowds generally require
some learning of motion priors, which are later employed for track-
ing. For instance, Ali and Shah [16] proposed an algorithm which is
based on the assumption that all individuals in a crowd behave in a
manner consistent with global crowd behavior and learn the direc-
tion of motion at each location in the scene. The floor fields they
learn severely restrict the permitted motion that individuals in a par-
ticular scene can have. This restriction on the motion of individuals
due to time-invariant priors would cause the tracker to fail when,
(1) the crowd flow is dynamic, (2) the crowd flow shifts or moves
to a new region which was not learned before, and (3) when there
are anomalies. Furthermore, camera motion and jitter can make
learning the crowd flow difficult, if not impossible. Though learning,
whether online or offline, certainly helps in tracking dense crowds
when these issues are not present, our goal in this paper is to empha-
size the use of visual and contextual information available in such
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crowded scenes to track in an online manner, without any pre-
processing, learning or crowd flow modeling.

At the core of our approach lies template-based tracking, which is
used to obtain the probability of observation. However, the simplicity
of a template-based tracker demandsmore than just appearance to per-
form well in high density crowds. We supplement the tracker with
novel visual and contextual sources of information, which are particu-
larly relevant to crowds and reduce the confusion in establishing
correspondences.

The first idea we explore is prominence of individuals which is sim-
ilar to saliency (generally used for features and points). In any crowded
scene with a large number of people, the appearance of some individ-
uals will be markedly different from the rest (Fig. 1). The probability
of confusing such individuals with the rest of the crowd will be low.
Thus, the prominence of such individuals provides extra information
which should be leveraged in tracking.

The second idea is to employ influence from neighbors to make
better prediction for an individual's position. This idea is based on
the observation that individuals in dense crowd experience social
forces that bound their movement. For instance, an individual cannot
jump across its neighbors in a single time instance. The restriction on
movement that each individual experiences is proportional to the
density of the crowd. Social force models, both in computer graphics
and vision, are generally geared towards collision avoidance, where
the goal is to predict positions such that subjects or individuals
don't collide with each other. Our model, on the other hand, exploits
the fact that movement of individuals in a dense crowd is similar to
their neighbors, and therefore can be used to make better predictions.

Combining prominence and influence from neighbors, our meth-
od imposes an order on the way positions of individuals are updated.
Individuals with prominent appearance are updated first, which
subsequently guide the motion of the rest of the crowd. While
updating, if the underlying patch-based tracker gives weakmeasure-
ment for an individual, then position of the individual is updated
based on appearance-based dense instantaneous flow. Thus, the
framework we introduce incorporates these ideas as well as their
inter-relationships. Our contributions in this paper can be summa-
rized as,

• An alternative approach to dense crowd trackingwhich highlights the
significance of prominence and spatial context for tracking dense
crowds without requiring crowd flow modeling,

• Introduction of the notion of prominent individuals, its relevance
to tracking in dense crowds, and a method to detect prominent
individuals,
Fig. 1.Anexample of a dense crowdwhere individuals that are in yellow squares stand out
from the crowd and, therefore, should be easier to track than rest of the individuals,
markedwithwhite squares. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)
• Incorporation of influence from neighbors, prominent or not, to
better predict and estimate an individual's position,

• A tracking framework which imposes an order in the way individuals
are tracked, where positions of prominent individuals are updated
first and individuals with low probability of observation from under-
lying tracker are updated last.

Since space is complementary to time, both the visual informa-
tion (prominence) and spatial context (influence from neighbors)
are complementary to temporal constraints (crowd flow, motion
patterns) introduced in previous works on tracking people in dense
crowds. Our goal in this work is to emphasize the first two, which
when coupled together allow tracking in an online fashion, without
modeling crowd flow and without looking at observations from
the future.

2. Related work

There are a few papers that have used context for tracking, however,
there is currently no such work that utilizes it for dense crowds.
Yang et al. [18,19] used contextual information to improve the track-
ing performance of a few objects. Through color segmentation of the
image, they find auxiliary objects, which are easier to track and
whose motion is correlated with the target. The auxiliary objects
are then tracked; they also aid in tracking the target, which occurs si-
multaneously. The method was streamlined for non-crowd scenari-
os, with results containing a maximum of three objects per
sequence. Furthermore, due to hundreds of people frequently occu-
pying the entire screen in crowd videos, the definition and discovery
of auxiliary objects is not applicable to crowd sequences. Khan et al.
[20] also capture interaction between targets using particle filters in
an MRF framework. However, they do not consider prominence and
anomalies while tracking, and the particle filters are not suitable for
crowd sequences due to fewer pixels per target.

The methods proposed for multi-target tracking include Park et al.
[21] who sped up belief propagation using mean shift by sparsely sam-
pling the belief surface instead of using parametric methods or non-
parametric methods that require dense sampling. They do not assume
prominence and pass messages in all directions, therefore presuming
absence of anomalies.

Next, we review papers relevant to different aspects of our method.
For an in-depth analysis of crowd literature, interested readers are re-
ferred to the survey by Zhan et al. [1].

2.1. Prominence

Discriminative features were used for tracking by Collins and Liu
[22], who rank the foreground features online and track objects using
only those features which discriminate foreground from background.
A similar idea was explored by Mahadevan and Vasconcelos [23] who,
given a pool of features from foreground and background, select the
most informative features for classification between the two. In relation
to ourmethod, prominence can be seen as a collection of salient features
which discriminates one foreground object from the rest.

