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Abstract

This paper proposes a novel method for estimating the
geospatial trajectory of a moving camera. The proposed
method uses a set of reference images with known GPS
(global positioning system) locations to recover the trajec-
tory of a moving camera using geometric constraints. The
proposed method has three main steps. First, scale invari-
ant features transform (SIFT) are detected and matched be-
tween the reference images and the video frames to calcu-
late a weighted adjacency matrix (WAM) based on the num-
ber of SIFT matches. Second, using the estimated WAM, the
maximum matching reference image is selected for the cur-
rent video frame, which is then used to estimate the relative
position (rotation and translation) of the video frame using
the fundamental matrix constraint. The relative position is
recovered upto a scale factor and a triangulation among
the video frame and two reference images is performed to
resolve the scale ambiguity. Third, an outlier rejection and
trajectory smoothing (using b-spline) post processing step
is employed. This is because the estimated camera loca-
tions may be noisy due to bad point correspondence or de-
generate estimates of fundamental matrices. Results of re-
covering camera trajectory are reported for real sequences.

1. Introduction
GPS was first introduced by the US Department of De-

fense (DoD) about 15 years ago for military personnel and
vehicle tracking around the world. Since then the GPS tech-
nology has been widely used in the areas of autonomous
navigation and localization of vehicles and robots. Re-
cently, commercial applications have employed GPS data
with georeferenced maps to recover the map of a city ad-
dress or to provide directions between different city lo-
cations. In this paper, we address two issues: Localiz-
ing the geospatial position and estimating the trajectory of
a moving camera based on the captured sequence of im-
ages. Geospatial position is localized using maximum SIFT
matches between the reference images (with known GPS)

and video frames while a camera trajectory is estimated us-
ing the geometric constraint between maximum matching
reference images and video frames.

In literature, a variety of methods have been proposed
for motion recovery and measurement of robot trajectory
(odometry) using visual inputs. Structure from Motion
(SFM) is the most common approach to solve problems
such as automatic environment reconstruction, autonomous
robot navigation and self-localization. These approaches
employ a 3D reconstruction of the environment during
learning phase or directly use the test video. Thus, the ac-
tual camera position is obtained by 3D matching of the cur-
rent view with the learned environment map. Methods that
use such techniques for recovering geospatial location in-
clude [6, 4, 7]. The most recent work using this approach
was proposed by Royer et al. in [13] for mobile robot nav-
igation. The robot is first manually guided on a learning
path. Later, a map of the environment and its 3D recon-
struction is performed off-line. Using this 3D reconstruc-
tion, the robot is able to recover its pose with respect to
the 3D environment model. An approach for Simultane-
ous Localization And Mapping (SLAM) was proposed in
[3], which is based on the Extended Kalman Filter (EKF).
It assumes a robot moving in a world with stationary land-
marks (distinctive physical features) that can be observed
by some sensor. The positions of the landmarks along with
the robot’s position at a particular time are considered to
be the system state. The problem consists of estimating the
new state (robot and landmark positions) at the next time
instance, given, the last movement made by the robot and
new observations provided by the sensory subsystem. The
typical sensors used for measuring the distance and orienta-
tion of landmarks with respect to the robot are sonar rings
[12], and more frequently, the laser scanners [3]. Davison
proposed two methods that do not require specialized hard-
ware (laser scanners or sonar rings) for measuring distance
and orientation of landmarks. His solutions are based on
an active binocular head [1] and a single camera [2] that
estimate the distance and orientation of visual landmarks.
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Figure 1. Overall geospatial localization framework.

A disadvantage of these solutions is the need for an initial
manual calibration: both for the position and orientation of
the robot with respect to a predefined target of known size.

SFM and SLAM based approaches have two major dis-
advantages. Firstly, the task is computationally very expen-
sive and is unnecessary to recover the trajectory of the cam-
era. Secondly, the 3D reconstruction of the environment
may fail at certain instances where distinctive features can-
not be computed e.g. images with trees only or areas with
sparse buildings. Since these methods rely on 3D environ-
ment reconstruction and use a matching algorithm for pose
recovery, these methods may not fully recover the complete
video trajectory. What is novel in our approach is that we do
not require a 3D reconstruction of the environment for re-
covering the camera trajectory. Instead, we require a set of
reference images with known GPS locations for geospatial
localization of the novel video data. Furthermore, we use
sub-sampled video frames for localization and interpolate
the trajectory by spline fitting in order to obtain a smooth
camera trajectory. Thus, the advantages of our method are
twofold. First, our method does not require all the video
frames to have distinctive features for geospatial localiza-
tion. Second, our method is computationally less expensive
since we do not require 3D reconstruction and matching of
the environment for localization.