2.2. Social force models

Static motion models (such as linear velocity or constant acceler-
ation) have long been used for tracking in computer vision. Dynamic
models, as opposed to static ones, account for the dynamic structure
of the scene and objects, and are based on the fact that individuals
are driven by goals and respond to changes in their environments
by adjusting their paths. Methods that model [24–26] and simulate
crowds [27] incorporate this crucial information to produce realistic
results.

image of Fig.�1
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In computer vision, social force models have been used for multi-
target tracking, such as Pellegrini et al. [28]. They introduced Linear
Trajectory Avoidance, a model inspired by Helbing and Molnár
[17], in which predictions are made so that individuals avoid colli-
sions with each other and the obstacles. The repulsive forces are bal-
anced by a preference of each individual to move towards a
destination with some desired speed, both of which are assumed to
be known in advance. The experiments were performed on non-
crowded scenes, since collision avoidance has lower applicability
to dense crowds where individuals have less freedom of move-
ment. To overcome some of the shortcomings in [28], Yamaguchi
et al. [29] proposed a similar approach using a more sophisticated
model, which tries to predict destinations and groups among indi-
viduals using certain heuristics based on trajectory features and
classifiers trained on annotated sequences. They use very simple
scenes and assume people move along straight paths, with a
time-invariant notion of destination. There are scenes in real
world where this assumption will break, for instance, Sequence 5
in Section 4.

Furthermore, Yamaguchi et al. [29] penalize deviations from pre-
ferred speed, which is set to 1.3 m/s. This is the speed at which an aver-
age human walks, but this constant will be different for a scene
depicting a marathon, where people can be seen running at various
speeds. In fact, both themethods [28,29] assume that thepositions of in-
dividuals are in metric space, where distances can be computed be-
tween individuals in terms of metric units (meters). This is a natural
disadvantage of sophisticated social force models whose parameters,
otherwise, would have to be learned for each testing video anew. Sec-
ondly, for correct transformation of positions of individuals from
image space to metric space, both methods assume that the video be
captured from a bird's-eye view even if there are only a few individuals
at any given time. These two strict assumptions limit the applicability of
their methods to arbitrary videos. Although some camera elevation is
necessary to completely capture a dense crowd, our model which
works in the image space can work with slightly slanted views, i.e.,
lower than a bird's-eye view, because we anchor motion of all individ-
uals on prominent ones who lie in the same scene as the rest of the
crowd. In other words, since we impose motion consistency in the
image space, we do not require knowing the transformation between
image and metric coordinates, as such transformations cannot be as-
sumed to be known in advance for arbitrary videos.

2.3. Dense crowds

Recently, Garg et al. [30] addressed the problem of matching in-
stances of people in images of crowded events using photographs
from Flickr. Unlike our problem, which deals with single-view
videos, their method works on images taken from the same scene
which allow structure from motion and 3D reasoning to match the
subjects.

For tracking in dense crowds, in a series of papers, Kratz and
Nishino [31–33] trained Hidden Markov Models to learn motion pat-
terns in the scene which they later use for tracking individuals. Our
method provides an alternative to such training-based methods by
using appearance and contextual information only. The method pro-
posed by Song et al. [13] tracks individuals by learning patterns of
flow through online clustering of tracked trajectories. Wu et al. [12]
did not learn any priors but employed multiple cameras to obtain
3D trajectories of objects that are indistinguishable in terms of ap-
pearance by finding correspondences across the multiple views.

The work most similar to ours is that of Ali and Shah [16] where au-
thors use transition probabilities computed from learned floor fields in
order to track individuals in a dense crowd. The method requires a
pre-processing period where the static floor field is learnt using parti-
cles advected through optical flow across the scene. Furthermore, the
dynamic floor field which captures the instantaneous flow is a non-
causal process as it uses observations from the future. Similarly,
Rodriguez et al. [34] use Correlated Topic Model (CTM) to capture
different overlapping and non-overlapping crowd behaviors in the
scene. In their construction, words correspond to low level quan-
tized motion features and topics correspond to crowd behaviors.
Similar to [16], the method requires temporal modeling of crowd
behavior which uses observations from the future.

Recently, Rodriguez et al. [35] also proposed a method that
solves the same problem, but instead of learning crowd flow, they
build a database of approximately five hundred videos and match
patches from query videos to the database videos. Their method re-
quires extensive searching of similar patches in the database, while
making a strong assumption that the motion of individuals in a
particular query patch can be found in the database. We, on the
other hand, rely completely on information that is readily available
in the sequences.

Therefore, our goal is to develop an online tracker for dense
crowds without requiring extensive analysis of sequences in the da-
tabase, or off-line analysis by modeling the crowd behavior in
advance. Instead, we explore visual and spatial information in this
work in the form of prominence and influence from neighbors
while making sure that the method is not biased against anomalies
or dynamic crowd flow like the previousmethods. Since temporal in-
formation is complementary to spatial and visual constraints, the
proposed method can be seen as an alternative and complementary
approach to previous methods for tracking individuals in structured
dense crowds.

Furthermore, due to difficulty of human detection in dense
crowds, and to keep the primary focus on tracking, all previous
works in this area [16,34,35,33] assume that a manual initialization
of templates on individuals in the crowd is afforded to the algo-
rithm. The template refers to a bounding box around the individual
that we intend to track. In this paper, like previous works, we also
assume that initial templates (bounding boxes) are provided and
our goal is to track them across the scene. This also restricts the ap-
plicability of other social force [36] or tracking methods which
perform data-association among human detections across frames
of the video.

3. Framework

The proposed framework augments template-based tracker,
which alone yields poor results due to extreme difficulty in estab-
lishing correspondences in a densely crowded scene (See Section
4). In this section, we first discuss the notion of prominent individ-
uals and present an algorithm that identifies such individuals.
Then, we present the Neighborhood Motion Concurrence model
which gives a probability surface of position for an individual using
position and velocity information of the target and its neighbors. Fi-
nally, we develop a tracking method which updates the position of
individuals in an ordered fashion using information about prominent
individuals, influence from neighbors, and feedback from template-
based tracker.

3.1. Prominence

Although it is possible to track and update the positions of all indi-
viduals in a crowd simultaneously at each time step, this is not the
most efficient method. Some individuals have unique characteristics
that make them stand out from the crowd. These characteristics make
it easier to establish correspondences across frames for these individ-
uals without confusing them with the rest of the crowd. The first step,
therefore, would be to detect prominent individuals, whom we will
refer to as Queen Bees or, in short, queens. We choose to use this term
because a queen, due to its size, is the only unique bee in an entire col-
ony of indistinguishable bees. Since a queen is unique and easily



1xn voting array

=# of clusters

=: cardinality

map from features to templates

feature =: an RGB vector per pixel

feature matrix

procedure DETECTQUEENS

for all 1 to do

features from

Concatenate to

end for

GMM

Sort clusters w.r.t density i.e.

[0 0 . . . 0]

while do

dofor all

end for

end while

end procedure

Algorithm 1 Algorithm to find queens given templates

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

φ = [ ]

T1:n

i = n

φi = Ti

φi φ

Ω (φi) = i 

Ni = φi

[C, μ, Σ] = (φ, k)

C (2π) 3/2 1/2Σ

V1:n = 

queens = [ ], i = 0

i ≤ k queens < .1n 

i = i + 1

VΩ(φ) = VΩ(φ) + w (φ, i) 

φ Ci

queens = { j Vj > 2
3

Nj }

k

φ, Ci =: ith cluster

w= voting function

(a)

Fig. 2. Visualization of clusters: Given a fixed set of templates, we extract [R,G,B] features for ea
sociate the id of each template with its constituent features. Then, the features are clustered an
plates in Fig. 1 are shown in (a) where each Gaussian is represented with an ellipsoid drawn w
The colors belonging to non-queens (white templates in Fig. 1) form clusters along the diagon
Gaussianswith sparse clusters in blue and dense clusters in red. (c) The clusters thatwere used i
and did not use clusters drawn in green. (For interpretation of the references to color in this fi
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identifiable, it can be used to describe prominent targets in any type of
dense crowd.

There are several features that can make an individual prominent
with respect to others, such as gait [11], physical appearance, height
or age. However, in dense crowds with a small number of pixels on a
target, visual appearance is robust and, typically, the only observ-
able feature. In our framework, a queen is defined as an individual
with color features that differ significantly from the majority of the
crowd.

To select the queens, we extract features ϕi from the templates T1:n.
Every pixel in each template gives one 3D feature, i.e., [R,G,B] at that
pixel. While generating the features, we keep a map, Ω, that associates
features to the source templates. All the features are then clustered
into k clusters modeled using a mixture-of-Gaussians distribution,
i.e., each component is N μ;Σð Þ. Next, the clusters C1:k are sorted in
ascending order according to a particular criterion (density). Finally,
the features are reassigned to their original (source) templates begin-
ning with features from the first cluster in the sorted list. The process
is stopped once a small percentage of total templates (in our case,
10%) are filled by at least two-thirds. Since all the features from each
cluster are processed simultaneously, it is possible to have more than
10% of total templates selected as queens. Algorithm 1 gives a general
and formal description of this procedure.

For a cluster C, its mass m is given by |C| (i.e., the number of data
points in C), and volume v given by (2π)3/2|Σ|1/2. Then there are several
ways to sort clusters: mass (m), volume (v), mass weighted by volume
(m∙v), density (m/v) or the reciprocal of density (v/m). We ran a small
experiment to findwhich criterion gives the best results for prominence
by determining if it correctly identifies the queenswhile filling few non-
queen templates (red and green in Fig. 3, respectively). We ran the ex-
periment several times to avoid differences due to clustering, and
(b)

(c)

High

Low

ch pixel in the template. We keep a map (Ω) between features and templates, i.e., we as-
d modeled using a Mixture-of-Gaussians distribution. The results on the image and tem-
ith size equal to 1.5 the size of variance, i.e., 1.5 (Σ)1/2 and colored with its mean, i.e., μ.

al (black to white). In (b) we color the ellipsoid according to the density of the respective
n selecting thequeens are given in red afterwhich theprocess of back-assignment stopped
gure legend, the reader is referred to the web version of this article.)

image of Fig.�2
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After 25 clusters After 35 clusters

Fig. 3. Intermediate outputs for the queen detection method: The images correspond to back-assignment after processing k = 5, 15, 25 and 35 clusters (out of k = 100). Red and green
colors indicate queens and non-queens, respectively. Notice that the proportion of green regions to red increases as the number of clusters increases. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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found that density gives the correct and most stable queens across iter-
ations. This implies that features of queens behave as outliers during
clustering and form sparse clusters, whereas features of non-queens
form dense clusters since they tend to be similar to each other.