2. System Overview
Our goal is to compute the geospatial localization of the

novel video frames{Vt, t = 1..M}, given a set of refer-
ence images{Ip, p = 1..N} with known GPS. We assume
that some video frames have overlapping field of view with
the reference images. Further, the camera does not zoom
while capturing the reference images and video frames i.e.
constant intrinsic parameters. These assumptions allow the
auto-calibration of the capturing devices.

The overall geospatial localization framework is given
in Figure1. Given a set of reference images, we recover
the camera intrinsic parameters using a method proposed by
Luong et al. in [10]. Similarly, we recover the video cam-
era’s intrinsic parameters using the video frames. Next, we

Figure 2. Triangulation between two reference images and video
frame used to resolve scale ambiguity for GPS location estimation.

perform homography tests between the sequence of video
frames to select keyframes from the video. Further, SIFT
features are detected and matched between the reference
images and the video keyframes (see Section2.1). Using
the maximum matching reference images and video frames,
we estimate the fundamental and essential matrices between
imageIp and frameVt pairs to recover the camera pose
(see Section2.2). Finally, we apply triangulation to recover
scale ambiguity in the estimated camera pose and obtain
the geospatial localization of the video keyframe (see Sec-
tion 2.3). We repeat these steps for all the video keyframes
and apply trajectory smoothing by fitting splines to the es-
timated GPS locations. The following sections detail these
steps.

2.1. Estimating the Weighted Adjacency Matrix
In order to obtain geospatial localization using the fun-

damental matrix constraint, we require feature point corre-
spondence between reference imagesIp and video frames
Vt. There are several methods to obtain point correspon-
dence between images including Harris corner detector [5],
Scale and affine invariant point detector [11], and SIFT
[8]. We empirically evaluated all the three point correspon-
dence methods and found SIFT to be the most robust match-
ing method across a substantial range of affine distortion,
change in viewpoint, addition of noise, and change in illu-
mination. The SIFT features are highly distinctive, and each
feature point is represented by 128 dimensional feature vec-
tor.

A match is found for a feature in frameVt to a feature in
Ip by estimating the ratio of the smallest to second small-
est Euclidean distance between the feature vectors. In [8],
the authors reject all the matches which have a distance
ratio greater than 0.8, which eliminates 90% of the false
matches discarding less than 5% of the correct matches. In
our application, we set this threshold to 0.4, in order to have
less number of very reliable matches. The above matching
scheme may result in multiple feature points in frameVt

matching with the same feature in imageIp. We obtain a
one-to-one correspondence by maximum matching of a bi-
partite graph. The bipartite graph construction is obtained



Figure 3. Example of best triplet selection and matching for video
frame 270 of Engineering building sequence. The two reference
images are in top row while the video frame is in bottom row.

by treating the two feature point sets as nodes in bipartitions
(Ip andVt) and the distance ratio as the weight on the edges
between the bipartition. We obtain a weighted adjacency
matrix W (Ip, Vt) by finding the point correspondence be-
tween all pairs ofIp andVt. Each entry in the matrix corre-
sponds to the number of matching features betweenIp and
Vt. The corresponding set of matching point locations is
stored in a matching matrixM(Ip, Vt) such that:

M(Ip, Vt) = {(x1, y1, x2, y2); (x1, y1) ∈ Ip∧(x2, y2) ∈ Vt}

2.2. Pose Recovery of the Video Frames
Given a video frameVt, we want to recover the posi-

tion PVt
= {Xt, Yt, Zt} of its camera optical center with

respect to a reference imageIp in the world coordinate sys-
tem. Since the GPS location of the reference imagesIp are
given in terms of longitude and latitude, we apply spheri-
cal to cartesian conversion to obtainPIp = {Xp, Yp, Zp}.
Later, we find the maximum matching reference imageIp

(usingW (Ip, Vt)). Furthermore, we utilize the set of cor-
responding pointsM(Ip, Vt) to estimate the fundamental
matrixF p

t between imagesVt andIp using the constraint:

[x1 y1 1]·F p
t ·[x2 y2 1]T = 0; ∀(x1, y1, x2, y2) ∈ M(Ip, Vt)

Due to noise in feature point location and incorrect point
correspondence, the estimation of the fundamental matrix
using the above linear constraint is erroneous. In order to
obtain a robust estimate, we use RANSAC based funda-
mental estimation technique proposed by Torr et al. in [14].
Using the fundamental matrix and calibration matricesKt

andKp (obtained using auto-calibration), we can estimate
the essential matrixEp

t by:

Ep
t = Kt · F p

t ·Kp.