For the image given in Fig. 1, the results of clustering are shown in
Fig. 2(a). In this figure, each cluster is drawn in the RGB space using
an ellipsoid whose size and orientation are determined by Σ and the
color is given by μ. In Fig. 2(b), we color-code the clusters according to
density where blue indicates sparse clusters and red indicates dense
clusters. Fig. 2(c) shows the clusters whose features were utilized dur-
ing back-assignment. These clusters are shown in red and the features
in these clusters primarily belong to queens, whereas the features be-
longing to clusters in green were not used because the desired number
of queens had already been identified through back-assignment by that
time. The intermediate results of back-assignment for the image in Fig. 1
are shown in Fig. 3 where the procedure stopped after processing 35
(a)

Fig. 4.Visualization forNeighborhoodMotion Concurrence (NMC)model: (a) The target under c
neighbors are shown with different colors. The arrows show the velocity which, for the target
position using themodel for the target in (a), given by Eq. (5). The cross hair represents positio
The black circle is obtained using constant velocity assumption on themotion of target (pS from
on their respective motions. This is a simple illustration, so each covariance is assumed to be
reader is referred to the web version of this article.)
clusters. Thefinal results are shown in Fig. 1where the yellow templates
mark the selected queens while white templates belong to non-queens.
3.2. Neighborhood Motion Concurrence (NMC)

In this section, we present an intuitive model, that utilizes the dy-
namic contextual information of the crowded scene, which allows us
to track individuals in a dense crowd without requiring any prior

knowledge (crowd flows,motion patterns,…). Letxti ¼ x ẋ
� �T (position,

velocity), Σi
t represent the state and covariance, respectively, of target i

at time t, x̂ti be the updated state, A be the state transition matrix, for in-
stance, linear velocity and N μ;Σð Þ a 2D Gaussian distribution. We will
distinguish the target under consideration from its neighbors by using
subscripts i and j, respectively.
(b)

onsiderationwhose position is to be updated is shownwith black squarewhile its updated
is velocity at t-1, whereas, for neighbors is their velocity at t. (b) shows the probability of
n of the target before the update, i.e., position at t-1. Each blurred circle representsN μ;Σð Þ.
Eq. (1)),while colored circles capture the influence fromneighbors (pN fromEq. (2)), based
an identity matrix. (For interpretation of the references to color in this figure legend, the

image of Fig.�3
image of Fig.�4
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(e)(d)

(c)

Fig. 5. (a) The target under consideration is shown in white and its updated neighbors in
color. (b) The red star is the correct position updated by themethod, whereas black star is
the incorrect position update from template-based tracker alone. Intermediate results: (c)
is the probability surface of position usingNMC for the target in (a). Thebottom row shows
the effects of using the model, where (d) and (e) are probability surfaces of position with
and without the model, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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The Neighborhood Motion Concurrence has two components,
namely self, pS, and neighbors' influence, pN. Since the state of the target
under consideration at time t has not been updated yet, both its position
and velocity come from the previous time instant t-1,

pS ¼ p zt−1
i jx̂t−1

i

� �
� N Axt−1

i ;AΣt−1
i AT

� �
; ð1Þ

where p(zit − 1|xit − 1) denotes the observation likelihood zi
t − 1 of the

target given its state xi
t − 1, obtained through underlying tracker. If

there was some uncertainty in the target's position at time t-1, then pS
gets weighed down by this factor, therefore more preference will be
given to prediction from neighbors, which is the second component of
NMC, given by,

pN ¼
X
j

wj � N Axtij;AΣ
t
jA

T
� �

� λ j; ð2Þ

wherextij ¼ xt−1
i ẋtj

h i
, λj = 1 if the state of target j has been updated be-

fore i at time t, and 0 otherwise. But, not all influences can be treated
equally, so we weigh them according to the neighbors' distance from
the target,

wj ¼
exp − x j−xi

��� ���� �
X

k∈Neighbors

exp − xk−xik kð Þ : ð3Þ

To illustrate the idea, consider the target shown in black square in
Fig. 4(a) whose position is to be updated at time t, i.e., the black
square is drawn where the target was at time t-1. Its updated
neighbors are shown with squares of different colors, whose posi-
tions are depicted at time t. The arrows originating from the center
of the squares indicate the velocity of each individual, i.e., velocity
at time t-1 for target and at time t for the updated neighbors. In
Fig. 4(b), we show how each velocity vector from Fig. 4(a) influences
the likelihood of the target's position. In this image, the cross-hair
marks the position of the target before it is updated. The blurred cir-
cles represent Normal distributions N μ;Σð Þð Þ. The black circle repre-
sents pS, while colored circles represent pN, using the same colors as
the squares depicting neighbors in Fig. 4(a). Here, all covariances
are set to identity matrices for the sake of visualization. Thus, NMC gen-
erates a probability distributionwhich gives a dynamic prior on themo-
tion of the target based on its own motion and that of its neighbors.
Fig. 5(a) shows a real example of the use of this model. The position
of an individual in white square with cross-hair is to be updated,
while some of its neighbors have already been updated, shown in col-
ored squares. The lines originating from the center of the squares
show the velocity vectors. Fig. 5(c) is the output of the model, which
is a multi-modal distribution with one strong peak. Fig. 5(d) shows
the probability of the target's position using just the appearance,
while Fig. 5(e) shows the drastic reduction in confusion in the target's
position achieved with the model, which is typical to majority of the
non-queen individuals of the crowd. The final results are shown in
Fig. 5(b) where the black star represents the incorrect position updated
without using NMC, and the red star indicates the correct position up-
dated with NMC.

3.3. Appearance based instantaneous flow

TheNeighborhoodMotion Concurrencemodels the similarity ofmo-
tion of individuals in a dense crowd. The assumption that an individual
has motion similar to its neighbors is violated when there are multiple
flows in close vicinity of each other, for instance, two groups of people
walking right next to each other in opposite directions, or when there
are anomalous individuals in the crowdwhose motion is not consistent
with their neighbors. In these cases, we resort to instantaneous flow
(Fig. 6), which provides some information about the possible direction
of motion for such individuals. We construct instantaneous flow from
five frames using normalized cross-correlation on patches that are
densely initialized throughout the scene, where track of each patch
captures temporally-localized motion. The idea is similar to par-
ticle advection [9], however when the duration is only five
frames, particle advection gives results significantly worse than
instantaneous flow due to noisy and inconsistent optical flow.
We initialize 4 × 4 patches at a regular spacing of 4 pixels.
When NMC does not provide good prediction, e.g., when the ob-
servation likelihood at the updated position is low, we approxi-
mate the motion using nearby patches in an instantaneous flow
field. In this case, the neighborhood component pN changes and

xt
ij ¼ xt−1

i ẏtj
h i

, where ẏ j
t is the velocity of the patch averaged

over the five frames. The selection of neighbors in Eq. (3) is
now based on nearby patches instead of individuals.

In the next section,we use these three aspects together, which allow
us to formulate a solution to the challenging problem of tracking in
dense crowds without relying on any prior knowledge.

3.4. Tracking in dense crowds

Given some initialization, our goal is to track each individual in the
crowd. If the crowd flow has been modeled in advance, then it is possi-
ble to update the positions of all individuals simultaneously. However, a
sequential approach is preferable when the flow is not known. For each
individual at each time instant, a decision needs to be made for the po-
sition update, which allows us to assign a confidence to this decision.
Thus, tracking can be posited as a decision making process where
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queens serve as guides and NMC is used for consensus. This idea lends
itself to a hierarchical framework which starts with queens and ends
with non-queens.

At the top of the tracking hierarchy are queens, which are updated
first. Fig. 7 justifies their placement at the top of hierarchy. The two tar-
gets, one queen and an adjacent non-queen are shown with red and
white squares, respectively. In Fig. 7(b), we show theprobability surface
of position using just the appearance for thequeen,while in Fig. 7(c),we
show the same for the non-queen. The surface in Fig. 7(c) is common to
non-queens which signifies greater possibility of confusion among
them, in this case, due to the white appearance of nearly all the neigh-
bors. It is evident that the queen's neighbor in Fig. 7(c)will pose a signif-
icant challenge in tracking unless its state predictions are guided by the
adjacent queen.

Once the queens are updated, their immediate neighbors are up-
dated next, then the neighbors of neighbors. This process continues
to expand outward until every target has been updated at the current
time. If G ¼ V; Eð Þ denotes the graph where V is the targets represented
by their states and E is the edges between each individual and its neigh-
bors within a fixed radius, then the updating order is Breadth First
Search which can be implemented using a queue.

Let NNi ≡ {j |eij ∈ E} be the neighbors for target i. For simplicity of
notation, index j will represent a member of NNi. Given states and
Algorithm 2  Algorithm to update state given templates: NN graph:

state vectors at time , and id of queens

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27: end procedure

end while

end if

end if

end if

Push i at the end of queue

if then

else
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covariances of a target i and its neighbors j, under first-order Markov
assumption,

p xti jzti ; xt−1
i ; xtj

� �
∝p zti jxti
� �

p xti jxt−1
i ; xtj

� �
: ð4Þ

The state of queens is updated first, which is predicted by their own
previous state, i.e., p(xit|xit − 1, xjt) = pS. However, the neighbors of a
non-queen target whose state has been updated at time t influence its
state estimate using NMC, given by,

p xti j xt−1
i ; xtj

� �
¼ ζ pS þ pNð Þ; ð5Þ

where ζ is the normalization factor.
In Eq. (4), p(zt |xt) is the probability of measurement given state at

time t, which corresponds to confidence from the tracker. Our underlying
tracker is template-based, with Normalized cross-correlation as the sim-
ilarity measure, hence,

p zt j xt
� �

¼ 1
2

γ xt
� �

þ 1
� �

; ð6Þ

where x = (u,v) and γ(x) is given by

X
x;y;z

f x; y; zð Þ � T u−x; v−y;w−zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y;z
f x; y; zð Þ

 !2 X
x;y;z

T u−x; v−y;w−zð Þ
 !2

vuut
; ð7Þ

where z iterates over color channels andT is the target template Twith its
mean subtracted.