The rotationR and translationt betweenVt andIp can
be recovered from the essential matrix by using methods
proposed in [9]. The translation vectort thus obtained, is
recovered up to a scale factor and this ambiguity is resolved
using triangulation which is described in the next section.
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Figure 4. Comparison of the average symmetric epipolar distance
with the localization variance for the theater sequence. Higher lo-
calization variance is due to higher average symmetric epipolar
distance which depicts that the fundamental matrix estimate is er-
roneous due to noise.

2.3. Resolving Scale Ambiguity
The triangulation scheme is employed to recover the

scale ambiguity and obtainPVt
= {Xt, Yt, Zt} i.e. the

position of camera center for the video frameVt. The tri-
angulation method requires an image triplet (two reference
imagesIi, Ij and a video frameVk), and the construction is
depicted in Figure2. Thus, for each video frameVt, two ref-
erence images are selected from the entire set such that the
obtained triple has the maximum matching feature points
with the video frame. The two reference images should also
have different GPS locations, otherwise, the resulting trian-
gulation construction is degenerate. More formally, given a
video frameVk, the best tripletBT (Vk) is obtained using:

BT (Vk) = (Vk, Ii, Ij) ; such that

(i, j) = argmax
i,j=1..N

min

 W (Vk, Ii),
W (Vk, Ij),
W (Ii, Ij)




Given the rotations and translations between each pair
of camera coordinate system(Rj

i , t
j
i ), (Rk

i , tki ), (Rk
j , tkj ),

we can compute the three internal angles (for the triangle)
using:

θ1 = cos−1 (dot(t1, t2))
norm(t1)norm(t2)

θ2 = cos−1 (dot(−t1, R1t3))
norm(t1)norm(t3)

θ3 = 180− θ1 − θ2

wherenorm(x) is the magnitude ofx. The scale factor
is recovered through distanceD(Ii, Ij) obtained from the



Figure 5. Examples of reference images with known GPS locations
used in our experiments.

two GPS locations of the reference images. The location of
camera center for video frameVk is obtained using trigono-
metric identities. If any angle is 0 degrees (collinear im-
age locations), then the current triplet is discarded and a
new triplet is used for triangulation. The recovered camera
center is converted from cartesian to spherical coordinates
to obtain GPS location in latitude and longitude. Figure3
shows an example of best triplet selection for a video frame
in the engineering building sequence.

2.4. Trajectory Smoothing
The fundamental matrix estimates are highly sensitive to

noise in feature correspondence. Thus, numerical errors,
insufficient feature point correspondence and noise could
result in incorrect estimation of GPS locations for the video
frames. Performing multiple estimations of the fundamental
matrix (using RANSAC), we obtain a spatial distribution of
GPS locations for each video frame. If the point correspon-
dence is reliable, the variance in the spatial distribution of
GPS location will be minimal. Therefore, we discard GPS
estimates of the video frames with high variance and re-
duce GPS estimation error for the video trajectory. Finally,
we use the remaining GPS locations as control points on a
b-spline and interpolate the rest of the trajectory by curve
fitting.

3. Results and Discussion
The accuracy of our geospatial localization was tested

against the ground truth GPS information obtained using a
Garmin GPSMAP 76S unit that has an accuracy of 3 me-
ters. We captured over 300 reference images (some exam-
ples shown in Figure5) using a Nikon D2X camera at 4 MP
(mega pixels per image) at various locations on our campus.
The video sequences were captured using a Sony HDR FX1
camera at HD quality. We empirically evaluated our method
to recover the geospatial trajectory of a moving camera on
four sequences totalling over 2500 video frames. The sum-
mary of results for the four sequences is given in Table1.

Given sets of reference images and video frames we re-
cover the respective camera intrinsic parameters using a
method proposed by Luong et al. in [10]. Next, we perform

Table 1.MEAN LOCALIZATION ERROR FOR DIFFERENT VIDEOS

Sequence Total Frames # of Keyframes Avg. Est. Error

Public Affairs 405 42 4.27 meters

Engineering II 325 33 3.93 meters

Theater 645 61 3.55 meters

Health Center 1187 82 5.12 meters

Figure 6. Top: Video frames for the theater sequence. Bottom:
Video trajectory (green) obtained using our method is compared
with ground truth trajectory (red). The blue points depict control
points for the spline, while the yellow points are GPS estimates
with localization variance greater than the threshold. The length of
trajectory was approximately 35 meters and the reference images
are marked as purple dots.