Finally, the state with maximum posterior probability is given by,

x̂ti ¼ argmax
xti

p xti jzti ; xt−1
i ; xtj

� �
: ð8Þ

Note that the distribution in Eq. (5) depends only on the neighbors
whose position has been updated. If p zt jx̂t

� �
for a target is low, which

might be due to poor prior probability from NMC or occlusion, we
then resort to instantaneous flow for obtaining prior probability. The
prior probability for such individuals is based on neighboring patches
in the instantaneous flow field which is similar to Eq. (2) except that
xij
t now comes from patches rather than individuals. However, if the up-
date confidence does not improve when using Instantaneous Flow, we
Fig. 6. Thisfigure shows instantaneousflowcomputed for one of the frames of Sequence 5.
The patches were densely initialized at a spacing of 4 pixels. The direction at each location
in the image is shown with color wheel on bottom-right of the image. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 7. (a) The red squaremarks one of the queens and thewhite one is its immediate non-
queen neighbor. (b) shows the probability surface (obtained through Eq. (6)) of the
queen's position in the next frame while (c) is the corresponding probability surface for
its neighbor. It is obvious that queens, due to a uni-modal probability distribution, have
less confusion in maintaining identity than non-queens, and therefore should be placed
at the top of tracking hierarchy. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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delay the update of such target and place it at the end of the
queue so that it does not influence the rest of the crowd. Placing the tar-
get back into queuewhen tracker confidence is low has the peril of run-
ning into an infinite loop. The theorem (see Appendix A) shows that it is
not possible in case of Algorithm 2which, in effect, gradually lowers the
threshold till the individual's position is updated.

Fig. 8(a) shows the results of hierarchical update for one of the
frames in Sequence 2 containing 220 individuals. The order of update
is color-codedwith bar shown on the right, where red signifies individ-
uals whose state was updated before the ones shown in yellow. The
queens are marked with a black square inscribed in a red square. In
some instances, yellow squares occur in close proximity highlighting
the delayed update where we wait till more neighbors get updated, or
update such individuals based on instantaneous flow (Algorithm 2,
Line 15). In Fig. 8(b), we show the final graph produced by the update
scheme. The arrows indicate the direction in which the influenced
was transmitted. An interesting observation regarding Algorithm 2 is
that initially, when updating queens, we do not use any information
from neighbors. However, as we move down the hierarchy and away
from the queens, we begin to employmore information fromneighbors.
(a)

Fig. 8.Hierarchical update: (a) This image shows the order of update fromAlgorithm 2 on Seque
with red indicating individuals that were updated earlier than the ones shown in yellow. The up
the hierarchy till all of the individuals are updated. Notice the occurrence of yellow squares in pr
as a result of the hierarchical update where edges, shown with arrows, signify the direction in
figure legend, the reader is referred to the web version of this article.)
In this figure, state prediction for several non-queen targets (orange to
yellow) is influenced by neighbors, which were adjacent to different
queens. Therefore, as we move away from the queens, the confidence
due to prominence subsides, however, it is somewhat compensated by
information from an increased number of updated neighbors down
the hierarchy.

3.4.1. Relationship to Bayesian Networks
The hierarchical order for trackingwe propose in this work is similar

to belief propagation on a graph with directed edges but no cycles,
which is equivalent to directed acyclic graph (DAG), or a Bayesian Net-
work (Fig. 8(b)). The evidence is provided by the underlying tracker,
and our goal is to find an estimate for the positions of all individuals in
the crowd given their respective evidence. The conditional probabilities
are mixture-of-Gaussians distributions and are provided by NMC. The
update scheme starts with the prominent individuals, followed by
their neighbors in a one-by-one fashion. Since edges only emanate
from nodes (individuals) whose states (positions) have already been
updated, the topology of the network evolves and changes till states of
all individuals in the scene have been updated. Hierarchical update
can, thus, be seen as a single pass of messages over this time-varying
Bayesian Network. An additional advantage of this updating scheme is
that it allows handling of anomalous motions, e.g., individuals whose
motion does not conformwith their neighbors. Since, if the probabil-
ity of state given local evidence is low for an individual, we ignore the
messages received from other individuals and resort to instanta-
neous flow, which would not have been possible if we used a simul-
taneous solution. Fig. 9 provides two instances from Sequence 5
where the proposed method was successfully able to track anomalous
individuals whose movement significantly deviated from the rest of
the crowd.

4. Experiments

We tested the proposed method on a variety of sequences which
differed in terms of crowd density and tracking difficulty. There are a
total of 8 sequences depicting commuters walking outdoors (Sequence
1–2: high density), marathons with people running at various speeds
(Sequence 3–6: high density), and railway stations (sequence 7:medium
density and 8: low density). The first frame of each sequence is shown in
Fig. 10 in the first and third columns, with the corresponding sequence
number at the bottom-right of the frame. We manually annotated the
eight sequences with the total number of individuals annotated in each
sequence ranging from 58–747. Some statistics on these sequences are
shown in the first three rows of Table 1.
(b)

nce 2which contained 220 people. The colors are encodedwith the color-bar on the right,
date scheme starts with queens (black square inscribed in a red square), andmoves down
oximity with red and orange, which depicts delayed update. (b) shows the DAG produced
which the influence was transmitted. (For interpretation of the references to color in this

image of Fig.�7
image of Fig.�8


Fig. 9. Results of delayed update: The first row shows an anomaly where a person moves against the crowd flow. The second row shows results of tracking a particular individual who
initially moved with the crowd but later decided to leave the marathon. This shows that instantaneous flow provides reasonable predictions when tracking anomalies. Note that, we
do not detect anomalies per se, but whenever the appearance-based confidence from the underlying tracker is below τ, which may happen in the case of anomalies, we rely on instan-
taneous flow to provide predictions.
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Although the proposed approach is complementary and an alterna-
tive to methods that track dense crowds after modeling crowd flow, for
the sake of comparison, we report results using methods by Ali and
Shah [16], who model crowd flow using various floor fields (FF), as
well as Rodriguez et al. [34] who use Correlated Topic Model (CTM) to
capture crowd behavior. The idea is to ensure that the performance
without learning crowd flow remains comparable to the alternative ap-
proacheswhere crowdflow ismodeled in advance, i.e., where data from
the future is used to learn the behavior of the crowd. In addition, we
compared against Park et al. [21] who use contextual information for
tracking by solving a MRF framework using mean-shift belief propaga-
tion (MSBP). We also generated results from the template-based
trackers such as mean-shift (MS) and Normalized Cross Correlation
(NCC). NCC was used as the underlying tracker for the proposed meth-
od, as given by Eq. (6).

Both the previous methods [16,34] track individuals after manual
initialization. The primary reason is to discard the effect of human
detection which is extremely difficult for these sequences. We also
manually initialized individuals by placing a fixed-sized square tem-
plate around the initialization location. Template size for each sequence
is given in the third row of Table 1. In addition, new individuals were
initialized as they entered the scene. The queens were selected only
when new initializations took place, which typically occurred after
every fifty frames. The number of clusters for queen selection was set
at k = 100 for all sequences. The templates were updated after
every 10 frames and the value of τ = 0.90 was selected. Therefore,
if the value from the underlying tracker at peak location was greater
than 0.90, the position of an individual was updated. A higher value
for this threshold reduced the performance due to increased depen-
dence on instantaneous flow, which is sometimes very noisy.

Fig. 10 shows the results obtained for the eight sequences. The first
and third columns show the initial frame of each sequence with all the
tracks output by the proposed method. In the second and fourth
columns, we show graphs that reflect tracking accuracies of various
methods. In these graphs, the x-axis shows the distance in pixels
ranging from 0 to 25 and the y-axis is the percentage of tracked point
from all trajectories that liewithin that distance from the corresponding
ground truth points. The curve from the proposed method is shown in
red. The othermethods areMSBP [21] shown in green, FF [16] in yellow,
CTM [34] in orange, aswell as baselineMS (mean-shift) in cyan andNCC
(normalized cross-correlation) in blue. The values of these curves at
15 pixel threshold are given in Table 1. The proposed method performs
equal or better than the comparison methods for Sequences 1–6. This
illustrates that even without learning crowd flow, the prominence and
spatial context are helpful enough to give decent tracking results. How-
ever, for Sequences 7 and 8, the results are lower by 1 to 2%, respective-
ly. For Sequence 7, the reason is primarily the camera angle and large
perspective distortion compared to other sequences. For Sequence 8,
the reason lies in the density of the crowd. At lower densities, the
individuals have more freedom tomove, and thus, themotion of neigh-
boring and prominent individuals is not a reliable estimate of the
motion of a particular individual under consideration. Furthermore,
the evaluation on these two sequences is also done on fewer people
than the rest of the sequences.

Next, we present some qualitative results on Sequences 4 and 5. In
Fig. 11, we show tracks of four different individuals from Sequence 5.
The ground truth is shown in green, while track from the proposed
method is in yellow. In Fig. 11(a–c), the track from the proposed
method perfectly aligns with the ground truth, while Fig. 11(d) shows
a failure case, where the track was lost soon after the initialization.
The reason for this failure was that the person under consideration
waswearing a dark-colored shirt. After a few frames of successful track-
ing, the person came into a positionwhere he or shewas surrounded by
shadows of several other individuals. The underlying tracker confused
the shadowwith the person and started chasing the shadow. This high-
lights the importance of appearance in tracking dense crowds, since it
can sometimes dominate auxiliary information provided in the form
of better predictions.

Fig. 12 shows eight examples of tracks obtained from Sequence 4
using the proposed method, FF [16] and CTM [34]. In this figure, the
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Fig. 10. Results on eight sequences used in our experiments: Tracks obtained from the proposedmethod are shown on the first frame of each sequence, shown in first and third columns.
Graphs in the second and fourth columns show the tracking accuracies of baseline NCC (blue), MS (cyan), MSBP [21] (green), FF [16] (yellow), CTM [34] (orange), as well as the proposed
method (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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green track is manually-labeled ground truth, while yellow, orange and
red tracks correspond to [16], [34] and the proposed method, respec-
tively. An analysis of the erroneous tracks reveals that most of the
id-switches were between people wearing the same color. The
Table 1
Quantitative comparison: Some statistics for the eight sequences are given in first three
rows, while the last six rows are the results for the six methods. These are the values of
curves in Fig. 10 at T = 15 pixels, which signifies the percentage of points in all tracks
that lie within 15 pixels of ground truth. The numbers in bold indicate the best
performance for each sequence among all the methods.

Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8

# Frames 840 134 144 492 464 333 494 126
# People 152 235 175 747 171 600 73 58
Template size 14 16 14 16 8 10 10 10

NCC 49% 85% 58% 52% 33% 52% 50% 86%
MS 19% 67% 16% 8% 7% 36% 28% 43%
MSBP 57% 97% 71% 69% 51% 81% 68% 94%
FF 74% 99% 83% 88% 66% 90% 68% 93%
CTM 76% 100% 88% 92% 72% 94% 65% 94%
Proposed 80% 100% 92% 94% 77% 94% 67% 92%
proposed method captures the constraints from neighbors
which prohibit the jumping of the tracker across different people.
The first row (Fig. 12(a,b)) shows instances where FF failed to
track the individuals, whereas both CTM and the proposed
method successfully tracked the individuals. The second row
(Fig. 12(c,d)) shows instances where CTM failed, but FF and the
proposed method were successful. The third row (Fig. 12(e,f))
shows instances where only the proposed method was success-
fully able to track the individuals. The last row shows an instance
where all methods succeeded (Fig. 12(g)), and where all failed
(Fig. 12(h)).