homography tests between the sequence of video frames to
select keyframes from the video. That is, we keep only
those keyframes that do not fit a homography with the previ-
ously selected keyframe. Using our algorithm we estimate
all the GPS locations and apply trajectory smoothing as a
post processing step. This is because the fundamental ma-
trix estimates are highly sensitive to noise in feature corre-
spondence due to numerical errors or incorrect point corre-
spondence. Performing multiple estimations of the funda-
mental matrix (100 estimates using RANSAC), we obtain a
spatial distribution of GPS locations for each video frame.
The GPS estimates of video frames with high variance in
the spatial distribution for multiple runs will have a high
symmetric epipolar distance (distance between the epipolar
lines and corresponding points). This is empirically eval-
uated and shown in Figure4 for the theater sequence. We
thus retain the mean of the GPS estimates with low vari-
ance, discard GPS estimates of the video frames with high
variance (threshold learnt using a small training sequence)
and reduce GPS estimation error for the video trajectory by
fitting splines on the reliable GPS estimates.

Figure 6 shows a video trajectory obtained using our
method and a comparison with the ground truth for the the-



Figure 7. Top: Video frames for the health center sequence. Bot-
tom: Video trajectory (green) obtained using our method is com-
pared with ground truth trajectory (red). The blue points depict
control points for the spline, while the yellow points are GPS es-
timates with localization variance greater than the threshold. The
length of trajectory was approximately 65 meters and the reference
images are marked as purple dots.

ater sequence. The average localization estimation error for
this sequence is 3.55 meters with a standard deviation of
2.12 meters. Figure7 shows a video trajectory obtained us-
ing our method and a comparison with the ground truth for
the health center sequence. The average localization estima-
tion error for this sequence is 5.12 meters with a standard
deviation of 5.36 meters. The reason for higher localization
estimation error is due to the presence of trees and non-
distinctive features (grass) in the middle of the sequence.
Though the average estimation error for our method is about
5 meters, this sequence cannot be used for SFM based meth-
ods that rely on distinctive features throughout the sequence
so that a 3D reconstruction and matching can be used for
pose recovery and localization. This is the major advantage
of our method and is more generally applicable to real se-
quences for geospatial localization.

In order to test the robustness of our GPS estimation
method, we conducted experiments on the golden datasets
(test4 and final5) of the ICCV Contest 2005. We estimate
the GPS locations for each image with an unknown GPS
location using the best triplet and triangulation method (de-
scribed in Section 2). The summary of our results is pro-
vided in Table2. Further, visual comparison of our results
with the ground truth is given in Figures8 and9 for test4
and final5 respectively. It is evident from our results that our
method has an average estimation error of 3.05 meters and
6.08 meters for datasets test4 and final5 respectively. While
the average score for test4 and final5 using the histogram of

Figure 8. Top: Images with unknown GPS location for Test4. Bot-
tom: GPS locations (blue) obtained using our method is compared
with ground truth GPS (red). The white lines show the distance
between the estimated and actual GPS locations.

error method used in the ICCV Contest is 4.2 and 3.5 re-
spectively. The best scores in the contest for these datasets
were 5.0 and 3.5 respectively. This corroborates the fact
that our method performs well for estimating GPS locations
for standard datasets.

Table 2.MEAN LOCALIZATION ERROR FOR ICCV CONTEST DATASET

Dataset Knowns Unknowns Avg. Score Avg. Est. Error

Test4 9 20 4.2 3.05 meters

Final5 16 22 3.5 6.08 meters

4. Conclusions
The paper proposed a novel method for estimating the

geospatial trajectory of a moving camera. We used the
video data and a set of reference images, captured from
known GPS locations, to recover the trajectory of the mov-
ing camera. The novelty of our approach is that we do not
require a 3D reconstruction of the environment for recov-
ering the camera trajectory. Instead, we require a set of
reference images with known GPS locations for geospatial
localization of the novel video data. Additionally, we use
sub-sampled video frames for localization and interpolate
the trajectory by spline fitting in order to obtain a smooth
camera trajectory. The advantage of our method is twofold:
First, our method does not require all the video frames to
have distinctive features for geospatial localization. Sec-
ond, our method is computationally inexpensive since we
do not require 3D reconstruction and matching of the envi-
ronment for localization.
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Figure 9. Top: Images with unknown GPS location for Final5. Bot-
tom: GPS locations (blue) obtained using our method is compared
with ground truth GPS (red). The white lines show the distance
between the estimated and actual GPS locations.
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