In order to test the contributions of various aspects of the proposed
method, we ran a small experiment whose results are presented in
Fig. 13. This plot shows that without the guidance of the queens and
neighbors, i.e., using only self-component pS in Eq. (1), the results are
close to 70%; influence from neighbors, in the form of NMC with ran-
domly initialized queens, adds 20% to tracking accuracy; while salient
queens identified usingAlgorithm1 add another 6%, giving 96% tracking
accuracy of the proposed algorithm at the 10 pixel threshold. For this
particular sequence, both prominence and NMC contribute to increase
in tracking accuracy, however, this may not always be the case. For
instance, prominence is of little value when all people have the same
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Fig. 11.Qualitative results on Sequence 5: This figure shows tracks of four different individuals from Sequence 5. The ground truth is shown in green,while track fromproposedmethod is
in yellow. In (a–c), the track from proposed method perfectly aligns with the ground truth, while (d) shows a failure case, where the track was lost soon after the initialization. (For in-
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(10)
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appearance or when everybody in the scene looks different and dis-
tinguishable. Similarly, the assumption of motion concurrence
breaks at low densities when people have more freedom to move.
However, it can be concluded from Figs. 10 and 13 that, while the
contributions will vary for different scenes, in general, all compo-
nents are necessary for an increase in tracking accuracy in structured
dense crowds.

5. Conclusion

We introduced a novel method for tracking in dense crowds
without using any prior knowledge about the scene, in contrast to
previous works which always use some training and modeling of
crowd flow using data from the past as well as the future. Beginning
with prominent individuals, we track all individuals in the crowd in
an ordered fashion employing influence from the neighbors and
confidence from template-based tracker. We showed the perfor-
mance of added functionality via scene-derived visual and contex-
tual information, which significantly improved the template-based
tracker. Future work will include making the proposed method
more robust by using information from multiple frames at the
same time.
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Appendix A

Theorem. Thenumber of times a target is visited (attempted for update)
at time t is finite given τ b 1.

Proof. The target revisited can either be a queen or a non-queen. After
the first visit, in case the queen fails condition in Algorithm 2, Line 15,
the algorithm, at later visits, will treat it as non-queen with prior prob-
ability governed by Eq. (5).
Let p zt;ki jx̂t;ki
� �

, denote the probability of observation on kth visit to a

non-queen target i at time t. There can be two cases at kth visit:

Case 1 ∀ j| j ∈ NNi, λj = 1.

Case 2 ∃ j| j ∈ NNi, λj = 0.

For Case 1, the distribution from Eq. (5) will not change for l N k. For
Case 2, there are two possibilities: either for some k′ N k, all the neigh-
bors of the target get updated, which will collapse Case 2 to Case 1.
The other possibility is when at least one of the neighbors is in the
same situation as target i (i.e., λ = 0 for both). Under such circum-
stances, Eq. (5) for l N k visits will still not change, since λj will be zero
in Eq. (2), thus, the influence from neighbor j will not be used for
updating state of target i.

In either case, ∃k′|∀kl N k′,

p xt;li jxtj∈NNi
; xt−1

i

� �
¼ p xt;k′i jxtj∈NNi

; xt−1
i

� �
: ð9Þ

It follows from Algorithm 2, Line 15 that for
ð10Þ
state of target i will be updated by Algorithm 2.

References

[1] B. Zhan, D. Monekosso, P. Remagnino, S. Velastin, L.-Q. Xu, Crowd analysis: a survey,
Journal of Machine Vision and Applications 19 (2008) 345–357.

[2] V. Rabaud, S. Belongie, Counting crowded moving objects, IEEE Conference on Com-
puter Vision and Pattern Recognition, 2006.

[3] X. Wu, G. Liang, K.K. Lee, Y. Xu, Crowd density estimation using texture analysis and
learning, IEEE International Conference on Robotics and Biomimetics, 2006.

[4] W. Ge, R. Collins, B. Ruback, Automatically detecting the small group structure of a
crowd, IEEE Workshop on the Applications of Computer Vision, 2009.

[5] R. Mehran, A. Oyama, M. Shah, Abnormal crowd behavior detection using social
force model, IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[6] L. Kratz, K. Nishino, Anomaly detection in extremely crowded scenes using
spatio-temporal motion pattern models, IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0005
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0005
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0160
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0160
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0165
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0165
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0170
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0170
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0175
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0175
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0180
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0180
http://refhub.elsevier.com/S0262-8856(13)00163-7/rf0180
image of Fig.�11


(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12. Eight examples from Sequence 4 that show the comparison of the proposedmethod (red)with FF [16] (yellow) andCTM [34] (orange). The ground truth track is depicted in green.
(a,b) show instances where FF failed but CTM and proposed method succeeded. (c,d) show instances where CTM failed but the other two succeeded. (e,f) show instances where both FF
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three failed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Contribution towards tracking accuracy by major components of the algorithm:
The experiment was done on sequence 2 at 2.5 fps. The x-axis is the distance threshold
in pixels, while the y-axis is the percentage of tracked points that lie within that distance
from the ground truth. This shows that all aspects are important for improvement in track-
ing results.
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